Solving Differential
Equations in R

Use R!

Series Editors
Robert Gentleman Kurt Hornik Giovanni Parmigiani

For further volumes:
http://www.springer.com/series/6991

Karline Soetaert
Jeff Cash
Francesca Mazzia

Solving Differential
Equations in R

@ Springer

Karline Soetaert Jeff Cash

Department Ecosystem Studies Mathematics

Royal Netherlands Institute for Sea Research ~ Imperial College

Yerseke South Kensington Campus
The Netherlands United Kingdom

Francesca Mazzia
Dipartimento di Matematica
University of Bari

Bari

Italy

Series Editors:

Robert Gentleman Giovanni Parmigiani

Program in Computational Biology The Sidney Kimmel Comprehensive
Division of Public Health Sciences Cancer Center at Johns Hopkins University
Fred Hutchinson Cancer Research Center 550 North Broadway

1100 Fairview Avenue, N. M2-B876 Baltimore, MD 21205-2011

Seattle, Washington 98109 USA

USA

Kurt Hornik

Department of Statistik and Mathematik
Wirtschaftsuniversitit Wien Augasse 2-6
A-1090 Wien

Austria

R-package diffEq to be downloaded from CRAN URL: http://cran.r-project.org/web/
packages/diffEq

In addition R-code of all examples can be downloaded from Extras.Springer.com, also
accessible via Springer.com/978-3-642-28069-6

ISBN 978-3-642-28069-6 ISBN 978-3-642-28070-2 (eBook)
DOI 10.1007/978-3-642-28070-2
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012939126

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://cran.r-project.org/web/packages/diffEq
http://cran.r-project.org/web/packages/diffEq
www.springer.com

To Carlo, Roslyn and Antonello

Preface

Mathematics plays an important role in many scientific and engineering disciplines.
This book deals with the numerical solution of differential equations, a very
important branch of mathematics. Our aim is to give a practical and theoretical
account of how to solve a large variety of differential equations, comprising
ordinary differential equations, initial value problems and boundary value problems,
differential algebraic equations, partial differential equations and delay differential
equations.

The solution of differential equations using R is the main focus of this book. It is
therefore intended for the practitioner, the student and the scientist, who wants to
know how to use R to solve differential equations.

When writing his famous book, “A Brief History of Time”, Stephen Hawking [2]
was told by his publisher that every equation he included in the book would cut its
sales in half. When writing the current book, we have been mindful of this, and our
main desire is to provide the reader with powerful numerical algorithms written in
the R programming language for the solution of differential equations rather than
considering the theory in any great detail.

However, we also bear in mind the famous statement of Kurt Lewin which is
“there is nothing so practical as a good theory”. Therefore each chapter that deals
with R examples is preceded by a chapter where the theory behind the numerical
methods being used is introduced. It has been our goal that non-mathematicians
should at least understand the basics of the methods, while obtaining entrance into
the relevant literature that provides more mathematical background. We believe that
some knowledge of the fundamentals of the underlying algorithms is essential to use
the software in an intelligent way, so the principles underlying the various methods
should, at least at a basic level, be explained. Moreover, as this book is in the first
place about R the discussion of the numerical methods will be skewed to what is
actually available in R.

In the sections that deal with the use of R for solving differential equations, we
have taken examples from a variety of disciplines, including biology, chemistry,
physics, pharmacokinetics. Many are well-known test examples, used frequently in
the field of numerical analysis.

vii

viii Preface
R as a Problem Solving Environment

The choice of using R [8] may be surprising to people regularly involved in solving
numerical problems. Powerful numerical methods for the solution of differential
equations are typically programmed in e.g. Fortran, C, Java, or Python. Whereas
these solution methods are often made freely available, it is unfortunately the
case that one needs considerable programming expertise to be able to use them.
In contrast, easy-to-use software is often in rather expensive programs, such as
MATLAB, Maple or Mathematica. In line with this, most books that give practical
information about how to solve differential equations make use of these big three
problem solving environments, or of one of the free-of-charge variants.

Although still not often used for solving differential equations, R is also very well
suited as a Problem Solving Environment. Apart from the fact that it is open source
software, there are obvious advantages in solving differential equations in a software
that is strong in visualisation and statistics. Moreover, more and more students are
becoming acquainted with the language as its use in universities is growing rapidly,
both for teaching and for research. This creates a unique opportunity to introduce
these students to the powerful scientific methods which make use of differential
equations.

The potential for using R to solve differential equations was initiated by the
release of the R package odesolve by Woody Setzer, a biologist holding a bachelor’s
degree in mathematics from EPA, US [10]. Years later, a communication in the
R-journal by Thomas Petzoldt, a biologist from the university of Dresden, Germany
[5] showed the potential of R for solving initial value problems of ordinary
differential equations in the field of ecology. Recently a number of books have
applied R in the field of environmental modelling [12, 19]. Building upon this initial
effort, Karline Soetaert, the first author of this book, (a biologist) in 2008 joined
forces with Woody Setzer and Thomas Petzoldt to make an improved version of
odesolve that was able to solve a much greater variety of differential equations.
This resulted in the R package deSolve [17], which contains most of the integration
methods available in R. Most of the solvers implemented in the R package deSolve
are based on well-established numerical codes, programmed in Fortran. By using
well tested, robust, reliable and powerful codes, more emphasis can be put on
making the existing codes more versatile. For instance, most codes can now be used
to solve delay differential equations, or to simulate events. Also, great care was taken
to make a common interface that is (relatively) easy to apply from the user’s point
of view. A set of methods to solve partial differential equations by the method-of-
lines was added to deSolve, while another package, rootSolve [11], was devised to
efficiently solve partial differential equations and boundary value problems using
root solving algorithms. Finally, solution methods for boundary value problems
were implemented in R package bvpSolve [15], as a cooperation between the three
authors from this book.

Because all these R packages share one common author (KS), there is a certain
degree of consistency in them, which we hope to demonstrate here (see also [16]).

Preface ix

Quite a few other R packages deal with the implementation of differential equa-
tions [6, 13], with the solution of special types of differential equations [1, 3,4, 7],
with statistical analysis of their outputs [9,14,20], or provide test problems on which
the various solvers can be benchmarked [18].

About the Three Authors

Mathematics is the playground not only for the mathematician and engineer who
devise powerful mathematical techniques to solve particular classes of problems,
but also for the scientist who applies these methods to real-world problems. Both
disciplines meet at the level of software, the actual implementation of these methods
in computer code.

The three authors reflect this duality and come from different disciplines. Jeff
Cash and Francesca Mazzia are experts in numerical analysis in general and the
construction of algorithms for solving differential equations in particular. In contrast
Karline Soetaert is a biologist, with an additional degree in computer science,
whose interest in these numerical methods is mainly due to the fact that she uses
these algorithms for application in the field of the marine sciences. Although
she originally wrote her scientific programs mainly in Fortran, since she came
acquainted with R in 2007 she now performs nearly all of her scientific work in
this programming environment.

Acknowledgment Many people have commented on the first versions of this book. We are very
thankful for the reviews provided by Filip Meysman, Dick van Oevelen, Tom Cox, Tom van
Engeland, Ernst Hairer, Bill Schiesser, Alexander Ostermann, Willem Hundsdorfer, Vincenzo
Casulli, Linda Petzold, Felice lavernaro, Luigi Brugnano, Raymond Spiteri, Luis Randez, Alfredo
Bellen, Nicola Guglielmi, Bob Russell, René Lamour, Annamaria Mazzia, and Abdelhameed
Nagy.

References

1. Couture-Beil, A., Schnute, J. T., & Haigh, R. (2010). PBSddesolve: Solver for delay
differential equations. R package version 1.08.11.

2. Hawking, S. (1988). A brief history of time. Toronto/New York: Bantam Books. ISBN 0-553-
38016-8.

3. lacus, S. M. (2009). sde: Simulation and inference for stochastic differential equations.
R package version 2.0.10.

4. King, A. A, Ionides, E. L., & Breto, C. M. (2012). pomp: Statistical inference for partially
observed Markov processes. R package version 0.41-3.

5. Petzoldt, T. (2003). R as a simulation platform in ecological modelling. R News, 3(3), 8-16.

6. Petzoldt, T., & Rinke, K. (2007). simecol: An object-oriented framework for ecological
modeling in R. Journal of Statistical Software, 22(9), 1-31.

7. Pineda-Krch, M. (2010). GillespieSSA: Gillespie’s stochastic simulation algorithm (SSA).
R package version 0.5-4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

Preface

R Development Core Team, (2011). R: A language and environment for statistical computing.
Vienna: R Foundation for Statistical Computing. ISBN 3-900051-07-0.

Radivoyevitch, T. (2008). Equilibrium model selection: dTTP induced R1 dimerization. BMC
Systems Biology, 2, 15.

Setzer, R. W. (2001). The odesolve package: Solvers for ordinary differential equations.
R package version 0.1-1.

Soetaert, K. (2011). rootSolve: Nonlinear root finding, equilibrium and steady-state analysis
of ordinary differential equations. R package version 1.6.2.

Soetaert, K., & Herman, P. M. J. (2009). A practical guide to ecological modelling. Using
R as a simulation platform. Dordrecht: Springer. ISBN 978-1-4020-8623-6.

Soetaert, K., & Meysman, F. (2012). Reactive transport in aquatic ecosystems: Rapid model
prototyping in the open source software R. Environmental Modelling and Software, 32, 49—60.
Soetaert, K., & Petzoldt, T. (2010). Inverse modelling, sensitivity and monte carlo analysis in
R using package FME. Journal of Statistical Software, 33(3):1-28.

Soetaert, K., Cash, J. R., & Mazzia, F. (2011). bvpSolve: Solvers for boundary value problems
of ordinary differential equations. R package version 1.2.2.

Soetaert, K., Petzoldt, T., & Setzer, R. W. (2010) Solving differential equations in R. The R
Journal, 2(2):5-15.

Soetaert, K., Petzoldt, T., & Setzer, R. W. (2010). Solving differential equations in R: Package
deSolve. Journal of Statistical Software, 33(9):1-25.

Soetaert, K., Cash, J. R., & Mazzia, F. (2011). deTestSet: Testset for differential equations.
R package version 1.0.

Stevens, M. H. H. (2009). A primer of ecology with R. Berlin: Springer.

Tornoe, C. W., Agerso, H., Jonsson, E. N., Madsen, H., & Nielsen, H. A. (2004). Non-linear
mixed-effects pharmacokinetic/pharmacodynamic modelling in NLME using differential
equations. Computer Methods and Programs in Biomedicine, 76, 31-40.

Contents

1 Differential Equations......................ooiiiiiiiiii 1
1.1 Basic Theory of Ordinary Differential Equations 1
1.1.1 First Order Differential Equations 1
1.1.2 Analytic and Numerical Solutions 2
1.1.3 Higher Order Ordinary Differential Equations......... 3
1.1.4 Initial and Boundary Valuesccooeeeinnnn. 4
1.1.5 Existence and Uniqueness of Analytic Solutions 5
1.2 Numerical Methods ... 6
1.2.1 The Euler Method.................oooiiii, 6
1.2.2 Implicit Methods ... 7
1.2.3 Accuracy and Convergence of Numerical Methods.... 8
1.2.4 Stability and Conditioningc.oooveee... 9
1.3 Other Types of Differential Equations 11
1.3.1 Partial Differential Equations 11
1.3.2 Differential Algebraic Equations........................ 12
1.3.3 Delay Differential Equations 13
References......ooonii 13
2 Initial Value Problemscoiiiiiiiiiiii 15
2.1 Runge-KuttaMethods ... 15
2.1.1 Explicit Runge-Kutta Formulae 15
2.1.2 Deriving a Runge-Kutta Formula 17
2.13 Implicit Runge-Kutta Formulae 22
2.2 Linear Multistep methodscoooiiiiiiiiiiiiiiiiiiiia 22
2241 Convergence, Stability and Consistency 23
222 Adams Methods...........o.oooiiiiiiiiii 25
223 Backward Differentiation Formulae 27

224 Variable Order — Variable Coefficient
Formulae for Linear Multistep Methods................ 29
23 Boundary Value Methods...............coooiiiiiiiiiiiia, 30
24 Modified Extended Backward Differentiation Formulae 31

xi

xii

Contents
2.5 Stff Problemsuuui s 32
2.5.1 Stiffness Detectionvvvvviiiiiiiiiiiiiiiinnnns 33
2.5.2 NON-StffNess TeStuuuuiiiiiiiiiieeeens 34
2.6 Implementing Implicit Methods................cooiiiiiiiiia. 34
2.6.1 Fixed-Point Iteration to Convergence 34
2.6.2 Chord Tterationcvvveiiiiiiiiiiiiiiiiiieenns 35
2.6.3 Predictor-Corrector Methodsccoovvvvviiiinnn.. 36

2.6.4 Newton Iteration for Implicit Runge-Kutta
MethodS ... 36
2.7 Codes to Solve Initial Value Problems............cccovvviiinna.. 37
2.7.1 Codes to Solve Non-stiff Problems 38
2.7.2 Codes to Solve Stiff Problemscoeeeet 38

2.7.3 Codes that Switch Between Stiff and

NON-Stff SOIVErS ... 38
R OIEINCES 39
Solving Ordinary Differential EquationsinR........................... 41
3.1 Implementing Initial Value ProblemsinR......................... 41
3.1.1 A Differential Equation Comprising One Variable..... 42
3.1.2 Multiple Variables: The Lorenz Model 44
32 Runge-Kutta Methodscoooiiiiiiiiiiiiiiiiiiiii . 45
3.2.1 Rigid Body Equationsccoiiiiiiiiiiiiinn. 47
3.2.2 Arenstorf OrbitS.......ovvvviiiiiiiiiiiiiiiiiiiiiiieeen 49
33 Linear Multistep Methodsccooviiiiiiiiiiiiiiiiinn. 51
3.3.1 Seven Moving Stars...........eeeiiiiiiiiiiiiiiiiiee... 52
332 A Stiff Chemical Example ..o 56
3.4 Discontinuous Equations, Eventsc..ooooiieiiia. 59
3.4.1 Pharmacokinetic Modelscccoeiiiinnn. 60
342 A Bouncing Ball ... 64
343 Temperature in a Climate-Controlled Room 66
3.5 Method Selectioncooeiieiiieiiiiiee e 68
3.5.1 The van der Pol Equation...................ooooiiiii 70
3.6 EXOTCISES -ttt 75
3.6.1 Getting Started with IVP ..., 75
3.6.2 The Robertson Problemcccooeiiiiinnn. 76
3.6.3 Displaying Results in a Phase-Plane Graph 76
3.6.4 Events and ROOLS.vviiiiiiiiiiiiiiiiiiiiieeens 78
3.6.5 Stiff Problems ... 79
R OIENCES . . . 79
Differential Algebraic Equationsccc 81
4.1 TNErOAUCHION ...t 81
4.1.1 The Index of aDAE ... 82
4.1.2 A Simple Exampleooooiiiiiiiiiii 83
4.13 DAEs in Hessenberg Formcoooiii 84
4.14 Hidden Constraints and the Initial Conditions 85

4.1.5 The Pendulum Problem................coooiiiiiii... 86

Contents xiii

4.2 SOIVINE DAES ... 87
4.2.1 Semi-implicit DAEs of Index 1oooet. 87

422 General Implicit DAEsof Index 1 88

423 Discretization Algorithmsoooooiiiiiiii. 89

424 DAEs of Higher Indexccoiiiiiiiiiiiii, 90

4.2.5 Index of a DAE Variable....................oon. 93
References........ovuiii 94
5 Solving Differential Algebraic EquationsinR 95
5.1 Differential Algebraic Equation SolversinR 95
52 A Simple DAE of Index 2ooviiiiiii s 96
5.2.1 Solving the DAEs in General Implicit Form 97

522 Solving the DAEs in Linearly Implicit Form........... 98

53 A Nonlinear Implicit ODE ..., 98
54 A DAE of Index 3: The Pendulum Problem 100
5.5 Multibody SYStEMSvveeeii i 101
5.5.1 The Car Axis Problem ..., 102

5.6 Electrical Circuit Models ..., 106
5.6.1 The Transistor Amplifieroooooeiiiiiin. 107

5.7 EXEICISES ..ttt 111
5.7.1 ASimple DAE ... 111

5.72 The Robertson Problemooe. 111

573 The Pendulum Problem Revisited 111

5.74 The Akzo Nobel Problemoont. 112
References......c.ooiiii i 115
6 Delay Differential Equationso 117
6.1 Delay Differential Equationsc.oooiiiiiiiiiiiiiiiiann. 117
6.1.1 DDE:s with Delays of the Dependent Variables 118

6.1.2 DDEs with Delays of the Derivatives................... 118

6.2 Difficulties when Solving DDEsooocoiiiiiiiiina. 119
6.2.1 Discontinuities in DDEs..............cooooo. 119

6.2.2 Small and Vanishing Delays................coooooeet. 120

6.3 Numerical Methods for Solving DDEsoocceeena. 121
References......o..oiiuii i 121
7 Solving Delay Differential Equationsin R 123
7.1 Delay Differential Equation SolversinR...................... ... 123
7.2 Two Simple Examples ..., 124
7.2.1 DDE:s Involving Solution Delay Terms 124

7.2.2 DDEs Involving Derivative Delay Terms............... 124

7.3 Chaotic Production of White Blood Cellsccoovett 125
7.4 A DDE Involving a Root Function.................cooooiiiinnn. 127
7.5 Vanishing Time Delays ..., 128

7.6 Predator-Prey Dynamics with Harvesting 130

Xiv

Contents

7.7 EXEICISES . .vvtttttti et 132
7.7.1 The Lemming Modelcooiiiiiiiiiiiii, 132

7.17.2 Oberle and Pesch...............coooiiiiiiii .. 132

7.1.3 An Epidemiological Model.....................oooeet. 133

7.7.4 ANeutral DDE............ooii 134

7.1.5 Delayed Cellular Neural Networks With Impulses..... 134
RefEIONCESt 135
Partial Differential Equations...........................ciiiiiiii 137
8.1 Partial Differential Equationsoocociiiiiiiiian. 137
8.1.1 Alternative Formulationscooiiiiieet. 138

8.1.2 Polar, Cylindrical and Spherical Coordinates 140

8.1.3 Boundary Conditionsc.ceeiiiiiiiiiiniiinn. 141

8.2 SoIVINg PDES ... 142
8.3 Discretising Derivativesc.ueeeieiiiiiiieiiiiiiiiiieean. 143
8.3.1 Basic Diffusion Schemesooooeeiiiiiiii 144

832 Basic Advection Schemesc..ooovieiiiiiiii 145

833 Flux-Conservative Discretisations 147

834 More Complex Advection Schemes 148

8.4 The Method Of Linesoovviiiiiiiiiiiiiiiii i 152
8.5 The Finite Difference Method..................coooiiiiiiiii. 153
RefEIeNCES eeeei e 153
Solving Partial Differential EquationsinR.............................. 157
9.1 Methods for Solving PDEsinR................cooi 157
9.1.1 Numerical ApproXimations............ooueeeeeeevnnnnnns 157

9.1.2 Solution Methods ..., 159

9.2 Solving Parabolic, Elliptic and Hyperbolic PDEsinR 160
9.2.1 The Heat Equationooooiiiiiiiiiiiiiinn. 160

9.2.2 The Wave Equationcccoviiiiiiiiiiiiinn, 163

9.2.3 Poisson and Laplace’s Equation......................... 166

9.2.4 The Advection Equation.................ooocoeiiiiiie. 168

9.3 More Complex Examples..........ccooviiiiiiiiiiiiiiiiiiinn. 170
9.3.1 The Brusselator in One Dimension 170

9.3.2 The Brusselator in Two Dimensions 173

9.33 Laplace Equation in Polar Coordinates 174

9.3.4 The Time-Dependent 2-D Sine-Gordon Equation...... 176

9.35 The Nonlinear Schrodinger Equation 179

9.4 EXEICISES . .vevttieti e 181
94.1 The Gray-Scott Equationoooeeeiiiiii. 181

94.2 A Macroscopic Model of Traffic....................... 182

9423 A Vibrating Stringoooiiiiiiiiiiiiieiini. 183

94.4 A Pebble in a Bucket of Wateroouue 184

94.5 Combustionin2-D..........ooooiiiiiiiiiiiiiiii.. 184

R OIENCES .. i 185

Contents

10 Boundary Value Problems..................cooiiiiiiiiiiiiiiiiiiiiiies
10.1 Two-Point Boundary Value Problems......................oooou.
10.2 Characteristics of Boundary Value Problems......................

10.2.1 Uniqueness of SOlutions...........ccovviiiiieeeeniinnnn.
10.2.2 Isolation of Solutionscooviiiiiiiieiinn...
10.2.3 Stiffness of Boundary Value Problems
and Dichotomy ...
10.2.4 Conditioning of Boundary Value Problems
10.2.5 Singular Problemsooooooiiiiiiiiiii
10.3 Boundary Conditionsoouuiieeiiiiiiiieeiiiiiieeannn.
10.3.1 Separated Boundary Conditions.........................
10.3.2 Defining Good Boundary Conditions
10.3.3 Problems Defined on an Infinite Interval
10.4 Methods of Solutioncoooiiiiiiiiiiiiiii i,
10.5 Shooting Methods for Two-Point BVPsooo...
10.5.1 TheLinear Case.........cooouviiiiiiiiiniiiiiiiennnn.n.
10.5.2 The Nonlinear Case...........ccoovviiiiiiiiiniieninnn...
10.5.3 Multiple ShoOting........ccovviiiiiiiiiiiiiiienniins
10.6 Finite Difference Methods.................coiiiiiiin..
10.6.1 A Low Order Method for Second Order Equations
10.6.2 Other Low Order Methodsooeeen.
10.6.3 Higher Order Methods Based on
Collocation Runge-Kutta Schemes
10.6.4 Higher Order Methods Based on Mono
Implicit Runge-Kutta Formulae
10.6.5 Higher Order Methods Based on Linear
Multistep Formulae ...
10.6.6 Deferred Correction............ccovvviiiieiiniiennnnn.n.
10.7 Codes for the Numerical Solution of Boundary
Value Problems. ..o
References.ooiuiii

11 Solving Boundary Value Problemsin R................................
11.1 Boundary Value Problem SolversinR............................
11.2 A Simple BVPExample..........ooooiiiiiiiiiiiiiiiiiiii

11.2.1 Implementing the BVP in First Order Form............
11.2.2 Implementing the BVP in Second Order Form.........
11.3 A More Complex BVP Exampleocoiiiiiiiiiaa.
11.4 More Complex Initial or End Conditions..........................
11.5 Solving a Boundary Value Problem Using Continuation
11.5.1 Manual Continuationccoeeieiiiiieinn...
11.5.2 Automatic Continuationcovvieiinen...
11.6 BVPs with Unknown Constants.............c...cooiieiiiiniennn...
11.6.1 The Elastica Problemoooiiiin.
11.6.2 Non-separated Boundary Conditions

11.6.3 An Unknown Integration Interval

XV

Xvi Contents
11.7 Integral ConStraintscoevviutiieeeeeiiieeeniiieeeennn. 228
11.8 Sturm-Liouville Problems ..., 229
11.9 A Reaction Transport Problemcoooiiiiiiia. 230
11100 EXEICISES «.uuvviiniit ittt 233
11.10.1 A Stiff Boundary Value Problem........................ 233
11.10.2 The Mathieu Equationc..ooooiiiiiiiiinn. 234
11.10.3 Another Swirling Flow Problem 234
11.10.4 Another Reaction Transport Problem................... 236
References........ooiuiii 237
A APPENdiX ... 239
Al Butcher Tableaux for Some Runge-Kutta Methods 239
A2 Coefficients for Some Linear Multistep Formulae 239

A3 Implemented Integration Methods for Solving Initial
Value Problemsin R ... 241
A4 Other Integration Methods in Rooo i, 242
References.ooiuiii 242
Index . ..o 245

Chapter 1
Differential Equations

Abstract Differential equations (DEs) occur in many branches of science and
technology, and there is a real need to solve them both accurately and efficiently.
There are relatively few problems for which an analytic solution can be found, so
if we want to solve a large class of problems, then we need to resort to numerical
calculations. In this chapter we will give a very brief survey of the theory behind DEs
and their solution. We introduce concepts such as analytic and numerical methods,
the order of differential equations, existence and uniqueness of solutions, implicit
and explicit methods. We end with a brief survey of the different types of differential
equations that will be dealt with in later chapters of this book.

1.1 Basic Theory of Ordinary Differential Equations

Although the material contained in this section is largely of a theoretical nature it is
presented at a rather basic level and the reader is advised to at least skim through it.

1.1.1 First Order Differential Equations

The general form taken by a first order ordinary differential equation (ODE) is

Y = fxy), (1.1)
which may also be written as

dy

—_— = 1.2

7 =Sy, (1.2)

where f is a given function of x and y and y contained in R is a vector. Here x is
called the independent variable and y = y(x) is the dependent variable.

K. Soetaert et al., Solving Differential Equations in R, Use R!, 1
DOI 10.1007/978-3-642-28070-2_1, © Springer-Verlag Berlin Heidelberg 2012

2 1 Differential Equations

This equation is called first order as it contains no higher derivatives than the
first. Furthermore, (1.1) is called an ordinary differential equation as y depends on
one independent variable only.

1.1.2 Analytic and Numerical Solutions

A differentiable function y(x) is a solution of (1.1) if for all x

Y (x) = fx,y(x)). (1.3)

If we suppose that y(xp) is known, the solution of (1.3), valid in the interval [x(,x;],
is obtained by integrating both sides of (1.1) with respect to x, to give:

¥(x) — y(x0) = /x:fa,y(r))dr, x € ro,x1)- (1.4)

In some cases this integral can be evaluated exactly to give an equation for y, and
this is called an analytic solution. For example, the equation

Y=y+1, (1.5)

has as analytic solution
y =tan(x+c¢). (1.6)

Note the free parameter ¢ that occurs in the solution. It has been known for a long
time that the solution of a first order equation contains a free parameter and that
this solution is uniquely defined if for example we impose an initial condition of
the form y(xp) = yo and we suppose that the function f satisfies some regularity
conditions. This is important and we will return to it later.

Unfortunately, it is true to say that many ordinary differential equations which
appear to be quite harmless, in the sense that we could expect them to be easy to
solve, cannot be solved analytically, i.e. the solution can not be expressed in terms
of known functions. An illuminating example of this is given in [4, p.4] where it
is shown how “small changes” in the problem (1.5) may make it much harder (or
impossible) to solve analytically. Indeed, if equation (1.5) is changed “slightly” to

Y =y +x, (1.7)

then the solution has a very complex structure in terms of Airy functions [4]. In view
of this, and the fact that most “real-life” applications consist of complicated systems
of equations, it is often necessary to approximate the solution by solving equation
(1.1) numerically rather than analytically.

Undergraduate mathematics courses often give the impression that most dif-
ferential equations can be solved analytically, with numerical techniques being

1.1 Basic Theory of Ordinary Differential Equations 3

developed to deal with those few classes of equations that have no analytic solution.
In fact, the opposite is true: while an analytic solution is extremely useful if it does
exist, experience shows that most equations of practical interest need to be solved
numerically.

1.1.3 Higher Order Ordinary Differential Equations

In the previous section, we considered only the first order differential equation (1.1).
Ordinary differential equations can include higher order derivatives as well. For
example, second order equations of the form:

¥ = flyy), (1.8)

arise in many practical applications.

Normally, in order to deal with the second order equation (1.8), we first convert
it to a system of first order equations. This we do by defining an extra dependent
variable, which equals the first order derivative of y, in the following way:

Yy =y
(1.9)
Vi = fxy,1).

Rather than having one differential equation, we now have a system of two
differential equations. Defining ¥ = (y,y;)”, (1.9) is of the form (1.1), with ¥ € R?.
As we will see later (Sect. 1.1.4) we need to specify two conditions to define the
solution uniquely in this second order case.

As a simple example consider a small stone falling through the air from a tower.
Gravity produces an acceleration of g = 9.8 ms~2, while the air exerts a resistive
force which is proportional to the velocity (v). The differential equation describing
this is:

V=g —kv. (1.10)

If we are interested in the distance from the top of the tower (x), we use the fact that
the velocity v = x/, and the equation becomes a second order differential equation:

x//:g—kx/. (1.11)
Now, in order to solve (1.11), we rewrite it as two first order equations.

X =v

1.12
V= g—kv. (1.12)

This technique carries over to higher order equations as well. If we are faced with
the numerical solution of an nth order equation, it is often advisable to first reduce

4 1 Differential Equations

it to a system of n first order equations using the obvious extension of the technique
described in (1.9) above. Consider for example the “swirling flow III problem”
[1, p.23], which comprises a second order and a fourth order equation describing
the flow between two rotating, coaxial disks. The original problem definition

g// = (gf/_fg/)/g 1.13
f//// — (_f‘f‘///_gg/)/87 (.)

needs one intermediate variable to represent the higher order derivative of g, and
three to represent the higher order derivatives of f. The corresponding set of first
order ODEs is:

!

g =81

gy = (gfi—fg1)/e

f=h 1.14
fi=rH (119
=1

fi=(=ffr—zg81)/¢€.

We will solve this problem in Sect. 11.3.

An exception to the rule is the special case where the first derivative y’ is absent
from (1.8). In such circumstances it is often better to derive special methods for the
solution of

y'=fxy), (1.15)

rather than to introduce the term y’ into the definition of the differential equation
[3, p.261].

1.1.4 Initial and Boundary Values

We saw in Sect. 1.1 that the integration of the ODE (1.5) introduced an arbitrary
constant ¢ into the solution. As long as the ODE is specified only by (1.1), then any
value of ¢ will give a valid solution. To select a unique solution, one extra condition
is needed and this determines the value of c.

Depending on where in the integration interval the extra condition is specified we
obtain an initial or boundary value problem. For example, when extending equation
(1.5) by introducing the extra condition

y(0)=1, (1.16)

then using the general solution (1.6) we obtain y(0) =tan(0+c¢) =1 or ¢ =
arctan(1) = 7 /4. Therefore,

(1.17)

1.1 Basic Theory of Ordinary Differential Equations 5

has the unique solution y = tan(x + 7/4) providing that we restrict the domain of
x suitably. As the extra condition is specified at the initial point of the integration
interval, (1.17) is an initial value problem (IVP).

The general representation of a first order IVP is:

y(x0) = yo,

where y can be a vector.

In the case of second order equations such as (1.9) it is necessary to prescribe two
conditions to define y uniquely. In an initial value problem, both these conditions are
prescribed at the initial point (xp). For example we might have:

' =)

y(x0) =0 (1.19)
' (x0) = Yo,

or, in first order form,

Yy =0

y/l :f('x7y7y1) (120)
y(x0) = yo

y1(x0) = ¥p-

If instead we prescribe the solution at two different points xo, x; in the range of
integration, we have a boundary value problem (BVP). There are several ways in
which to specify these boundary conditions, e.g. :

y'oo = flxyy)
¥(x0) = Yo (1.21)
y(xr) = vy

1.1.5 Existence and Uniqueness of Analytic Solutions

An extremely important question concerns the existence and uniqueness of solutions
of (1.1). This theory is now quite standard and is given for example in [3, Sect. 1.7].
Following the approach of [1] we determine what is required for the IVP solution
to exist, be unique and depend continuously on the data, i.e. be well-posed and then
ask that the numerical method has similar behaviour.

Basically the main property that we need to ask for if a problem is to be well-
posed is that the function f(x,y), appearing in (1.1) should be continuous in a
certain region and be Lipschitz continuous [1] with respect to y in that region. An
important sufficient condition for Lipschitz continuity is that f(x,y) has bounded
partial derivatives d f;/dy;. A nice summary of this theory is found in [1].

6 1 Differential Equations

As a simple example of an IVP which does not satisfy the conditions for

uniqueness consider
y =132 y(0) =1. (1.22)

This has at least two solutions: y = 1, and y = cos(x). The uniqueness problem
occurs because d f /dy is unbounded at x = 0. However we can also use our intuition
to foresee that there may be difficulties with this problem since if we perturb the
initial condition to y(0) = 1 + ¢ for any positive &, the solution becomes complex!

The analytic solution of a given second order boundary value problem is rarely
possible to obtain (see [3, Sect. 1.3]). Furthermore a proof of the existence and
uniqueness of a solution of a given two point boundary value problem is often
much harder than for the initial value case and, indeed, boundary value problems are
generally much more difficult to solve than initial value problems. We will consider
the solution of boundary value problems in detail in Chap. 10.

1.2 Numerical Methods

Having briefly outlined some of the basic theory behind the (analytic) solution of
ODEs, we now go on to consider some elementary numerical methods. Basically,
in their simplest form, numerical methods start by subdividing the domain of the
independent variable x into a number of discrete points, xo,x; = X9 + A, ..., and they
calculate the approximate values of the dependent variable y and the derivatives of
y with respect to x only at these points. These methods are called finite difference
methods.

Thus, given a series of integration steps xo,Xp,...,X;, a numerical method
constructs a sequence of values yg, y1,...,Y», such that
Vn & y(xn), n>0. (1.23)

We note the important notation used here namely that x;,, = xo + nh is a point where
the approximate solution will be computed, y(x,) is the analytic solution at x,, and
yn 18 the numerical solution obtained at x;,.

1.2.1 The Euler Method

One of the oldest and most simple numerical methods for solving the initial value
problem
;o
¥(x0) = Yo,
is due to Euler. This method can be derived in several ways and we start by using a
Taylor series approach. Supposing that f(x,y) is analytic in the neighborhood of the

1.2 Numerical Methods 7

a b
y(x3)
GTE
y(xo+h)
LTE
Y1
y(x2)
% hyo
y(%0) = Yo h y(%1)
y(xo)
T T T T T 1
Xo X;=Xg+h Xo Xq Xo X3

Fig. 1.1 Errors for the Euler method. (a) The local truncation error (LTE) is the error introduced by
taking one Euler step. (b) After taking three integration steps, the global truncation error (GTE) is,
for sufficiently small 4, larger than the LTE. This is because for Euler’s method the local truncation
error is O(h?) while the global error is O(h)

initial value xg, yo so that we can write

r

< h
¥ +h) = y(x0) +hy' (x0) + 3, " (x0), (125)
r=2""

where y(") is shorthand for the rth derivative of y with respect to x. Putting x; =
Xo + h, ignoring the infinite sum on the right-hand side of (1.25), assuming yo is
exact and denoting the numerical solution obtained at xo + % by y;, we obtain the
(forward) Euler method:

y1 = Yo +hf(x0,y0)- (1.26)

An alternative way of deriving Euler’s method is via a geometric approach. If we
evaluate the derivative of y at xo and assume that it is constant throughout [xg, xo + /],
we have Fig. 1.1a, which immediately gives y; = yo =+ hyj,. Of course y, = f(x0,Y0)
so we have again derived Euler’s method.

1.2.2 Implicit Methods

The Euler formula (1.26) of the previous section expresses the new value y; as a
function of the known y and the function value f(x,yo). Thus y; can be calculated
using only known values. Such formulae are called explicit methods. When using
these methods it is simple to advance to the next integration step.

8 1 Differential Equations

It is also possible to have implicit methods. An example of such a method is the
so-called backward Euler method':

yi =Yo+hf(xi,y1), (1.27)

where now the function value f depends on the unknown y;, rather than solely on
yo. To solve for y; is in general not simple: naively we might think that we can just
calculate the right-hand side, and estimate y1, but we can do this only if y; is already
known! Usually we will need an iterative method to solve for the unknowns. This
means extra work per integration step and finding a solution may not always be easy
or even possible (see Sect. 2.6).

1.2.3 Accuracy and Convergence of Numerical Methods

An important question concerning equation (1.26) is: how accurate is it locally? To
answer this question, we rewrite (1.25) in the form:

y(x1) = y(x0) = hf (x0,y(x0)) = LTE, (1.28)

where LTE is the local truncation error introduced by truncating the right-hand side
of (1.25) and is given for Euler’s method by:

w pr
LTE=Y Fy“) (x0). (1.29)
r=2""

Since we do not know the analytic solution y(x) of (1.24), we cannot calculate the
local truncation error exactly. The important thing about (1.29) is the power of &
in the leading term in the expression for the LTE. For Euler’s method this power is
2 and so the LTE is O(h?) and the method is said to have accuracy of order 1. In
general, if a method has LTE proportional to #”*!, p > 1, i.e. |[LTE| < Ch?*! for
sufficiently smooth problems and for 4 sufficiently small then the method is said to
be of order p. The quantity we are interested in is in general not the LTE, but the
global error y, — y(x,) and for Euler’s method this is O(%). Hence Euler’s method is
said to be convergent of order 1 (see Fig. 1.1) and the global error for Euler’s method
is proportional to the constant step size h.

A very similar analysis can be carried out for implicit equations such as (1.27)
and it is easy to show that (1.27) is also of order 1.

One strategy to reduce the local truncation error is to reduce the size of the
steplength of integration /4. In general, the higher the order of accuracy of the

1You may wonder why a formula that uses information “forward” in time is called “backward”.
This will become clear in Sect. 2.2.3.

1.2 Numerical Methods 9

numerical method, the more effect such step reduction will have on the LTE. On
the other hand, higher order methods require more work for one integration step.

The art in devising a good numerical integration method is to achieve a prescribed
accuracy with as little work as possible and this usually means with as few function
evaluations as possible. Often this involves changing the step size as we perform
the integration. If we use Euler’s method the global error is proportional to the
maximum step size used.

1.2.4 Stability and Conditioning

We complete this introductory chapter with a brief discussion concerning the
concepts of stability and conditioning. The concept of stability is usually applied
to initial value problems for differential equations, that of conditioning to boundary
value problems. Both concepts relate to the effect small changes in (1.18), either in
the function f, or in the initial (or boundary) conditions y(x), have on the solution.
If small changes induce large effects, the problem is said to be unstable or ill-
conditioned. Conversely, a problem which has the desirable property that “small
changes in the data produce small changes in the solution” is said to be stable or
well-conditioned.

We can put the concept of stability on a firm theoretical basis as follows. Consider
the initial value problem (1.18). A solution y(x) is said to be stable with respect to
the initial conditions y(xo) if, given any € > 0, there is a § > 0 such that any other
solution y(x) of (1.18) satisfying

[y(x0) —3(x0)| <6, (1.30)

also satisfies
[y(x) —9(x)| <e for all x > xo. (1.31)

This definition is usually called Lyapunov stability.

1.2.4.1 Absolute Stability

When we use a numerical method for the solution of a stable initial value problem
it is important to require that the numerical solution has the same behavior as the
continuous one. What is done in practice to investigate this is to consider a simple
test equation

y =Ly, (1.32)

which is often called Dahlquist’s test equation. If we consider A to be complex
with Re(A) < 0 we know the true solution of this equation tends to zero as x — eo.
We wish the solution of the numerical method to also behave in this way and if it
does we say that A lies in the stability region of the method. A convenient way to

