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Preface

This monograph concerns with application of the upper bound theorem to finding the
limit load for welded structures including structures with cracks. The presentation
of the introductory material and the theoretical developments appear in a text of six
chapters. The topics chosen are primarily of interest to engineers as postgraduates
and practitioners but they should also serve to capture a readership from among
applied mathematicians. The monograph provides both a collection of limit load
solutions for welded structures and a description of general approaches to finding the
limit load for a class of structures. Many solutions are represented by formulae. Such
solutions are immediately ready for practical use. Other solutions are illustrated
by diagrams. These diagrams demonstrate most important tendencies in solutions
behavior. It is however evident that they cannot be used for practical calculation of
the limit load. Therefore, most of such solutions are described in great detail,
including possible difficulties with application of numerical methods, and quanti-
tative results can be easily reproduced. In most cases, numerical techniques are only
necessary to evaluate integrals and minimize functions of one variable. As a rule,
approximations of solutions by elementary functions are not given in the mono-
graph. Although such approximations are widely used in the literature, it is believed
that they are not efficient when there are several essential input parameters.
For reasons of space, the main focus is on various highly undermatched tensile
specimens, though undermatched and overmatched cases are briefly discussed as
well.

Among the topics that are either new or presented in greater detail than would
be found in similar texts are the following:

1. An approach to modifying upper bound solutions for a class of structures with
no crack to account for the presence of a crack.

2. An approach to using singular velocity fields for constructing accurate upper
bound solutions for highly undermatched joints.

3. The effect of the thickness of specimens on the limit load.
4. The effect of plastic anisotropy on the limit load.
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5. A discussion of difficulties with application of numerical techniques in
conjunction with simple kinematically admissible velocity fields.

Chapter 1 concerns with the upper bound theorem for rigid perfectly plastic
materials. A formal proof is not given because it can be found in any text on
plasticity theory. Instead, original and efficient approaches to finding upper bound
limit load solutions for welded joints with and with no cracks are introduced and
explained. These approaches are used in subsequent chapters.

Chapters 2–4 deal with highly undermatched specimens subject to tension.
Firstly, in Chap. 2, two solutions for the center cracked specimen under plane
strain conditions are presented. Each of these solutions illustrates one of the
general approaches introduced in Chap. 1. The solutions found are generalized to
scarf joint specimens in Chap. 3, also under plane strain conditions. Axisymmetric
solutions are given in Chap. 4.

In Chap. 5 two solutions for pure bending of highly undermatched panels under
plane strain conditions are discussed. One of these solutions is based on an exact
solution of plasticity theory. The other solution is obtained with the use of one of
the universal methods proposed in Chap. 1. Comparison of the solutions deter-
mines the ranges in parametric space where each of them should be adopted.

Chapter 6 includes a brief discussion of several topics. Firstly, the effect of the
thickness of panels on the limit load is illustrated. To this end, the solution for the
center cracked specimen presented in Chap. 2 is compared to a new three-
dimensional solution. The effect of the mis-match ratio is discussed next. Solutions
for the undermatched and overmatched center cracked specimen are given and the
definition for the highly undermatched case is clarified. Finally, it is shown that the
effect of plastic anisotropy on the limit load is very significant and this material
property should not be ignored in the development of flaw assessment procedures.
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Symbols

The intention within the various theoretical developments given in this monograph
has been to define each new symbol where it first appears in the text. A number of
symbols are introduced in the abstract to individual chapters. These symbols
re-appear consistently throughout the chapter. In this regards each chapter should
be treated as self-contained in its symbol content. There are, however, certain
symbols that re-appear consistently throughout the text. These symbols are given
in the following list.

F Tensile force
Fu Upper bound on F
fu Dimensionless representation of Fu

G Bending moment
Gu Upper bound on G
gu Dimensionless representation of Gu

ux, uy, uz Components of kinematically admissible velocity field
in Cartesian coordinates

us½ �j j Amount of velocity jump
x, y, z Cartesian coordinates
feq Equivalent strain rate found using kinematically admissible

velocity field

fxx; fyy; fzz;

fxy; fxz; fyz

Components of kinematically admissible strain rate field
in Cartesian coordinates

neq Equivalent strain rate
r0 Yield stress in tension
n Unit normal vector
U Velocity vector in rigid zone
u Velocity vector in plastic zone

ix



Chapter 1
Upper Bound Theorem

Plastic limit analysis is a convenient tool to find approximate solutions of
boundary value problems. In general, this analysis is based on two principles
associated with the lower bound and upper bound theorems. The latter is used in
the present monograph to estimate the limit load for welded structures with and
with no crack. A proof of the upper bound theorem for a wide class of material
models has been given by Hill (1956). The only reliable output of upper bound
solutions is the load required to initiate the process of plastic deformation. Any
upper bound limit load is higher than or equal to the actual load. This statement
becomes more complicated in the case of multiple load parameters. Upper bound
solutions are not unique and their accuracy significantly depends on the kine-
matically admissible velocity field chosen. Therefore, the development of methods
for constructing kinematically admissible velocity fields accounting for some
mathematical features of real velocity fields is of great importance for successful
applications of the method. In addition to the methods described in the present
monograph, original approaches have been proposed in Sawczuk and Hodge
(1968), Wilson (1977), and Yeh and Yang (1996) among others.

Upper bound solutions overestimate the load carrying capacity of structures.
Therefore, such solutions may be associated with one possible failure mechanism
of structures. However, a more important application of limit load solutions to
structures with cracks is that the limit load is an essential input parameter of flaw
assessment procedures. Therefore, the accuracy of the limit load found has a great
effect of the accuracy of predictions made with the use of these procedures.
A review of flaw assessment procedures can be found in Zerbst et al. (2000).
Reviews of limit load solutions for structures with cracks are available in Miller
(1988) and Alexandrov (2011).

S. Alexandrov, Upper Bound Limit Load Solutions for Welded Joints with Cracks,
SpringerBriefs in Computational Mechanics, DOI: 10.1007/978-3-642-29234-7_1,
� The Author(s) 2012

1



1.1 Basic Assumptions and Equations

The present monograph concerns with rigid perfectly plastic material. This means
that the elastic portion of the strain rate tensor is neglected and all yield stresses are
material constants. It is worthy of note here that the former assumption is not
essential since the limit load is independent of elastic properties (Drucker et al.
1952). Strain hardening has no effect on the limit load as well, as long as the initial
configuration is of concern. The constitutive equations of the model chosen consist
of the yield criterion and its associated flow rule. A great account on this model is
given in Hill (1950). Extension of the theory to piece-wise homogeneous mate-
rials, as it is required for welded structures, is in general straightforward. It is
presented in Rychlewski (1966) under plane strain conditions. The Mises yield
criterion is adopted throughout this monograph (except anisotropic solutions given
in Chap. 6). This criterion can be written in the form

ffiffiffiffiffiffiffiffiffiffiffiffi

3
2
sijsij

r

¼ r0: ð1:1Þ

Here and in what follows the summation convention, according to which a
recurring letter suffix indicates that the sum must be formed of all terms obtainable
by assigning to the suffix the values 1, 2, and 3, is adopted. Similarly, in a quantity
containing two repeated suffixes, say i and j, the summation must be carried out for
all values 1, 2, 3 of both i and j. Also, sii ¼ rij � rdij; rij are the components of the
stress tensor, r ¼ rijdij

�

3; dij is the Kroneker symbol, and r0 is the yield stress in
tension.

A proof of the upper bound theorem can be found, for example, in Hill (1950).
When the yield criterion (1.1) is adopted, the theorem reads

ZZ

Sv

ðtiviÞ dS� r0

ZZZ

V

feq dV �
ZZ

Sf

ðtiuiÞ dSþ r0
ffiffiffi

3
p
ZZ

Sd

us½ �j j dS ð1:2Þ

where V is the volume of material loaded by prescribed external stresses ti over a
part Sf of its surface, and by prescribed velocities over the remainder Sv: Also, vi

are the components of the real velocity vector, ui are the components of a kine-
matically admissible velocity vector, feq is the equivalent strain rate, and us½ �j j is
the amount of velocity jump across the velocity discontinuity surface Sd: The
velocity component us should be found using the kinematically admissible
velocity field. The normal velocity must be continuous across the velocity dis-
continuity surface. The equivalent strain rate involved in Eq. (1.2) is defined by

feq ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2
3
fijfij

r

ð1:3Þ

where fij are the strain rate components. These components should be found using
the kinematically admissible velocity field ui: The left hand side of the inequality

2 1 Upper Bound Theorem
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(1.2) can be evaluated using any kinematically admissible velocity field. The
boundary value problems considered in the present monograph contain just one
unknown load. Therefore, this load can be evaluated using Eq. (1.2). Useful results
for boundary value problems containing several independent load parameters can
be found in Hodge and Sun (1968). The second integral on the right hand side of
Eq. (1.2) usually include traction free and frictional surfaces. There are no fric-
tional surfaces in the boundary value problems considered in the present mono-
graph. Moreover, ti ¼ 0 over any traction free surface. Therefore, the second
integral on the right hand side of Eq. (1.2) vanishes and the inequality simplifies to

ZZ

Sv

ðtiviÞ dS � r0

ZZZ

V

feq dV þ r0
ffiffiffi

3
p
ZZ

Sd

us½ �j j dS: ð1:4Þ

Many simple upper bound solutions are obtained by assuming that the kine-
matically admissible velocity field consists of rigid blocks. In this case feq ¼ 0 in
V and the inequality (1.4) further simplifies to

ZZ

Sv

ðtiviÞdS� r0
ffiffiffi

3
p
ZZ

Sd

us½ �j jdS: ð1:5Þ

The physical meaning of the left hand side of Eq. (1.4) is the rate at which
external forces do work. The physical meaning of the first term on its right hand
side is the rate of work dissipation in plastic zones and the physical meaning of the
second term is the rate of work dissipation at velocity discontinuity surfaces.

By definition, any velocity field satisfying the velocity boundary conditions and
the equation of incompressibility is a kinematically admissible velocity field. The
equation of incompressibity can be written as

fii ¼ 0: ð1:6Þ

The condition that the normal velocity must be continuous across velocity
discontinuity surfaces can be represented as the following scalar product of two
vectors.

ðu1 � u2Þ � n ¼ 0 ð1:7Þ

where u1 and u2 are the velocity vectors on sides 1 and 2 of the velocity dis-
continuity surface, respectively, and n is the unit normal vector to this surface.
Then, the amount of velocity jump can be found as

us½ �j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu1 � u2Þ � ðu1 � u2Þ
p

: ð1:8Þ

It is obvious that it is possible to propose any number of kinematically
admissible velocity fields for any problem. If a kinematically admissible velocity
field coincides with the real velocity field then Eq. (1.2) gives the exact value of
the limit load. In most cases however, kinematically admissible velocity fields
result in upper bounds on the limit load. If a kinematically admissible velocity field

1.1 Basic Assumptions and Equations 3



chosen contains no free parameters, its substitution into Eq. (1.2) immediately
gives an upper bound on the limit load. A better prediction can be indeed achieved
when a kinematically admissible velocity field contains free parameters. In such
cases, substituting this velocity field into Eq. (1.2) transforms the functional on its
right hand side into a function of one or several variables. It is obvious from the
structure of the inequality (1.2) that its right hand side should be minimized with
respect to these variables to find the best upper bound limit load based on the
kinematically admissible velocity field chosen. In general, there are two main
approaches to handle this problem: (1) numerical methods based on finite element
approximation, and (2) analytical and semi-analytical methods. The former have
been developed, for example, in Chang and Bramley (2000) and Bramley (2001).
The original approaches have been developed for metal forming simulation.
However, they are also applicable for structural analysis. The present monograph
is devoted to analytical and semi-analytical methods of plastic limit analysis. Such
methods are very useful for engineering applications (Schwalbe 2010).

There is the companion theorem to the upper bound theorem to find the lower
bound limit load (see, for example, Hill 1950). This theorem is not considered in
the present monograph and all limit loads in subsequent chapters should be
understood as the upper bound limit loads.

1.2 Vicinity of the Bi-Material Interface

Even though any kinematically admissible velocity field results in an upper
bound on the limit load, it is advantageous to choose a kinematically admissible
velocity field which takes into account behavior of the real velocity field that
must exist near some surfaces. For welded joints, the bi-material interface is
such a surface when it is also a velocity discontinuity surface. The latter is a
typical situation for highly undermatched joints. In such joints, the weld is
much softer than the base material and plastic deformation is localized within
the weld whereas the base material is rigid. Such compositions of materials are
of practical interest (Hao et al. 1997). According to the general theory, the
shear stress at any velocity discontinuity surface coinciding with a bi-material
surface must be equal to the shear yield stress of the softer material. In par-
ticular, Rychlewski (1966) has considered such a distribution of stresses in the
case of plane strain deformation. Alexandrov and Richmond (2001) have shown
that the real velocity field must be singular near surfaces on which the shear
stress is equal to the shear yield stress (there are exceptions to this rule but
those are not significant in most cases of practical interest). They have also
proposed a conceptual approach to use this property of the real velocity field in
plastic limit analysis of structures (Alexandrov and Richmond 2000). The main
result obtained in Alexandrov and Richmond (2001) can be represented by the
following equation

4 1 Upper Bound Theorem


