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Preface

The theory of modular forms is an important subject of number theory. Also it has
very important applications to other areas of number theory such as elliptic curves,
quadratic forms, etc. Its contents is vast. So any book on it must necessarily make a
rather limited selection from the fascinating array of possible topics. Our focus is on
topics which deal with the fundamental theory of modular forms of one variable with
integral and half-integral weight. Even for such a selection we have to make further
limitations on the themes discussed in this book. The leading theme of the book is
the development of the theory of Eisenstein series.

A fundamental problem is the construction of a basis of the space of modular
forms. It is well known that, for any weight � 2 and the weight 1, the orthogonal
complement of the space of cusp forms is spanned by Eisenstein series. Does this
conclusion hold for the half-integral weight < 2? The problem for weight 1/2 was
solved by J.P.Serre and H.M.Stark. Then one of the authors of this book, Dingyi
Pei, proved that the conclusion holds for weight 3/2 by constructing explicitly a
basis of the orthogonal complement of the space of cusp forms. To introduce this
result and some of its applications is our motivation for writing this book, which is a
large extension version of the book “Modular forms and ternary quadratic forms” (in
Chinese) written by Dingyi Pei.

Chapter 1 can be viewed as an introduction to the themes discussed in the book.
Starting from the problem of representing integers by quadratic forms we introduce
the concept of modular forms. In Chapter 2, we discuss the analytic continuation of
Eisenstein series with integral and half-integral weight, which prepares the construc-
tion of Eisenstein series in Chapter 7.

In Chapters 3-5, some fundamental concepts, notations and results about modu-
lar forms are introduced which are necessary for understanding later chapters. More
specifically, we introduce in Chapter 3 the modular group and its congruence sub-
groups and the Riemannian surface associated with a discrete subgroup of SL2(R).
Furthermore, the concept of cusp points for a congruence subgroup is presented. In
Chapter 4, we define modular forms with integral and half-integral weight, calculate
the dimension of the space of modular forms using the theorem of Riemann-Roch.
Chapter 5 is dedicated to define Hecke rings and discuss some of their fundamental
properties. Also in this chapter the Zeta function of a modular form with integral or
half-integral weight is described. In particular, we deduce the functional equation of
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the Zeta function of a modular form, and discuss Weil’s Theorem.

In Chapter 6, the definitions of new forms and old forms with integral and half-
integral weight are given. In particular the Atkin-Lehner’s theory and the Kohnen’s
theory, with respect to new forms for integral and half-integral weight, are discussed
at length respectively.

In Chapter 7, we construct Eisenstein series. The first objective is to construct
Eisenstein series with half-integral weight � 5/2. The second objective is the con-
struction of Eisenstein series with weight 1/2 according to Serre and Stark. Then the
method of the construction for Eisenstein series of weight 3/2 is introduced, followed
by the construction of Cohen-Eisenstein series. For completeness, the construction of
Eisenstein series with integral weight, which is due to Hecke, is also given in the last
section of the chapter.

The Shimura lifting is the main objective of Chapter 8 where we follow the way
depicted by Shintani. Weil representation is introduced first and some elementary
properties of Weil representation are discussed. Then the Shimura lifting from cusp
forms with half-integral weight to ones with integral weight is constructed. Also the
Shimura lifting for Eisenstein spaces is deduced in this chapter.

In Chapter 9, we discuss the Eichler-Selberg trace formula for the space of modular
forms with integral and half-integral weight. The simplest case of the Eichler-Selberg
trace formula on SL2(Z) is deduced in terms of Zagier’s method. Then the trace
formula on a Fuchsian group is obtained by Selberg’s method. Finally the Niwa’s and
Koknen’s trace formulae are obtained for the space of modular forms with half-integral
weight and the group Γ0(N).

In Chapter 10, some applications of modular forms and Eisenstein series to the
arithmetic of quadratic forms are described. We first present the Schulze-Pillot’s
proof of Siegel theorem. Then some results of representation of integers by ternary
quadratic forms are explained. We also give an upper bound of the minimal positive
integer represented by a positive definite even quadratic form with level 1 or 2.

Although many modern results on modular forms with half-integral weight are
contained in this book, it is written as elementarily as possible and it’s content is
self-contained. We hope it can be used as a reference book for researchers and as a
textbook for graduate students.

The authors would like to thank Ms. Yuzhuo Chen for her many helps. Also many
thanks should be given to Dr. Junwu Dong for his helpful suggestions and carefully
typesetting the draft of this book. We especially wish to thank Dr. Wolfgang Happle
Happle for carefully reading the draft of this book and correcting some errors in the
draft. The author Xueli Wang wishes to thank Prof. Dr. Gerhard Frey for stimulating
discussions and providing the environment of I.E.M in Essen University, where part
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of the draft has been done. Xueli Wang hope to give deepest gratitude for his lovely
and beautiful wife, Dr. Dongping Xu, who assumed all of the housework over the
years. Finally, the author Xueli Wang would like to dedicate this book to the 80th
birthday of his father.

Xueli Wang Dingyi Pei

Guangzhou

September, 2011
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Chapter 1

Theta Functions and Their Transformation

Formulae

In this chapter, we introduce theta functions of positive definite quadratic forms and
study their transformation properties under the action of the modular group.

Let a, b, c and n be positive integers with (a, b, c) = 1. Denote by N(a, b, c; n) the
number of integral solutions (x, y, z) ∈ Z3 of the following equation:

ax2 + by2 + cz2 = n.

Define the theta function by

θ(z) =
∞∑

n=−∞
e2πin2z, z ∈ H,

where H is the upper half of the complex plane, i.e., H = {z ∈ C|Im(z) > 0}. It is
clear that θ(z) is holomorphic on H. Put

f(z) = θ(az)θ(bz)θ(cz),

then

f(z) = 1 +
∞∑

n=1

N(a, b, c; n)e2πinz.

Hence the number N(a, b, c; n) is the n-th Fourier coefficient of the function. This
shows that we know the number N(a, b, c; n) if the Fourier coefficients of f can be
computed explicitly. It is clear that there is a close relationship between f(z) and
the θ function. We shall see later that f(z) is a modular form of weight 3/2 from the
transformation properties of θ under the action of linear fractional transformations.
After having studied some properties of modular forms, we shall resume this topic
later. Firstly, we shall consider some more general problems.

Now let t be a positive real number, put

ϕ(x) =
∞∑

n=−∞
e−πt(n+x)2 .
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The series satisfies ϕ(x + 1) = ϕ(x). Hence it has the following Fourier expansion:

ϕ(x) =
∞∑

m=−∞
cme2πimx,

where

cm =
∫ 1

0

ϕ(x)e−2πimxdx =
∫ ∞
−∞

e−πtx
2−2πimxdx = t−1/2e−πm

2/t.

Hence

ϕ(x) = t−1/2
∞∑

m=−∞
e−πm

2+2πimx. (1.1)

Taking x = 0 in equation (1.1) we get

θ̃(it) = t−1/2θ̃(−1/(it)),

where θ̃(z) = θ(z/2). Because θ̃(z) is a holomorphic function on the upper half plane,
we have that

θ̃(−1/z) = (−iz)1/2θ̃(z), ∀z ∈ H. (1.2)

For the multi-valued function z1/2, we choose arg(z1/2) such that −π/2 < arg(z1/2) �
π/2. In general, we have that (z1z2)1/2 = ±z

1/2
1 z

1/2
2 where we take “−” if one of the

following conditions is satisfied:
(1) Im(z1) < 0, Im(z2) < 0, Im(z1z2) > 0;
(2) Im(z1) < 0, Im(z2) > 0, Im(z1z2) < 0;
(3) z1 and z2 are both negative, or one of them is negative and the imaginary of

the other one is positive.
Otherwise we take “+”.
Let f(x1, · · · , xk) be an integral positive definite quadratic form in k variables.

Define the matrix

A =
(

∂2f

∂xi∂xj

)
.

Then A is a positive definite symmetric integral matrix with even entries on the
diagonal. It is clear that

f(x1, · · · , xk) =
1
2
xAxT,

where x = (x1, · · · , xk) ∈ Zk is a row vector, xT is the transposal of x. We now define
the θ function of f as

θf (z) =
∑
x∈Zk

e2πif(x)z for all z ∈ H.
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It is clear that

θf (z) =
∑
x∈Zk

eπixAxTz =
∞∑

n=0

r(f, n)e2πinz ,

where r(f, n) is the number of the solutions of f(x) = n with x ∈ Zk. θf (z) is
absolutely and uniformly convergent in any bounded domain of H, so it is holomorphic
on the whole of H.

Let N be the least positive integer such that all the entries of the matrix NA−1

are integers and the entries on the diagonal are even. This implies that detA is a
divisor of Nk. Hence the prime divisors of detA are also prime divisors of N . But it
is clear that N |2 detA. So all the odd prime divisors of N are certainly prime divisors
of detA.

If we consider A as a matrix on the ring Z2 of 2-adic integers, it can be proved
that there exists an inverse matrix S on Z2 such that

SAST =

⎛⎜⎜⎝
A1 0 · · · 0
0 A2
...

...
...

0 0 · · · Ar

⎞⎟⎟⎠ ,

where Ai is either an integer of 2Z2 or a symmetric matrix
(

2a b
b 2c

)
with a, b, c ∈ Z2.

It is clear that there is at least one Ai which is a 1 × 1 matrix if k is odd. So we
get the following

Lemma 1.1 If k is odd, then 2| detA and 4|N ; if k is even, then N | detA. If 4|k,

then detA ≡ 0 or 1 mod 4; if k ≡ 2 mod 4, then detA ≡ 0 or 3 mod 4. Hence
(−1)k/2 det A is always 1 or 0 modulo by 4 if k is even.

Let h be a vector in Zk such that hA ∈ NZk and define a function on H as follows

θ(z; h, A, N) =
∑

m≡h(N)

e
(zmAmT

2N2

)
,

where e(z) = e2πiz.

Proposition 1.1 We have the following transformation formula

θ(−1/z; h, A, N) = (det A)−1/2(−iz)k/2
∑

k modN, kA≡0(N)

e(hAkT/N2)θ(z; k, A, N).

Proof Let v be a positive real number, x = (x1, · · · , xk) ∈ Rk, and

g(x) =
∑

m∈Zk

e(iv(x + m)A(x + m)T/2).
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Then g(x) has Fourier expansion

g(x) =
∑

m∈Zk

ame(x · mT), (1.3)

where

am =
∫

· · ·
∫

0�xj<1

g(x)e(−x · mT)dx =
∫ ∞
−∞

· · ·
∫ ∞
−∞

e(ivxAxT/2 − x · mT)dx.

There exists a real orthogonal matrix S such that SAST is a diagonal matrix
diag{α1, · · · , αk} with αi > 0 (1 � i � k). We make a variable change x = yS in the
above integral and denote SmT = (u1, · · · , uk)T. Then

am =
k∏

j=1

∫ ∞
−∞

e−πvαjy2−2πiujydy

=
k∏

j=1

∫ ∞
−∞

e−πvαj

(
y+

iuj
vαj

)2− πu2
j

vαj dy

= v−k/2
k∏

j=1

α
−1/2
j e

− πu2
j

vαj

= v−k/2(detA)−1/2e−πmA−1mT/v. (1.4)

For any m ∈ Zk, let k ≡ mNA−1 (mod N). Then kA ≡ 0 (mod N) and m can
be written as (Nu + k)A/N(u ∈ Zk). Inserting (1.4) into (1.3), we get

g(x) = v−k/2(det A)−1/2
∑

k mod N,
kA≡0(N)

e(xAkT/N)

·
∑

u

e(xAuT + i(Nu + k)A(Nu + k)T/(2vN2)).

Since θ(iv; h, A, N) = g(h/N), we get by the above equality

θ(iv; h, A, N) = v−k/2(det A)−1/2
∑

k modN,
kA≡0(N)

e(hAkT/N2)θ
(
− 1

iv
; k, A, N

)
,

which shows that Proposition 1.1 holds for z = −1/iv. This implies that the propo-
sition holds because θ(z; h, A, N) is holomorphic on the whole of H.

Now we define the full modular group of order 2 as follows

SL2(Z) =
{(

a b
c d

) ∣∣∣∣a, b, c, d ∈ Z, ad − bc = 1
}

.
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Let

γ =
(

a b
c d

)
∈ SL2(Z).

We want to find the transformation formula of θ(z; h, A, N) under the transformation
z �→ γ(z) = (az + b)/(cz + d). We first assume that c > 0, then we get by Proposition
1.1 that

θ(γ(z); h, A, N)=
∑

m≡h(N)

e

(
mAmT

(
a − 1

cz + d

)
/(2cN2)

)

=
∑

g mod (cN),
g≡h(N)

e(agAgT/(2cN2))

·
∑

m≡g mod (cN)

e(−cmAmT/[2(cz + d)(cN)2])

=(det A)−1/2c−k/2(−i(cz + d))k/2

·
∑

k mod (cN),
kA≡0(N)

Φ(h, k)θ(cz; k, cA, cN), (1.5)

where
Φ(h, k) =

∑
g mod (cN),

g≡h(N)

e([agAgT + 2kAgT + dkAkT]/(2cN2))

and we also used the fact that mAmT is even for any m ∈ Zk. Since ad = bc + 1, it
follows

Φ(h, k)=
∑

g mod (cN),
g≡h(N)

e
(
a(g + dk)A(g + dk)T/(2cN2)

)
e
(
− b[2gAkT + dkAkT]/(2N2)

)

=e
(
− b[2hAkT + dkAkT]/(2N2)

)
Φ(h + dk, 0),

which implies that Φ(h, k) is only dependent on k mod N . By equality (1.5) we get

θ(γ(z); h, A, N)(detA)1/2ck/2(−i(cz + d))−k/2

=
∑

k mod (N),
kA≡0(N)

Φ(h, k)
∑

g mod (cN),
g≡k(N)

θ(cz; g, cA, cN)

=
∑

k mod (N),
kA≡0(N)

Φ(h, k)θ(z; k, A, N).
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Substituting z by −1/z, we get by Proposition 1.1

θ

(
bz − a

dz − c
; h, A, N

)
detAck/2

(
− i(d − c/z)

)−k/2(−iz)−k/2

=
∑

l mod N,
lA≡0(N)

{ ∑
k mod N,
kA≡0(N)

e(lAkT/N2)Φ(h, k)

}
θ(z; l, A, N). (1.6)

Now suppose that d ≡ 0(N). Since NA−1 is an integral matrix with even entries
on the diagonal,

kAkT/(2N) = (N−1kA · NA−1 · N−1AkT)/2

is an integer. Hence
Φ(h, k) = e(−bhAkT/N2)Φ(h, 0)

and the right hand of (1.6) becomes

Φ(h, 0)
∑

l mod N,
lA≡0(N)

{ ∑
k mod N,
kA≡0(N)

e((l − bh)AkT/N2)

}
θ(z; l, A, N).

We now compute the inner summation of the formula above. There exist modular
matrices P, Q, such that PAQ = diag{α1, · · · , αk}. Since NA−1 is an integral matrix,
then αi|N(1 � i � k). Since

kA ≡ (l − bh)A ≡ 0(N),

a direct computation shows that

∑
kmod(N),
kA≡0(N)

e((l − bh)AkT/N2) =
{

0, if 1 �≡ bh(N),
det A, if 1 ≡ bh(N).

Now substituting
(

b −a
d −c

)
by
(

a b
c d

)
, we assume that c ≡ 0(N), d < 0. Then

we have that

θ((az + b)/(cz + d); h, A, N) = (−i(c + d/z))k/2(−iz)k/2Wθ(z; ah, A, N), (1.7)

where
W = |d|−k/2

∑
gmod(|d|N),

g≡h(N)

e
(
− bgAgT/(2|d|N2)

)
.
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Since Im(−i) < 0, Im(c + d/z) > 0, then (−i(c + d/z))k/2 = (−i)k/2(c + d/z)k/2.

Similarly, since Im(−i) < 0, Im(z) > 0, we get (−iz)k/2 = (−i)k/2zk/2. Again since
Im(cz + d) = cIm(z), it follows

zk/2(c + d/z)k/2 = sgn(c)k(cz + d)k/2,

where

sgn(c) =
{

1, if c � 0,

−1, if c < 0.

Therefore
(−i(c + d/z))k/2(−iz)k/2 = (−isgn(c))k(cz + d)k/2. (1.8)

Since ad ≡ 1(N), we can express g in W as adh + Nu with u ∈ (Z/|d|Z)k. Then

W = e(abhAhT/(2N2))w(b, |d|), (1.9)

where
w(b, |d|) = |d|−k/2

∑
umod|d|

e(−buAuT/(2|d|)).

If c = 0 or b = 0, then d = −1 and hence w(b, |d|) = 1. Now suppose that bc �= 0
and d is an odd. We substitute z by z + 8m(m ∈ Z) in (1.7) such that d + 8mc < 0.
By (1.8) and (1.9) we know that

w(b, |d|) = w(b + 8ma, |d + 8mc|).

Because d and 8c are co-prime, we can find an integer m such that −d − 8mc is an
odd prime which will be denoted by p. Let β = −(b + 8ma). Then

w(b, |d|) = w(−β, p) = p−k/2
∑

umodp

e(βuAuT/(2p)).

Suppose that β ≡ 2β′(p). Since c ≡ 0(N), d and c are co-prime, then p and N

are co-prime, and hence p and detA are co-prime. There exists an integral matrix S

such that detS is prime to p and SASt is congruent to diag{q1, · · · , qk} modulo p.
By Gauss sum, we have that

w(b, |d|) = p−k/2
k∏

i=1

(
k∑

x=1

e(β′qix
2/p)

)
= εk

p

(
(β′)k detA

p

)
,

where
(

q

p

)
is the Legendre symbol

(
q

p

)
=
{

1, if q is a quadratic residue modulo p,
−1, otherwise.
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The symbol εn is defined for all odd integers:

εn =
{

1, if n ≡ 1(4),
i, if n ≡ 3(4).

It is clear that εp = ε−d = iε−1
d . Since all prime divisors of det A are divisors of

N , p ≡ −d(8N), (
detA

p

)
=
(

det A

−d

)
.

Since
(

a −β
c −p

)
∈ SL2(Z), i.e., βc − ap = 1, we get 2β′c ≡ 1(p). Hence

(
β′

p

)
=
(

2c

p

)
=
(

2c

−d

)
.

Let a be an integer, b �= 0 be an odd. We define a new quadratic residue symbol(a

b

)
satisfying the following properties:

(1)
(a

b

)
= 0 if (a, b) �= 1;

(2)
(

0
±1

)
= 1;

(3) If b > 0, then
(a

b

)
is the Jacobi symbol, i.e., if b =

∏
pr, then

(a

b

)
=∏(

a

p

)r

;

(4) If b < 0, then
(a

b

)
= sgn(a)

(
a

|b|

)
.

Hereafter, the symbol
(a

b

)
will be defined as above. Then we have

w(b, |d|) = ε−k
d (sgn(c)i)k

(
2c detA

d

)
(1.10)

and (1.10) holds for c = 0 or c �= 0.
Define a subgroup of the full modular group as follows

Γ0(N) =
{(

a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0(N)
}

.

Proposition 1.2 Let γ =
(

a b

c d

)
∈ Γ0(N). If k is odd, then we have

θ(γ(z); h, A, N) = e
(
abhAhT/(2N2)

)(detA

d

)(2c

d

)k

ε−k
d (cz + d)k/2θ(z; ah, A, N),

(1.11)
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If k is even, then we have

θ
(
γ(z); h, A, N

)
= e
(
abhAhT/(2N2)

)( (−1)k/2 detA

d

)
(cz + d)k/2θ(z; ah, A, N),

(1.12)

Proof First assuming that k is odd. By Lemma 1.1, N ≡ 0(4). Hence d is odd.
For d < 0, inserting (1.8), (1.9) and (1.10) into (1.7), we can get (1.11) immediately.
For d > 0, substituting γ by −γ and noting that (−γ)(z) = γ(z), we have

θ(γ(z); h, A, N) = e(abhAhT/(2N2))
(

det A

d

)(
−2c

−d

)k

× ε−k
−d(−cz − d)k/2θ(z;−ah, A, N).

It is clear that θ(z;−ah, A, N) = θ(z; ah, A, N). If c = 0, then d = 1 and(
−2c

−d

)k

ε−k
−d(−cz − d)k/2 = i−k(−1)k/2 = 1.

If c �= 0, we have(
−2c

−d

)k

ε−k
−d(−cz − d)k/2 = (−sgn(c))k

(
−2c

d

)k

i−kε−k
d (−isgn(c))k(cz + d)k/2

= ε−k
d

(
2c

d

)k

(cz + d)k/2.

This shows that (1.12) holds also for d > 0. Now assuming that k is even. If d is
odd, we can get (1.12) by proceeding similarly as above. If d is even, then c is odd,
and N is also odd. By the result for the case d odd, we have

θ

(
az + aN + b

cz + cN + d
; h, A, N

)
= e
(abhAhT

2N2

)( (−1)k/2 detA

cN + d

)
(cz + cN + d)k/2θ(z; ah, A, N), (1.13)

where we used the fact that hAhT/(2N) is an integer. By Lemma 1.1 and Lemma
1.2 which will be proved later, we have(

(−1)k/2 detA

cN + d

)
=
(

(−1)k/2 detA

d

)
,

where d is even. So the right hand side of above is equal to
(

(−1)k/2 detA

detA + d

)
. Sub-

stituting z by z − N in (1.13) we get (1.12).
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It is clear that θf (z) = θ(z; 0, A, N). Thus we obtain the main theorem of this
chapter:

Theorem 1.1 Let γ =
(

a b

c d

)
∈ Γ0(N). If k is odd, then

θf (γ(z)) =
(

2 detA

d

)
ε−k

d

( c

d

)k

(cz + d)k/2θf (z).

If k is even, then

θf (γ(z)) =
(

(−1)k/2 detA

d

)
(cz + d)k/2θf (z).

In particular, taking k = 1, A = 2, then N = 4. For any γ =
(

a b
c d

)
∈ Γ0(4), by

Theorem 1.1, we have

θ(γ(z)) = ε−1
d

( c

d

)
(cz + d)1/2θ(z).

We define the symbol

j(γ, z) = ε−1
d

( c

d

)
(cz + d)1/2, γ ∈ Γ0(4).

If γ1, γ2 ∈ Γ0(4), by the above result, we have

θ(γ1γ2(z)) = j(γ1γ2, z)θ(z)

and
θ(γ1γ2(z)) = j(γ1, γ2(z))θ(γ2(z)) = j(γ1, γ2(z))j(γ2, z)θ(z).

Therefore
j(γ1γ2, z) = j(γ1, γ2(z))j(γ2, z). (1.14)

Lemma 1.2 Let a = ds2 �= 0 be an integer, d square-free. Let

D =
{ |d|, if d ≡ 1(4),

4|d|, if d ≡ 2, 3(4).

Then the map b �→
(a

b

)
(b is odd) defines a character modulo 4a with conductor D.

Proof If a, b are co-prime, it is clear that(a

b

)
=
(

d

b

)
.
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(1) Suppose d > 0 and d odd. If b > 0, then

(
d

b

)
=

⎧⎪⎪⎨⎪⎪⎩
(

b

d

)
, if d ≡ 1(4),(

−1
b

)(
b

d

)
, if d ≡ 3(4).

If b < 0, d ≡ 1(4), then (
d

b

)
=
(

d

|b|

)
=
(
|b|
d

)
=
(

b

d

)
.

If b < 0, d ≡ 3(4), then(
d

b

)
=
(

d

|b|

)
=
(
−1
|b|

)(
|b|
d

)
=
(
−1
b

)(
b

d

)
.

These conclusions show that the lemma holds in this case.
(2) Suppose d < 0, d is odd. If b > 0, then

(
d

b

)
=
(
−1
b

)(
|d|
b

)
=

⎧⎪⎪⎨⎪⎪⎩
(

b

|d|

)
, if d ≡ 1(4),(

−1
b

)(
b

|d|

)
, if d ≡ 3(4).

If b < 0, d ≡ 1(4), then(
d

b

)
= −

(
d

|b|

)
= −

(
|b|
|d|

)
=
(

b

|d|

)
.

If b < 0, d ≡ 3(4), then(
d

b

)
= −

(
d

|b|

)
= −

(
−1
|b|

)(
|b|
|d|

)
=
(
−1
b

)(
b

|d|

)
.

These conclusions show that the lemma holds in this case.
(3) Suppose d = 2d′, then (

d

b

)
=
(

2
b

)(
d′

b

)
.

(
2
b

)
is a character modulo 8, gathering the results in (1) and (2), we proved the

lemma.

Remark 1.1 If a ≡ 1(4), b �→
(a

b

)
is a character modulo a. In this case, b can

be an even integer.



Chapter 2

Eisenstein Series

2.1 Eisenstein Series with Half Integral Weight

In this section we always assume that k is an odd integer, N is a positive integer such
that 4|N , ω is an even character modulo N , i.e., ω(−1) = 1. We shall construct a
class of holomorphic functions which are named as Eisenstein series with the following
property

f(γ(z)) = ω(dγ)j(γ, z)kf(z), γ =
(
∗ ∗
∗ dγ

)
∈ Γ0(N).

Lemma 2.1 Let k > 2 be a positive integer, z ∈ H. Put

L = {mz + n|m, n ∈ Z}.

Then the series
Ek(z) =

∑
w∈L\{0}

w−k =
∑
m,n

′(mz + n)−k

is a holomorphic function on the upper half plane H where
∑ ′

indicates the summa-
tion over all (m, n) �= (0, 0).

Proof Let Pm be the parallelogram with vertices ±mz ± m. Denote

r = min{|w|, w ∈ P1},

for any w ∈ Pm, we have that |w| � mr. Since there are 8m points in L
⋂

Pm, then

∑
w∈L\{0}

|w|−k =
∞∑

m=1

∑
w∈Pm

|w|−k � 8
∞∑

m=1

m(mr)−k.

It is clear that the right hand side of the above is convergent for k > 2. So Ek(z) is
absolutely and uniformly convergent in any bounded domain of H. This shows that
Ek(z) is holomorphic on the whole of H.

Let

Γ∞ =

{
±
(

1 n
0 1

) ∣∣∣∣∣n ∈ Z

}
,
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which is clearly a subgroup of Γ0(N). Suppose k � 5 and define

Ek(ω, N)(z) =
∑

γ∈Γ∞\Γ0(N)

ω(dγ)j(γ, z)−k, (2.1)

where γ runs over a complete set of representatives of right cosets of Γ∞ in Γ0(N).
For γ′ ∈ Γ∞, by (1.14), we have that

ω(dγ′γ)j(γ′γ, z)−k = ω(dγ)j(γ, z)−k,

which implies that Ek(ω, N)(z) is well defined. By Lemma 2.1 it is a holomorphic
function on H. For any γ′ ∈ Γ0(N), it is easy to verify

Ek(ω, N)(γ′(z)) = ω(dγ′)j(γ′, z)kEk(ω, N)(z).

For 1 � k < 5, the series defined in (2.1) is not absolutely convergent. We now
introduce the following function

Ek(s, ω, N)(z) = ys/2
∑

γ∈Γ∞\Γ0(N)

ω(dγ)j(γ, z)−k|j(γ, z)|−2s, (2.2)

where y = Im(z) > 0, s is a complex variable and we will therefore call |j(γ, z)|−2s

Hecke convergence factor because it was first introduced by Hecke. It is clear that
for Re(s) > 2 − k/2 the series (2.2) is absolutely convergent and has the following
transformation property

Ek(s, ω, N)(γ(z)) = ω(dγ)j(γ, z)kEk(s, ω, N)(z), γ ∈ Γ0(N). (2.3)

We shall study the meromorphic continuation of Ek(s, ω, N) to the whole s-plane.
Then we get a holomorphic function on H for s = 0. By (2.3)

Ek(s, ω, N)(z + 1) = Ek(s, ω, N)(z),

i.e., Ek(s, ω, N)(z) has period 1. We shall first compute the Fourier expansion of
Ek(s, ω, N)(z) with respect to e2πiz. Then we can get the analytic continuation with
respect to s. Now we assume that k � 1. We need some lemmas.

Lemma 2.2 Let λ, y ∈ R, β ∈ C, and y > 0, Re(β) > 0. Then∫ y+i∞

y−i∞
v−βeλvdv =

{
2πiλβ−1Γ(β)−1, if λ > 0,

0, if λ � 0.

Proof We only need to prove the lemma for 0 < Re(β) < 1. Let

β = a + ib, v = |v|eiϕ = s + it, s, t ∈ R.
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For λ � 0, we integrate along a path shown in Figure 2.1. Since

|v−βeλv| = e−a lg |v|+bϕ+λs → 0, |v| → ∞, s � y,

by the Cauchy Theorem for path integrals, we know that the lemma holds. For λ > 0,∫ y+i∞

y−i∞
v−βeλvdv = λβ−1

∫ λy+i∞

λy−i∞
v−βevdv,

we integrate along the path as in Figure 2.2. When v runs over the small circle with
radius r, we get

r|v−βev| = r1−a|ev| → 0, r → 0,

since 0 < a < 1. On the other hand,

|v−βev| = e−a lg |v|+bϕ+s → 0, |v| → ∞, s � λy.

Figure 2.1 Figure 2.2

Hence by the Cauchy Theorem we have∫ λy+i∞

λy−i∞
v−βevdv = −

∫ 0

−∞
v−βevdv −

∫ −∞
0

v−βevdv,

where the variable v in the first integral runs above the negative real axis and the
variable v in the second integral runs underneath the negative real axis. Therefore∫ 0

−∞
v−βevdv = e−iπβ

∫ ∞
0

x−βe−xdx = e−iπβΓ(1 − β),∫ −∞
0

v−βevdv = −eiπβ

∫ ∞
0

x−βe−xdx = −eiπβΓ(1 − β).

But
(eiπβ − e−iπβ)Γ(1 − β) = 2iΓ(1 − β) sinπβ = 2πiΓ(β)−1,

which completes the proof.
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Let y > 0, α, β ∈ C and define

W (y, α, β) = Γ(β)−1

∫ ∞
0

(1 + u)α−1uβ−1e−yudu,

which is called the Whittaker function. It is clear that the integral is convergent for
Re(β) > 0. Applying integration by parts we get

W (y, α, β) = yW (y, α, β + 1) + (1 − α)W (y, α − 1, β + 1). (2.4)

Due to the above equality W (y, α, β) can be continued analytically to C2 for (α, β).
We will also denote the continued function by W (y, α, β).

Lemma 2.3 W (y, α, 0) = 1, W (y, α,−1/2) = y1/2.

Proof Taking β = 0 in equality (2.4), we have

W (y, α, 0) = yW (y, α, 1) + (1 − α)W (y, α − 1, 1)

= y

∫ ∞
0

(1 + u)α−1e−yudu + (1 − α)
∫ ∞

0

(1 + u)α−2e−yudu

= y

∫ ∞
0

(1 + u)α−1e−yudu −
∫ ∞

0

e−yud(1 + u)α−1

= −e−yu(1 + u)α−1 |∞0 = 1.

Similarly taking β = −1/2 in (2.4), we have

W (y, 1,−1/2) = yW (y, 1, 1/2) = yΓ(1/2)−1

∫ ∞
0

u−1/2e−yudu = y1/2,

which completes the proof.

Lemma 2.4 Let y > 0, α, β ∈ C. Then

yβW (y, α, β) = y1−αW (y, 1 − β, 1 − α).

Proof Taking the Mellin transformation of Γ(β)W (y, α, β) (assume Re(s) > 0),
we see

Γ(β)
∫ ∞

0

W (y, α, β)ys−1dy =
∫ ∞

0

(u + 1)α−1uβ−1

∫ ∞
0

ys−1e−yudydu

= Γ(s)
∫ ∞

0

(u + 1)α−1uβ−s−1du.

Suppose Re(1 − α) > 0 and insert the following equality into the formula above

(u + 1)α−1 = Γ(1 − α)−1

∫ ∞
0

e−x(u+1)x−αdx,



2.1 Eisenstein Series with Half Integral Weight 17

we get

Γ(1 − α)Γ(β)
∫ ∞

0

W (y, α, β)ys−1dy = Γ(s)Γ(β − s)Γ(1 − α − β + s).

By the inverse Mellin transformation, we see

W (y, α, β) =
1

2πi

∫ c+i∞

c−i∞

Γ(s)Γ(β − s)Γ(1 − α − β + s)
Γ(1 − α)Γ(β)

y−sds,

where c satisfies the inequalities c > 0, Re(β) > c > Re(α + β − 1). There exists such
a c if Re(β) > 0, Re(1 − α) > 0. Let S = s − β, we have

yβW (y, α, β) =
1

2πi

∫ −p+i∞

−p−i∞

Γ(−S)Γ(β + S)Γ(1 − α + S)
Γ(1 − α)Γ(β)

y−SdS,

where p satisfies 0 < p < min{Re(1 − α), Re(β)}. The right hand side of the above
equality is stable under the transformation α → 1 − β, β → 1 − α. This shows that
the lemma holds for Re(1 − α) > 0, Re(β) > 0. But W (y, α, β) is analytic on C2. So
the lemma holds for any (α, β) ∈ C2, which completes the proof.

Lemma 2.5 Suppose that Re(α) > 0, Re(β) > 0, Re(α + β) > 1, z = x + iy ∈ H,

then
+∞∑

m=−∞
(z + m)−α(z + m)−β =

+∞∑
n=−∞

tn(y, α, β)e2πinx,

where

iα−β(2π)−α−βtn(y, α, β) =

⎧⎪⎨⎪⎩
nα+β−1e−2πnyΓ(α)−1W (4πny, α, β), if n > 0,

|n|α+β−1e−2π|n|yΓ(β)−1W (4π|n|y, β, α), if n < 0,

Γ(α)−1Γ(β)−1Γ(α + β − 1)(4πy)1−α−β, if n = 0.

Proof Let

f(x) =
+∞∑

m=−∞
(x + iy + m)−α(x − iy + m)−β .

This series is absolutely convergent for Re(α + β) > 1. Since f(x + 1) = f(x), we
have

f(x) =
+∞∑

n=−∞
cne2πinx,



18 Chapter 2 Eisenstein Series

where

cn =
∫ 1

0

f(x)e−2πinxdx

=
∫ +∞

−∞
(x + iy)−α(x − iy)−βe−2πinxdx

= iβ−α

∫ +∞

−∞
(y − ix)−α(y + ix)−βe−2πinxdx

= iβ−α−1e2πny

∫ y+i∞

y−i∞
v−β(2y − v)−αe−2πnvdv

= iβ−α−1e2πnyΓ(α)−1

∫ y+i∞

y−i∞
v−βe−2πnv

∫ ∞
0

e−ξ(2y−v)ξα−1dξdv

= iβ−α−1e2πnyΓ(α)−1

∫ ∞
0

ξα−1e−2yξ

{∫ y+i∞

y−i∞
v−βe(ξ−2πn)vdv

}
dξ,

where we used the fact that

(2y − v)−α = Γ(α)−1

∫ ∞
0

e−ξ(2y−v)ξα−1dξ

for Re(α) > 0.
Now let ξ = 2πp, u = max{0, n}. Since Re(β) > 0, by Lemma2.2 we have

cn = 2πiβ−αe2πnyΓ(α)−1Γ(β)−1

∫ ∞
2πu

ξα−1(ξ − 2πn)β−1e−2yξdξ

= (2π)α+βiβ−αe2πnyΓ(α)−1Γ(β)−1

∫ ∞
u

pα−1(p − n)β−1e−4πpydp.

If n > 0, then u = n, let p − n = nq. If n < 0, then u = 0, let p = −nq. Hence we
have ∫ ∞

u

pα−1(p − n)β−1e−4πpydp

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

nα+β−1

∫ ∞
0

(q + 1)α−1qβ−1e−4πn(1+q)ydq, if n > 0,

|n|α+β−1

∫ ∞
0

(q + 1)β−1qα−1e−4π|n|qydq, if n < 0,∫ ∞
0

pα+β−2e−4πpydp, if n = 0

=

⎧⎪⎨⎪⎩
nα+β−1e−4πnyW (4πny, α, β), if n > 0,

|n|α+β−1W (4π|n|y, β, α), if n < 0,

(4πy)1−α−βΓ(α + β − 1), if n = 0,

which completes the proof.
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Now we can compute the Fourier expansion of Ek(s, ω, N)(z). Let

W = {(c, d)|c, d ∈ Z, gcd(c, d) = 1, N |c, c � 0, d = 1 if c = 0}.

Then we can prove that there exists a one-to-one correspondence between W and the
set of representatives of right cosets of Γ∞ in Γ0(N). Suppose Re(s) > 2 − k/2, by
Lemma 2.5 we have (substituting c by cN)

Ek(s, ω, N)(z)= ys/2

{
1 +

+∞∑
d=−∞

+∞∑
c=1

ω(d)εk
d

(cN

d

)
(cNz + d)−k/2|cNz + d|−s

}

= ys/2

{
1 +

∞∑
c=1

(cN)−k/2−s
cN∑
d=1

ω(d)εk
d

(
cN

d

)

×
∞∑

n=−∞

(
z +

d

cN
+ n

)−k/2−s/2 (
z +

d

cN
+ n

)−s/2}

= ys/2

{
1 +

∞∑
n=−∞

ak(n, s, ω, N)tn(y, (k + s)/2, s/2)e(nx)
}

, (2.5)

where

ak(n, s, ω, N) =
∞∑

c=1

(cN)−k/2−s
cN∑
d=1

ω(d)εk
d

(
cN

d

)
e

(
nd

cN

)
. (2.6)

For Re(s) > 2 − k/2, define

E′k(s, ω, N)(z) = z−k/2Ek(s, ω, N)(−1/(Nz)). (2.7)

Now assume that γ =
(

a b
c d

)
∈ Γ0(N). Then by (2.3) we can verify easily that

E′k(s, ω, N)(γ(z)) = ω(d)
(

N

d

)
j(γ, z)kE′k(s, ω, N)(z). (2.8)

Now let W ′ = {(c, d)|c, d ∈ Z, gcd(c, d) = 1, N |c, d > 0}. Then there exists a one-
to-one correspondence between W ′ and the set of representatives of cosets of Γ∞ in
Γ0(N). Then we can similarly get that

E′k(s, ω, N)(z) = ys/2N−s/2
∞∑

n=−∞
bk(n, s, ω, N)tn(y, (k + s)/2, s/2)e(nx), (2.9)

where

bk(n, s, ω, N) =
∞∑

d=1

(
−N

d

)
ω(d)εk

dd−s−k/2
d∑

m=1

(m

d

)
e
(nm

d

)
. (2.10)
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Lemma 2.6 Let ω0 be a primitive character modulo r, ω be a character modulo rs,

and ω(n) = ω0(n) for gcd(n, s) = 1. Then for any integer q we have

rs∑
n=1

ω(n)e
(nq

rs

)
=

r∑
m=1

ω0(m)e(m/r)
∑

c|(s,q)

cμ(s/c)ω0(s/c)ω0(q/c).

Proof We have that
rs∑

n=1

ω(n)e
(nq

rs

)
=

rs∑
n=1

ω0(n)
∑

d|(s,n)

μ(d)e
(nq

rs

)

=
∑
d|s

μ(d)
rs/d∑
n=1

ω0(nd)e
(

ndq

rs

)

=
∑
d|s

μ(d)ω0(d)
r∑

n=1

ω0(n)e
(

ndq

rs

) s/d∑
u=1

e

(
uq

s/d

)
.

Denote c = s/d, then the inner summation in the above formula is zero for all c � q

and is c for c|q which shows the lemma.

Now let d = ru2 be an odd positive integer with r square free. Taking ω =( ·
d

)
, ω0 =

( ·
r

)
, q = n, s = u2 in Lemma 2.6, we have

d∑
m=1

(m

d

)
e
(nm

d

)
= εrr

1/2
∑

c|(u2,n)

cμ(u2/c)
(

u2/c

r

)(
n/c

r

)
, (2.11)

where we used the fact
r∑

m=1

(m

r

)
e
(m

r

)
= εrr

1/2.

Let λ = (k − 1)/2 and n be an integer. We define a primitive character ω
(n)
k

satisfying

ω
(n)
k (d) =

(
(−1)λnN

d

)
ω(d), if (d, nN) = 1.

We also define a primitive character ω′ satisfying

ω′(d) = ω2(d), if (d, N) = 1.

Suppose that χ is a character modulo a factor of N . Define

LN (s, χ) =
∞∑

(n,N)=1

χ(n)n−s =
∏
p�N

(1 − χ(p)p−s)−1,

where p runs over all primes co-prime to N .
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Proposition 2.1 We have

LN (2s + 2λ, ω′)bk(0, s, ω, N) = LN (2s + 2λ − 1, ω′).

For n �= 0, we have

LN(2s + 2λ, ω′)bk(n, s, ω, N) = LN (s + λ, ω
(n)
k )βk(n, s, ω, N),

where
βk(n, s, ω, N) =

∑
a,b

μ(a)ω(n)
k (a)ω′(b)a−s−λb−2s−2λ+1, (2.12)

where a, b run over all positive integers such that (ab, N) = 1 and (ab)2|n.

Proof For n = 0, the inner summation of (2.10) is nonzero only for d a square.
Therefore

bk(0, s, ω, N) =
∞∑

u=1

ω(u2)u−2s−kϕ(u2)

=
∏
p�N

{ ∞∑
i=0

ω(p2i)p−(2s+k)iϕ(p2i)

}

=
∏
p�N

{
1 +

∞∑
i=1

(
1 − 1

p

)
(ω(p2)p−(2s+k−2))i

}

=
∏
p�N

1 − ω(p2)p−2s−k−1

1 − ω(p2)p−2s−k+2

= LN (2s + 2λ − 1, ω′)LN (2s + 2λ, ω′)−1.

Now assume that n = tm2 �= 0, t square free. Since N is even, the summation in
(2.10) is nonzero only for odd integer d. By (2.11) we get

bk(n, s, ω, N) =
∑
r,u

(
−N

ru2

)
εk+1

r ω(ru2)(ru2)−s−k/2r1/2

×
∑

c|(u2,n)

cμ(u2/c)
(

u2/c

r

)(
n/c

r

)
,

where r, u run over all positive integers with r square free. Denote u2 = ac, then
μ(a) �= 0 only for a square free. So we can suppose u = ab. Then

c = ab2, u2n/c2 = n/b2,

hence

bk(n, s, ω, N) =
∑
r,a,b

μ(a)r−s−λa−2s−2λb−2s−2λ+1ω(ra2b2)
(

(−1)λnN/b2

r

)
,
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where we used the fact

εk+1
r =

(
(−1)(k+1)/2

r

)
and r, a, b run over all positive integers such that (rab, N) = 1, ab2 | n and r square
free. Since ab2 | n = tm2, we see that b | m. Let m = bh, then a | th, n/b2 = th2.
Since

ω(r)
(

(−1)λNth2

r

)
=
{

0, if (r, thN) > 1,

ω
(n)
k (r), if (r, thN) = 1,

we have

bk(n, s, ω, N)=
∑
b|m

ω2(b)b−2s−2λ+1
∑
a|th

μ(a)ω2(a)a−2s−2λ

×
∑

(r,thN)=1

μ2(r)ω(n)
k (r)r−s−λ. (2.13)

It is clear that ∑
a|th

μ(a)ω2(a)a−2s−2λ =
∏

p|th,p�N

(
1 − ω′(p)p−2s−2λ

)
(2.14)

and∑
(r,thN)=1

μ2(r)ω(n)
k (r)r−s−λ =

∏
p�thN

(
1 + ω

(n)
k (p)p−s−λ

)
=
∏

p�thN

1 − ω′(p)p−2s−2λ

1 − ω
(n)
k (p)p−s−λ

=
LN(s + λ, ω

(n)
k )

LN (2s + 2λ, ω′)

∏
p|th,p�N

1 − ω
(n)
k (p)p−s−λ

1 − ω′(p)p−2s−2λ
, (2.15)

For primes p such that p | t, p � N , we have ω
(n)
k (p) = 0. Inserting (2.14) and (2.15)

into (2.13), we get

bk(n, s, ω, N) =
LN (s + λ, ω

(n)
k )

LN(2s + 2λ, ω′)

∑
b|m

ω2(b)b−2s−2λ+1
∏

p|h,p�N

(
1 − ω

(n)
k (p)p−s−λ

)

=
LN (s + λ, ω

(n)
k )

LN(2s + 2λ, ω′)

∑
a,b

μ(a)ω(n)
k (a)ω′(b)a−s−λb−2s−2λ+1,

which completes the proof.

Let n be any integer and χn a primitive character satisfying

χn(d) =
(n

d

)
for all (d, 4n) = 1.


