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Supervisor’s Foreword

This thesis describes the first total synthesis of all possible stereoisomers of the
peroxide natural product plakortide E. This includes the first confirmation of the
absolute configuration of natural plakortide E, based on the conversion of pla-
kortide E to plakortone B. This transformation also suggests a biomimetic con-
version of plakortide E to plakortone B.

A new synthetic approach involving palladium-catalyzed reaction of vinyl
cyclopropanes with hydrogen peroxide to form highly substituted 1,2-dioxolanes
was developed. A lipase-catalyzed kinetic resolution was employed to provide
optically pure 1,2-dioxolane central cores. The efficient conversion of these
optically pure 1,2-dioxolane central cores into four possible 3,5-cis-stereoisomers
of the plakortide E structure is very interesting and challenging. The successful
application of the Corey-Fuchs homologation on the framework of 1,2-dioxolane,
involving a metal-halogen exchange, is particularly impressive. This pathway may
be the first reported example of metal-halogen exchange on cyclic peroxides. Two
palladium-mediated reactions in the presence of 1,2-dioxolanes were used during
the homologation sequence: a palladium-catalyzed hydrostannylation of an alkyne
and Negishi olefination. Our results may widen the synthetic scope of hindered
peroxide chemistry. Furthermore, these results will be of interest to scientists
interested in organic peroxides as well as in the marine natural products containing
five-membered cyclic peroxides.

For the following reasons I am convinced that the research presented in this
thesis is outstanding and significant.

I. Plakortide E and plakortone B have attractive bioactivities and the synthetic
studies toward them and their analogs will be pivotal both for the evaluation
of the biological activity of these molecules and their analogs, and for drug
discovery.

II. The methodology study for the syntheses of highly substituted cyclic per-
oxides is novel and useful, which not only extends the field of Pd-catalyzed
reactions, but also provides a convenient synthetic approach to prepare 1,2-
dioxolanes series.
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III. It goes without saying that construction and functionalization of 1,2-diox-
olanes are particularly difficult because of the low O–O bond dissociation
energy, so the syntheses in the thesis are full of challenges.

IV. The convergent synthetic strategy was employed in the total synthesis of
plakortide E, so the synthesis is step-economical, starting from (+)-cis-137a,
the plakortide candidate structure (10S)-(+)-cis-86a was efficiently synthe-
sized in ten simple chemical operations.

V. The thesis is well prepared and the chemistry inside clearly described.

Hong Kong, September 2011 Henry N. C. Wong
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Chapter 1
Introduction

1.1 Introduction to Organic Peroxides

Organic peroxides are compounds containing an O–O bond. The O–O group is
called the peroxide group. The peroxide bond is one of the weakest bonds in
organic molecules, with BDE of approximately 34 kcal/mol (C–C: 81 kcal/mol,
C–H: 98 kcal/mol, C–O: 79 kcal/mol, C–N: 66 kcal/mol) [1, 2]. The O–O bond is
unstable and easily splits into reactive radicals via homolytic cleavage. For this
reason, peroxides are found in nature only in small quantities, in water, atmo-
sphere, plants, animals and man. According to the substitution patterns, organic
peroxides can be classified into hydroperoxides, acyclic dialkyl peroxide and
cyclic peroxides (Fig. 1.1).

1.2 Cyclic Peroxide Natural Products and Their
Potential Biological Activities

Ascaridole, used as a remedy for worms, which was isolated from chenopodium
oil and named by Hüthig in 1908 [3], was the first studied naturally occurring
organic peroxide (Fig. 1.2). Hüthig described its explosive character and deter-
mined its chemical formula as C10H16O2. In 1911, these results were confirmed by
Nelson in his detailed study of ascaridole [3].

One of the most important medical applications of organic peroxides has been
in the treatment of malarial. In the worldwide scale, there are 300–500 million
clinical cases of people that are infected by malaria every year, and between one to
three million deaths, mostly of children, are attributable to this disease. Every 40 s
a child dies of malaria, resulting in a daily loss of more than 2,000 young lives
worldwide. These estimates made malaria one of the top three killers among
communicable diseases [4].

X.-Y. Sun, Total Synthesis of Plakortide E and Biomimetic Synthesis
of Plakortone B, Springer Theses, DOI: 10.1007/978-3-642-27195-3_1,
� Springer-Verlag Berlin Heidelberg 2012
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In the search for antimalarial drugs, yingzhaosu A was isolated by Liang et al.
in 1979 from Artabotrys uncinatus (Annonaceae) [5], which was used in China as
a traditional remedy for the treatment of malaria (Fig. 1.3). Further work from this
lab resulted in the isolation of yingzhaosu C (Fig. 1.3) [6]. Yingzhaosus A and C
both contain a 1,2-dioxane core structure. These compounds have been extensively
studied for their potential antimalarial activity.

At about the same time, artemisinin, a naturally occurring organic peroxide
with a 1,2,4-trioxane core, also known as qinghaosu, was isolated from the plant
Artemisia annua, a herb described in Chinese traditional medicine by Wu and
coworkers (Figs. 1.3 and 1.4) [7]. Artemisinin and its derivatives are a group of
drugs that possess the most rapid action of all current drugs against falciparum
malaria. The discovery of strong antimalarial activity from artemisinin and yin-
ghaosu motivated the worldwide exploration of antimalarial cyclic peroxide drugs.
Since scientists recognized the pivotal role of cyclic peroxides in various vital
biological processes [8], the chemistry of cyclic peroxides has been rejuvenated in
the 1970s. More and more naturally occurring cyclic peroxides have been isolated
and identified.

Chondrillin, isolated from a Great Barrier Reef sponge of the genus Chondrilla
by Wells in 1976, was the first cyclic peroxide to be isolated from marine sources
[9]. Later, it was also isolated from another marine sponge Plakortis lita by
DeGuzman and Christophersen [10, 11], and its diastereomer plakorin and a
number of other alkoxydioxines were isolated from this marine sponge (Fig. 1.5)
[12].

These peroxides have shown interesting biological properties. For example,
chondrillin was found to have an in vitro IC50 of 5 lg/mL against P388 leukemia
cells [10, 11]. Plakorin is a potent activator of sarcoplasmic reticulum calcium-
ATPase, and it also has an in vitro IC50 = 0.85 lg/mL against murine lymphoma
L1210 cells and IC50 = 1.8 lg/mL against human epidermoid carcinoma KB cells
[13].

OO

Ascaridole

Fig. 1.2 The first studied
naturally occurring organic
peroxide

R O O H R1 O O R2

OO

n

Hydroperoxides Acyclic dialkyl peroxide Cyclic peroxides

Fig. 1.1 Categories of peroxides
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Many natural peroxides with 1,2-dioxine or 1,2-dioxane subunits have been
isolated from the marine sponge, Plakortis sp., especially from Plakortis halic-
hondrioides. For example, plakortin (1), 3-epi-plakortin (2), plakortic acid (3) all
share a common six-membered cyclic peroxide core (Fig. 1.6). The marine cyclic
peroxide plakortic acid (3) is a potent antifungal and antibacterial agent; however,
the corresponding methyl ester, plakortin (1), is inactive [14, 15].

Plakinic acid A, a 3,3,5,5-tetrasubstituted 1,2-dioxolane isolated from a Carib-
bean sponge, was the first isolated five-membered ring peroxide among marine
natural products (Fig. 1.7) [16, 17]. In the last decades, many additional plakinates
have been isolated and characterized, which usually exhibited remarkable cyto-
toxicity against fungal and cancer cell lines [17–25]. As shown in Table 1.1, all the
plakinic acids contained a 3,3,5,5-tetrasubstituted 1,2-dioxolane core.

The highly unstable prostaglandin H2 (PGH2) and prostaglandin G2 (PGG2),
containing a five-membered ring peroxide, were isolated and identified as key
intermediates in prostaglandin’s biosynthesis from arachidonic acid (Fig. 1.8) [26–
28]. PGH2 and PGG2 were also biosynthetic precursors for many other physio-
logical important compounds, such as prostacyclins and thromboxanes [29, 30].
Afterwards, the total syntheses of PGH2 and PGG2 were reported by Porter and
coworkers [102] and Johnson and coworkers [110]. The early studies on prosta-
glandin endoperoxides and their analogs were reviewed by Nicolaou and Salomon
[31, 32].

Fig. 1.4 Artemisia annua

O O

C16H33

MeO

H

CO2Me O O

C16H33

MeO

H

CO2Me
S R S S

Chondrillin Plakorin

Fig. 1.5 Six-membered
cyclic peroxides

O

O

O

H

H

O
O

O
O

HO
OH

O
O

OH

Artemisinin (Qinghaosu)
From Artemisia annuaYingzhaosu A Yingzhaosu C

Fig. 1.3 Antimalarial natural cyclic peroxides
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OO
HOOC

Plakinic acid A

Fig. 1.7 The first isolated five-membered ring peroxide

R

O

O

CO2H

R =OOH, Prostaglandin G2
R = OH, Prostaglandin H2

Fig. 1.8 Prostaglandin G2

and H2

O
O CO2R O

O CO2R

1 R = Me
3 R = H

2

Fig. 1.6 Natural products with 1,2-dioxane cores

Table 1.1 Plakinates from marine sponge
R

OO
HOOC

R Plakinate Reference

C16H33 C15H31 unnamed [18]

(CH2)n

n = 4 C (3,5-cis); epi-C (3,5-trans) [17]
n = 2 D (3,5-cis); epi-D (3,5-trans) [17]

Ph(CH2)6

epi-E (3,5-trans) [20]

Et
(CH2)n

F (3,5-cis); epi-F (3,5-trans) [21]

Ph(CH2)8

G (3,5-cis); epi-G (3,5-trans) [22]

(CH2)6
Ph

unnamed (3,5-cis); unnamed (3,5-trans) [108]

Ph(CH2)10 andavadoic acid (3,5-trans) [24]
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In the course of their continuing search for drug leads from Japanese marine
invertebrates, Nakao and Fusetani isolated graciliorther A from the deep-sea
sponge Agelas gracilis in 2009, which show considerable antimalarial activity
(Fig. 1.9) [33]. The absolute stereochemistry of graciliorther A was confirmed by
application of the modified Mosher’s method.

Clardy and coworkers in their study of the southern pine beetle system, have
discovered another symbiont (Streptomyces sp. SPB74) that produces a polyene
peroxide, which was named mycangimycin (Fig. 1.10). It was found that myc-
angimycin selectively inhibits the beetle’s fungal antagonist. The complete
structure was fully elucidated including the absolute configuration [34, 35].

Although majority of cyclic peroxide natural products contain dioxanes or
dioxolanes, some medium ring cyclic peroxides discovered in nature (Fig. 1.11).
The terpenic peroxide 4 was isolated from the spice cardamom, the fruit of
Amomum krervanh Pierre, which contained a seven-membered cyclic peroxide
core. Compound 4 also exhibited moderate antimalarial activity in vitro against
Plasmodium falciparum (IC50 = 170 nM) [36]. Verruculogen (5), containing a
novel eight-membered cyclic peroxide core, was obtained from a strain of
Penicillium verruculosum Peyronel isolated from peanuts, which was fully char-
acterized by Clardy and coworkers in 1974 [37, 38].

O
O

O

HO

O
O

HH

Gracilioether A

Fig. 1.9 A polycyclic
natural product with 1,2-
dioxane core

O O

HO

O

Mycangimycin

Fig. 1.10 A novel linear
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1.3 Natural Products from Marine Sponges
of the Genus Plakortis

Marine sponges have been among the most studied of marine organisms. The
genus Plakortis has attracted particularly interests as a source of novel metabolites.
Many unusual metabolites isolated from the genus Plakortis exhibited anti-fungal,
anti-tumor, anti-bacterial and other important pharmacological activities. Based on
their work, the structures, stereochemistry, pharmacological activities and selected
syntheses of the Plakortis derived metabolites have been reviewed by Kitching and
coworkers in 2004 [39–41].

Examples of cyclic peroxides isolated from the genus Plakortis are illustrated in
Fig. 1.12. These cyclic peroxide natural products are very fascinating because of
their novel structure and activities.

In their continuing search for biologically active natural products to cure
cardiac disease, Patil and coworkers employed a high throughput screening to
evaluate the ability of natural products to stimulate cardiac SR-Ca2+ ATPase [42].
A screening of over 2400 plant and marine extracts found an extract of sponge
Plakortis halichondrioides with the ability to stimulate cardiac SR-Ca2+ ATPase
activity. This led to the discovery of four novel polyketides, plakortones A–D, four
novel acids, plakortides E–H and one known compound 3-epi-plakortin (2) were
isolated from the sponge Plakortis halichondrioides (Fig. 1.13).

In 2002, Kitching and coworkers reported the first total synthesis of plakortone D,
which not only confirmed the absolute stereochemistry of plakortone D, but also
enabled the acquisition of other plakortones and analogs [39]. In 2010, they reported
the total syntheses and configuration assignments of plakortone C and F [41]. Our
group were also interested in the synthetic chemistry of the Plakortis derived
metabolites. Our preliminary synthetic efforts towards plakortide E were recorded in
2007 [43]. In 2010, we have reported the total syntheses and configuration assign-
ments of all four isomers of plakortone B [44], whose total synthesis was reported by
Semmelhack and coworkers in 2006 [45]. In consideration that plakortone B was
isolated from the same animal source together with plakortide E [42], we reasoned
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Fig. 1.12 Natural products from the genus Plakortis

6 1 Introduction



that diol 6 could be converted to plakortone B (Scheme 1.1) [109]. Kitching has also
suggested that the 1,3-diol notionally derived from reductive cleavage of
1,2-dioxolane are perhaps the actual precursors of the plakortone series [40, 41].

1.4 Methodologies for Synthesis of Cyclic Peroxides

Construction of cyclic peroxides is a particularly challenging issue because of the
low O–O bond dissociation energy (37 ± 1 kcal mol-1) [1]. Numerous approa-
ches have been developed in the past for the synthesis of five- and six-membered
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ring peroxides [48–90]. Syntheses of cyclic peroxides were well-reviewed by
Nojima and coworkers [46], and Bachi and coworker [47]. Many of these
methodologies demand low temperature operations and mild conditions.
These approaches can be categorized into three types: (1) cyclization of hydro-
peroxides through intramolecular nucleophilic reactions; (2) cycloaddition of
triplet oxygen with radicals; (3) cycloaddition of singlet oxygen with 1,3-dienes.

Cyclization via intramolecular nucleophilic reaction. In 1975, Corey and
coworkers reported a method to obtain the 1,2-dioxolane through a intramolecular
substitution. Bis (mesylate) 7 was treated with potassium superoxide to give the
cis-disubstituted 1,2-dioxolane 8 in a moderate yield (Scheme 1.2) [87].

In 1978, Adam treated cyclopropane 9 with H2O2/NBS to afford b-bromohydro
peroxide 10, which was cyclized to 1,2-dioxolane 11 in the presence of silver(I)
oxide in good yield (Scheme 1.3) [88].

Kropf [56] prepared 1,2-dioxolanes by treating hydroperoxides with Pb(OAc)4,

which involves 1,5-hydrogen abstraction by an intermediate peroxyl radical.
Alternatively, the treatment of 1,3-dibromopropane 14 with tert-butylhydroperoxide
in the presence of AgO2CCF3 also led to 1,2-dioxolane 16 (Scheme 1.4) [89].
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Bloodworth [66–69] prepared four non-natural plakinic acids via a peroxym-
ercuration reaction as shown below (Scheme 1.5). A similar strategy was used by
Gunstone [70] for his preparation of 1,2-dioxolanes from methyl oleate.
A cycloperoxyiodination route also gave rise to 1,2-dioxolane frameworks.
The difference between Bloodwoworth’s and Gunstone’s approach is five-exo vs.
5-endo peroxymercuration.

Intramolecular nucleophilic addition of hydroperoxide to a carbonyl group
was one of the earliest methods to prepare cyclic peroxides. For example, the
a,b-unsaturated aldehyde 19 reacted with hydrogen peroxide at room temperature
in the presence of KOH to form the 1,2-dioxolane 20 in 78% yield [91–93]. An
asymmetric version of this reaction was reported by List and coworkers in 2008
(Scheme 1.6) [93].

Acid-catalyzed intramolecular attack of hydroperoxide on an epoxide to form
the 1,2-dioxolane was reported in 1976 (Scheme 1.7) [94]. This type of reaction
was applicable to more complex substrates, and has been applied to the total
syntheses of natural products [101].

Methods to synthesize the cyclic peroxides by the intramolecular opening of
oxetanes with hydroperoxides have been developed by Dussault and coworkers
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[78]. The method was used to synthesize the 1,2-dioxolanes, 1,2-dioxanes and 3-
alkoxy-1,2-dioxolanes with good stereoselectivity and good yields (Scheme 1.8).

Cycloaddition of triplet oxygen with radicals. As can be seen in Scheme 1.9,
pentasubstituted 3-hydroxy-1,2-dioxolanes were realized via oxygen trapping
during thermolysis of cyclic a-azohydroperoxides [90].
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Scheme 1.7 Formation of 1,2-dioxolane via intramolecular opening of epoxide with
hydroperoxide
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Feldman developed a convenient approach for the formation of 1,2-dioxolanes
from vinylcyclopropanes by a free radical-mediated ring expansion with oxygen as
demonstrated in Scheme 1.10. In their experiments, the cis-1,2-dioxolanes 43 were
obtained in good yield [83–86].

Cycloaddition of singlet oxygen with 1,3-dienes. Singlet oxygen (1O2) can be
generated by a chemical process on a synthetically useful scale or in a photo-
sensitized process by energy transfer from dye molecules such as rose bengal,
methylene blue or porphyrins [95]. The electron occupancy of the shells of the
singlet oxygen is different from those of ground state oxygen. The energy dif-
ference between ground state and singlet oxygen is 94.3 kJ/mol [96]. The damages
caused by the sunlight to many organic materials are always attributed to the
effects of singlet oxygen. Singlet oxygen reacting with a variety of 1,3-dienes
gives the corresponding six-membered cyclic peroxides. This is one of the oldest
and the most general methods to generate cyclic peroxides. Windaus and Brunken
isolated the cyclic peroxide of ergosteryl acetate in 1928 [97], which was prepared
through singlet oxygen cycloaddition to ergosteryl acetate (45) (Scheme 1.11).
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