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Chapter 1

Introduction

Michael Levitt

I first encountered ribonucleic acid in October 1968 (see early history of Computa-

tional Structural Biology, Levitt 2001). I worked on RNA for a few years and

published three out of my five first papers on RNA (Levitt 1969, 1972, 1973) before

abandoning the system as being too simple and not nearly as interesting as protein

folding. This was my first of several career-level mistakes. In 1976, I also refused to

get involved in the analysis of DNA sequences when Bart Barrell brought me the

DNA sequence of jX174 bacteriophage (Smith et al. 1977; Levitt 2001). What I

find most surprising about these mistakes is that the decisions seemed very easy

when I made them and regrets came much more slowly but lasted longer. In 2008,

RNA caught my fancy again thanks to a HFSP International collaboration

spearheaded by Michael Kiebler (Medical University of Vienna), and I have now

come full circle with four of my five most recent papers involving RNA.

This background made the pleasure afforded me by the request to write this

Introduction especially great both as a way to reflect on the past and also to look

forward to the future. The first paper in the book entitled “Introduction to RNA

Modeling” by Eric Westhof and Neocles Leontis provides a wonderful summary

and a very useful table that summarizes the methods used to model RNA structure.

This made me understand better why I moved from RNA to proteins almost

40 years ago: very little structural data was available for RNA then, whereas

much more was available for proteins. With the determination of the atomic

structure of the ribosome, this situation has changed: today a lot more is known

about the structures that RNA adopts.

Comparing the history of structure predictions of protein with that of RNA can

be very informative. Most methods used for both cases consist of the same choices.

What is the best representation? What is the best method to generate and change

structures? What is the best way to score the resulting structures so as to select those

M. Levitt (*)
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most native-like? Everyone wants detailed all-atom structures as they help deter-

mine function. The need to reduce computational complexity led to the first coarse-

grained studies of protein folding in 1975, and such coarse graining (Levitt and

Warshel 1975), in which several atoms are grouped into one interaction center, is

now popular for RNA, being used for 5 of the 19 methods in the Westhof-Leontis

Table (The Table). This immediately requires methods to add back atomic details,

and such methods have matured enormously for proteins since the earliest methods

by Ponder and Richards (1987), Holm and Sander (1991), and Levitt (1992). The

latest version of Dunbrack’s Scwrl method (Krivov et al. 2009) is able to place

missing side chains with uncanny accuracy. Similar methods exist for RNA but are

likely to undergo additional development.

The molecular representation is intimately connected to interatomic forces and,

hence, the energy of the system. With all the atoms present, molecular mechanics or

even quantum mechanical energy functions can be used. With coarse graining, such

potentials can be derived from the chemical structures of the groups involved (e.g., do

they stack, base-pair, etc.), paralleling what was done in the original protein course-

grainingwork (Levitt andWarshel 1975).Asmore structural data ismade available by

structural biologists, statistical or knowledge-based potentials are a very useful alter-

native. Such potentials have a long history for proteins starting with Tanaka and

Scheraga (1976) and extending to Summa and Levitt (2007). As the amount of protein

structure grew exponentially, it became possible to use better representations and

more atom types, extending from contact potentials between 20 amino acids (210

number) in 1976 to smooth, closely sampled distance-dependent functions for almost

200 atom types (over fivemillion numbers).While knowledge-based energy functions

are frustrating in their neglect of so much physics and even statistics (interactions are

not independent but are assumed to be), they dowork best at refining proteins (CASP7

to CASP9, Chopra et al. 2010). One can expect a continuous trend that leads to ever

more complicated but better RNA knowledge-based functions.

Three physical methods are used to change molecular conformations: energy

minimization (as used to refine my 1969 model of tRNA), molecular dynamics, and

Monte Carlo random moves. The first two methods are thought to be more efficient

for systems with many degrees of freedom, but they suffer from a massive

drawback: the need for smooth differentiable energy functions. The Monte Carlo

method has been very successfully used to model proteins by swapping a fragment

of the main chain for a different, known native fragment and then keeping the result

if it satisfies the Monte Carlo criterion (Simons et al. 1997). This process is clearly

discontinuous. We have developed a new method called Natural Move Monte Carlo

(Minary and Levitt 2010) that allows much more efficient sampling of both proteins

and RNA. Surprisingly, more methods described in Table 2.1 use molecular

dynamics instead of Monte Carlo to change conformation. This is expected to

change in the future, except perhaps for refinement of detailed RNA structures or

modeling of RNA dynamics. Fragment-based methods have also been very suc-

cessful for RNA structure prediction. A major drawback is their dependence on

what has already been seen and the impossibility of proper thermodynamic

2 M. Levitt
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sampling. Some of the problems associated with Monte Carlo moves have been

solved in a very recent paper from our group (Sim et al. 2012).

Once one has an ensemble of putative structures, they need to be scored so

as to pick out the best ones. Often such scoring is preceded by clustering, aimed at

selecting representative structures from each energy basin. Clustering is a surpris-

ingly tricky business, and we are pleased to have been able to develop a new method

that seems to aid selection of near-native structures (Sim and Levitt 2011).

In conclusion, I am in complete agreement with the many groups who have

contributed to the very impressive book: RNA structure prediction has clearly come

of age and promises to make dramatic advances in the next few years. As such

the publication of this book on RNA Structure Analysis and Modeling could not

have been timed better!
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Chapter 2

Modeling RNA Molecules

Neocles Leontis and Eric Westhof

Chercher plutôt la rigueur dans l’enchaı̂nement de la pensée plutôt que la précision dans les

résultats. Le modèle le plus crédible n’est pas nécessairement le plus réaliste, car il

demande l’éxagération des traits caractéristiques par rapport aux traits contingents.

—Abraham Moles, Les sciences de l’imprécis, Paris, Seuil (1990)

Strive for rigor in the logical train of thought rather than in the precision of the results. The

most enlightening scientific model is not necessarily the most realistic one, because it is

necessary to exaggerate the characteristic features with respect to the contingent ones.

—Translated by the authors

2.1 Introduction

A primary activity of scientific work is the construction of models to represent the

nature and workings of phenomena we observe in the world around us. Models that

represent the molecular components of living system in three dimensions (3D) and

at atomic resolution are highly valued in molecular and structural biology. For

example, the decipherment of the 3D structures of ribosomes, the complex protein-

synthesizing nanomachines of the cell, represents a tremendous achievement,

recently recognized with the Nobel Prize in Chemistry (http://nobelprize.org/

nobel_prizes/chemistry/laureates/2009/). Nonetheless, this phenomenal success is

N. Leontis
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tempered by the realization that even now, over 10 years after the first ribosome

structures were solved, we still do not understand fully several aspects of their

functioning. For all who have grappled with the complexities of ribosome

structures, Richard Feynmann’s pithy statement, “What I cannot create, I do not

understand,” rings especially true (Hawking 2001). This physics-based realization

contrasts with another point of view of modeling. To paraphrase R. W. Hamming,

who said, “The purpose of computing is insight, not numbers” (Hamming 1971), we

should remember that the purpose of molecular modeling is functional insight, not

detailed atomic models per se. Therefore, as we seek to improve our abilities to

construct 3D models for molecules for which we do not yet have experimental

atomic-resolution structures, we should bear in mind that it may not be necessary to

achieve some arbitrary precision in the atomic coordinates to provide insight into

biological function. Rather, we should think carefully to identify those predicted

features that yield important insights (Table 2.1).

Thus, for those engaged in RNA modeling, critical questions to ponder include:

What do biologists, who are trying to unravel the roles of RNA in complex

biological processes (growth and development, learning and cognition, immune

and stress responses, and disease), really need to know about the 3D structures of

the RNA molecules they study, and in what form do they need it? In this context,

how deep do we need to go into atomic details to gain useful insights? How can

knowledge of RNA 3D structure be applied to infer RNA function? It is crucial to

bear in mind that, historically, some imprecise models have been richer in

biological insight than other, very precise ones. The famous, original 3D model

for double-stranded DNA of Watson and Crick stands out in this respect.

With these fundamental issues as background, we turn to the reasons for

renewed interest in RNA 3D modeling: New high-throughput experimental

approaches, developed in the postgenomic era, have revealed the pervasive role

of noncoding RNA molecules in all aspects of gene expression, from chromosome

remodeling and regulation of epigenetic processes to transcription, splicing, mRNA

transport and targeting, and translation and its regulation. Furthermore, while the

number of protein-coding genes has changed little from the genome of the tiny

1,000-cell nematode Caenorhabditis elegans to that of our own species, H. sapiens,
the number of ncRNAs has exploded and appears to scale with biological complex-

ity (Taft et al. 2007). Evidence is building that many of these ncRNAs, like those

involved in splicing and translation, which have been known for many years,

function at least in part by forming complex 3D structures to interact specifically

with proteins, other nucleic acids, and a wide range of small molecules.

2.2 Defining the Problem

For RNA molecules that form discrete 3D structures, the folding problem can be

simply stated: What is the mapping from sequence space to three-dimensional

space? As many biologically active RNA molecules are very long (up to thousands

6 N. Leontis and E. Westhof
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of nucleotides), this question is relevant for those portions of RNA sequence that

adopt stable architectures, required for their function during at least some period of

time. In other words, given a sequence, produce a set of 3D coordinates for the

nucleotides, that is biologically relevant and that satisfies the stereochemistry and

physical chemistry of RNA molecules.

2.2.1 RNA Modeling Compared to Protein Modeling

In this regard, the parallels and contrasts between RNA and protein structure

prediction and folding are apparent. Like proteins, RNA molecules are flexible

linear polymers with astronomical conformational possibilities. Unlike proteins,

RNA structures generally partition quite cleanly between secondary and tertiary

hierarchical levels (Brion and Westhof 1997; Woodson 2010, 2011). Thus, as a

rule, the first step in successful 3D modeling of RNA passes through a high-quality

prediction of the main secondary structure elements. The state of the art in RNA

secondary structure prediction is reviewed by Steger and coauthors in the third

chapter of this volume. At the present state of our modeling efforts, the nature of the

input data can play a decisive role at this stage of the process. Indeed, despite

significant advances in 2D structure prediction, current methods still rely on

theoretical approximations and an incomplete set of empirical energy parameters.

Thus, working on a single RNA sequence may lead to incorrect evaluation of the

importance or the role of one or more structural elements. The idiosyncrasies

contained in single sequences can, however, often be ironed out by the use of

multiple homologous sequences. Moreover, for RNA molecules, in contrast to

proteins, one can obtain many additional experimental data containing much 3D

information, using chemical or enzymatic probing and footprinting, small-angle

X-ray scattering (SAXS), and cross-linking. The incorporation and computer use of

such data changes the tractability of the problem. The chapters by Laederach, Wang

and Fabris, and their coauthors (Chapters 15–17) address some of these issues and

illustrate the challenges and power of integrating modern experimental data collec-

tion with modeling methods.

2.2.2 Defining the Inputs for RNA 3D Modeling

Inputs for the modeling of RNA 3D structure include, in addition to the sequence of

the target RNA, the derived secondary structure and the sequences of available

homologues, as well as all available experimental data. The database of known

RNA 3D structures should also be considered an important resource for 3D

modeling. This is especially the case for those approaches relying on a modular

view of RNA architecture with the resulting assembly of RNA elements and

modules (Jossinet et al. 2010; Westhof et al. 2011).
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2.3 3D Modeling Methods and Approaches

A variety of modeling approaches are represented in the contributions to this

volume. Some common themes emerge and will be summarized briefly with

reference to specific chapters. As will become apparent to readers, promising

approaches are rapidly adopted by multiple research groups, although specific

implementations vary in ways that are usually not easy to discern. This volume

focuses on methods that aim to achieve automaticity in 3D modeling, in the sense

that they should require very little human intervention in the modeling process,

beyond defining the inputs for the specific problem. The effort, rather, is focused

“up front” on designing the algorithms and extracting and compiling relevant

knowledge concerning RNA structure from structure databases for automated use

by the implemented algorithms.

2.3.1 Homology Modeling

Automated methods generally address one or both of two distinct problems in

biological structure prediction, namely, homology modeling and de novo predic-

tion. Homology modeling concerns building atomically accurate 3D models

of RNA molecules using at least one homologous 3D structure as template.

RNA homology modeling draws on vast experience with protein homology

modeling, and so considerable progress has been made already. The contributions

of Altman, Bujnicki, and Santa Lucia focus, at least in part, on homology modeling

and, between them, exhaustively address the issues involved.

2.3.2 De Novo Modeling

De novo prediction is necessary when no homologous 3D structure is known that

can serve as a template for modeling. It is considerably more challenging than

homology modeling, as it often requires generating a brand new 3D architecture

from any known heretofore. As the goal is to do this without expert human input,

the general approach is to generate large numbers of possible architectures and then

to evaluate them, using what is already known about RNA structure. Automated, de

novo 3D modeling approaches are therefore distinguished operationally by the kind

of algorithm employed to generate potential 3D structural models, and also by the

nature of the encapsulated knowledge concerning RNA structure that is used to

score and rank models to arrive at a small set of predicted 3D structures, or in the

favorable case, a single structure. The models generated by conformation-sampling

algorithms are called “decoys” by practitioners. For the final output, most programs

produce an all-atom predicted structure, which is generally quite “correct” in its
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local, stereochemical detail, in the sense that bond lengths and angles are within

allowed ranges and the model contains no unphysical nonbonded contacts. But this

local precision, which most programs achieve routinely, should not mislead users of

predicted 3D models into assuming the model is accurate on larger, biologically

relevant length scales, ranging from structures of modular motifs to overall folds

and architectures.

The contributions of Altman (Chapter 8), Bujnicki (Chapter 5), Chen (Chapter

10), Das (Chapter 4), Dokhalyan (Chapter 9), Santa Lucia (Chapter 6), and Shapiro

and their coworkers (Chapter 7) address de novo 3D modeling and among them

cover the major methods in use today. All of these methods deploy some kind of

algorithm to sample conformation space and some kind of knowledge-based

methods to score and rank proposed solutions to the 3D prediction problem. In

addition, most approaches rely on some kind of reduced representation of the RNA

structure (“coarse graining”) to speed up the calculations and allow more thorough

exploration of conformational space with available computer resources. Coarse

graining is an art that requires striking the right balance between speed of calcula-

tion and sufficiently detailed representation of RNA structure to capture the molec-

ular features that stabilize the active conformations. Other ways to speed up

conformational sampling involve modification of the algorithms that propagate

the dynamics, as represented by the discrete molecular dynamics (DMD) method

reported by Dokhalyan and coworkers.

2.3.3 Defining the Outputs of Different Modeling Approaches

The outputs of modeling studies depend on the modeling approach and the aim of

the study. Indeed, output data can be full atomic coordinates for every single

nucleotide or, in the case of coarse-grained methods, coordinates for only a subset

of atoms or even a single pseudoatom representing each nucleotide. The different

outputs are directly related to the granularity of the modeling approach. Nonethe-

less, nominally atomic-resolution models, when poorly refined or badly assembled,

may be no better or even worse than coarse-grained models, if the characteristic

base-pairing and base-stacking interactions of the structures are not represented

accurately.

2.3.4 Precision of Models vs. Accuracy of Models

There is no necessary correlation between precision and accuracy, and models with

comparable precision can differ substantially in the accuracy with which they

predict the important interactions between nucleotides that define the RNA 3D

structure. Thus, low-precision models can be very accurate (e.g., the original

Watson–Crick model for DNA) and highly precise ones can be partly or totally
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inaccurate and thus misleading. Clearly, less-accurate models may not be at all

pertinent for structural biology, while less-precise models can be very rich and

enlightening. Still, these considerations should not be taken as license for not using

in model building, whenever possible, high-resolution building blocks that are

precise with respect to bond lengths and angles within nucleotides, and H-bond

distances, van der Waals contacts, and relative orientations within base pairs and

other interactions.

2.4 Databases for Extracting Knowledge

All of the precise structural data regarding RNA comes ultimately from atomic-

resolution X-ray structures of nucleotides, oligonucleotides, and various biologi-

cally relevant structures, ranging in size from individual helical elements to the full

ribosome. These data comprise all our basic knowledge of bond lengths, angles, and

stereochemistry, as well as interaction preferences, including all types of base pairs

and most stacking and base–backbone interactions. This information is used to

build force fields and to infer rules for assembly of molecular moieties. These force

fields and energetic rules are then used for producing and optimizing structures,

sampling the conformational space, or simulating molecular dynamics. The quality

and general value of the deduced force fields will strongly depend on the number

and variety of structures available. In addition, the quality of the structures is of

primary importance; it is directly related to the crystallographic resolution of the

X-ray data and on the refinement process since a minor fraction of X-ray structures

are obtained at true atomic resolution. One key parameter for compiling reference

databases for knowledge extraction is the nonredundancy of the structures that are

included in order to avoid bias in the deduced parameters. The chapter by Leontis

and Zirbel (Chapter 14) addresses these issues and details a nonredundant database

of structures extremely valuable for extracting knowledge about RNA as well as for

benchmarking modeling strategies. In this respect, it is worth noting that less than

100 nonredundant RNA structures have been solved at 2-Å resolution or better.

2.5 Evaluating Models or “The Proof of the Pudding

Is in the Eating”

As discussed above, 3D models are produced either to monitor our progress in the

understanding and use of the physicochemical rules governing RNA architecture or

to provide insight and help to experimentalists in the interpretation and meanings of

biological data and in the design of new experiments. Although objectives

may differ, in every case the models produced should be evaluated to assess

their relevance to biological reality. Models that make testable predictions are
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especially valuable and, as emphasized above, need not be particularly precise.

Additional experiments devised on the basis of a given model will provide the

relevant tests for evaluating it. Depending on the outcome, the model may be

retained and perhaps “tweaked,” or it may be rejected and radically revised, leading

to new biological insight and further experimental tests. On the other hand, to assess

the validity of force fields as well as other empirical assembly rules, precise

numerical comparisons have to be performed in a systematic way. This highlights

the need for discriminating and meaningful metrics to compare and evaluate

predicted vs. experimental structures.

2.5.1 Metrics for Evaluating Models

The most common metric is the root mean square deviations (RMSDs) on

corresponding atoms between the predicted and experimental models. RMSDs are

easy to compute and yield a simple measure. However, to interpret RMSD values,

some critical length scales in RNA structures should be kept in mind for comparison:

First, stacking distance between bases is about 3.4 Å; second, successive P–P distance

in RNA helices is about 7 Å. While RMSD values below 3.4 Å are of real value,

RMSD values beyond 8 Å must be treated with caution. In addition, RMSDs, as

generally calculated with rigid-body fitting, spread the errors between two sets of

coordinates over the whole ensemble. Consequently, even correctly modeled regions

will not superimpose properly and thus will also contribute to the overall RMSD

value. Therefore, RMSD values should be supplemented with local structural

comparisons, including, for example, the numbers of correct base stackings and of

correct Watson–Crick base pairs and, especially for 3D architectures, the number of

non-Watson–Crick pairs, correct both with respect to pairing partners and base-pair

types (Leontis and Westhof 2001). For a summary of the types of non-Watson–Crick

base pairs, see the Appendix of this volume. We stress the importance of predicting

the correct non-WC pairings as well as the correct base stackings, both of which are

key because there is no three-dimensional architecture without non-Watson–Crick

pairs and additional stackings between pairs. While a simple mapping of the 2D

structure into a 3D structure does lead to a three-dimensional fold, such a fold will

lack the additional stackings or RNA–RNA contacts that are characteristic of the

complete 3D architecture. In short, correct predictions imply correct choices of new

base stackings between single-stranded nucleotides and helices as well as new long-

range base-pair contacts. For these reasons, two new metrics particularly suitable to

RNA were introduced: the deformation index and the deformation profile (Parisien

et al. 2009). The deformation index monitors the fidelity of the interaction network

and encompasses base-stacking and base-pairing interactions within the target struc-

ture. The deformation profile highlights dissimilarities between structures at the

nucleotide scale for both intradomain and interdomain interactions. These tools

demonstrate that there is little correlation between RMSD and interaction network

fidelity. To improve force fields or modeling approaches, it is mandatory to assess the
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origins of the errors. The deformation profile is a very useful tool for identifying the

origins of incorrect modeling decisions.

2.5.2 Necessity for Objective Evaluation of Modeling Efforts:
RNA–CASP

Structure prediction methods for proteins were boosted and consolidated by the

CASP project (Critical Assessment of techniques for protein Structure Prediction),

a systematic and worldwide evaluation of the predictions of new structures, prior to

their publication (Kryshtafovych et al. 2005; Moult et al. 2009). CASP has proven

extremely useful, productive, and constructive for benchmarking the progress made

in the generation of new ideas and the objective assessment of the newly developed

techniques. We believe that setting up a similar process will prove very healthy for

the RNA structure-modeling field. To do so, several hurdles need to be overcome.

In the case of RNA prediction, two levels would have to be distinguished, namely,

the prediction of secondary structure and the modeling of 3D (tertiary) structure.

The main issue, however, is how to establish efficient communication between

research groups that determine RNA structures, whether at the secondary or tertiary

structure levels, and research groups that predict RNA structures, so the latter can

register their predictions before the structures are published. Clearly, despite the

amazing advances in all aspects of the production of 3D RNA structures by X-ray

crystallographic, NMR, or cryo-EM methods, the number of new structures pro-

duced per year remains rather low. The proposed process would follow these lines:

(1) A structural group working on a new RNA structure (X-ray, NMR, chemical

probing, cryoelectron microscopy, or mass spectroscopy) makes known their will-

ingness to “play the game.” (2) The group sends the sequence of the RNA under

investigation to the coordinator. (3) The coordinator, without disclosing the identity

of the experimental laboratory or the function and origin of the RNA, distributes the

sequence to the theoreticians ready to tackle the challenge. Each theoretical group

must agree not to disclose the sequence or distribute it further or to disclose its own

progress or results in any fashion before publication of the structure by the experi-

mental group. (4) The deadline for submitting structure predictions to the coordi-

nator is agreed upon at the outset and generally will coincide with the date the

experimental group submits their structures for publication. (5) During a special

meeting, the coordinator discloses the theoretical results, and they are compared

with the published experimental structures. (6) Special guidelines and rules for the

comparisons will be agreed upon before the writing and publication of the analysis.

Several laboratories dedicated to RNA bioinformatics around the world have

expressed their keen interest to participate in such regularly held contests. The

success and real progress generated by CASP in protein structure prediction should

encourage us all to pursue this endeavor in the form of an ongoing RNA–CASP

process. A first test of RNA–CASP was initiated at the end of 2010 and is now in the

process of being published (Cruz et al. 2012).
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2.6 Complications Limiting Modeling Approaches

Biological reality is complicated, and the applicability of physicochemical

approaches based fundamentally on assumptions of thermodynamic equilibrium

should always be properly evaluated as part of the theoretical modeling process.

First, RNA molecules begin folding almost immediately as they are transcribed

(cotranscriptional folding) so the issue of kinetic vs. equilibrium control in forma-

tion of biologically relevant structures is always a real one (Cruz and Westhof

2009). When the first structure to form is not the biologically relevant one,

chaperone molecules are observed to play additional important roles. RNA

molecules rarely act alone; on the contrary, they almost always act by binding to

other RNA molecules or to proteins, and very frequently they bind to both types of

macromolecules, if not also to small molecules.

An especially complicated problem is that of “induced fit,” which occurs when

the conformation adopted by an RNA molecule in isolation is not identical to that

found in a complex with a small molecule ligand, antibiotic, or another RNA or a

protein (Williamson 2000). Even small ligands, like hydrated magnesium ions, are

difficult to treat in an appropriate fashion. Magnesium ions are especially difficult

to treat when they bind, not as outer-sphere complexes (with a full share of

coordinated water molecules), but instead as an inner-sphere complexes, with the

loss of one or more water molecules and direct coordination to the RNA, generally

in a state different from the original magnesium-free ion state (see Chapter 11 by

P. Auffinger). Treating induced fit, at minimum, requires that the full dynamics of

an RNA fragment be known in order to be able to select the proper conformation

binding a given ligand. And it is not at all proven that the range of conformations

accessible by the usual methods of molecular dynamics simulations, for example,

actually covers the states obtained in the presence of the ligand or protein. Thus,

one can study the dynamics of the A-site of the ribosome alone or in complex with

an antibiotic (because crystal structures exist for all those different states), but the

docking of an antibiotic to the A-site starting from an “empty state” (which is not

the same as the state of the bound complex minus the ligand) has not been achieved

yet (Moitessier et al. 2006).

2.7 Challenges for the Future: Dealing with Massive Data

Streams and Connecting to Biology

Several main questions of great potential for biology continue to be actively

pursued, and yet we have barely scratched the surface. One is the use of modeling

predictions, firstly for searching noncoding RNAs in genomes and secondly for

choosing among genomic regions those that are susceptible to fold into architec-

tural domains or fragments (e.g., as riboswitches do). Another major question is the

prediction of protein-binding sites along RNA sequences. Some consensus binding
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sequences are known, but in most cases, only knowledge of the RNA 3D fold allows

the full understanding of the binding surface and RNA–protein contacts.

2.8 Conclusion

For modeling to be relevant to twenty-first century biological research, data

pipelines need to be developed, maintained, and intelligently monitored to deal

with the massive data streams produced by modern high-throughput sequencing

methods. This means aiming for full automaticity at all steps of the computations.

In this way, one should be able to link computational predictions with the experi-

mental high-throughput technologies being constantly developed and refined.

The establishment of such links between experimental and computational high-

throughput techniques will bring us closer to the establishment of complete “RNA

structuromes” for a given microbial or multicellular organism (Underwood et al.

2010; Weeks et al. 2011).
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Chapter 3

Methods for Predicting RNA Secondary

Structure

Kornelia Aigner, Fabian Dreßen, and Gerhard Steger

Abstract The formation of RNA structure is a hierarchical process: the secondary

structure builds up by thermodynamically favorable stacks of base pairs (helix

formation) and unfavorable loops (non-Watson–Crick base pairs; hairpin, internal,

and bulge loops; junctions). The tertiary structure folds on top of the thermody-

namically optimal or close-to-optimal secondary structure by formation of

pseudoknots, base triples, and/or stacking of helices. In this chapter, we will

concentrate on available algorithms and tools for calculating RNA secondary

structures as the basis for further prediction or experimental determination of higher

order structures. We give an introduction to the thermodynamic RNA folding

model and an overview of methods to predict thermodynamically optimal and

suboptimal secondary structures (with and without pseudoknots) for a single

RNA. Furthermore, we summarize methods that predict a common or consensus

structure for a set of homologous RNAs; such methods take advantage of the fact

that the structures of noncoding RNAs are more conserved and more critical for

their biological function than their sequences.

3.1 Introduction

In this review, we will concentrate on software tools intended for prediction of

secondary structure(s) of a given RNA sequence. The first such computational tool

available was mfold (Zuker and Stiegler 1981); in the past 30 years, however, it was

improved and refined several times (Zuker 2003). It is still commonly used, but it is

now replaced by the UNAfold package (Markham and Zuker 2008), which includes

several features not available in mfold. The two major alternative packages of
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comparable or even greater scope are the Vienna RNA (Hofacker 2003) and the

RNAstructure (Reuter and Mathews 2010) packages. All rely on a simplifying

thermodynamic model of nearest-neighbor interaction; we will briefly summarize

this model in Sect. 3.2.1. In Sect. 3.2.2, we present some of the available tools.

Because all tools use the same basic thermodynamic model and associated

thermodynamic parameters, they “know” about special features of certain loops:

for example, parameters of thermodynamically extra-stable hairpin loops (for a

review, see Varani 1995) or small internal loops with non-Watson–Crick base pairs

are taken into account (e.g., see Xia et al. 1997), but no tool mentions such details in

its output. More complex arrangements, for example, stacking of helices in multi-

branched loops, are not taken into account, by and large, because of the increased

computational complexity and the lack of relevant parameters. Furthermore, all of

the abovementioned tools disregard pseudoknots, which are important structural

features in many noncoding as well as messenger RNAs. Thus, we will turn to the

prediction of pseudoknotted RNA structures in Sect. 3.3.

In those cases where a set of two or more homologous RNA sequences is

available, comparative sequence analysis methods can be applied to predict a

consensus structure common to all sequences in the set. Such approaches, which

we review in Sect. 3.4, are based on the observation that in many cases, RNA

secondary and tertiary structures are more conserved than primary sequence and are

of greater importance for the biological function.

We apologize to all authors whose methods and tools we have not mentioned in

this review for lack of space.

3.2 RNA Secondary Structure Prediction Based

on Thermodynamics

3.2.1 Overview of RNA Secondary Structure Formation

A secondary structure of an RNA sequence R consists of base stacks and loops. It is

defined—at least in the context of this chapter—as

R ¼ r1; r2; . . . ; rN;

with the indices 1 � i � N numbering the nucleotides ri 2 fA;U;G;Cg in the

50 ! 30 direction. Base pairs are denoted by ri:rj or, for short, i:j with 1 � i<j � N.
Allowed base pairs are cis-Watson–Crick (WC; A:U, U:A, G:C, C:G) and wobble

pairs (G:U, U:G). Formation of base pairs belonging to a given secondary structure

is restricted by

j � 4þ i; (3.1)
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which gives the minimum size of a hairpin loop, and the order of two base pairs i:j
and k:l has to satisfy

i ¼ k and j ¼ l; (3.2)

or

i< j< k< l; (3.3)

or

i< k< l< j: (3.4)

Condition (3.2) allows for neighboring base pairs but disallows any triple strand

formation; a base triple j:k:l would force i ¼ k and j 6¼ l. Condition (3.3) allows for
formation of several hairpin loops in a structure. Condition (3.4) explicitly

disallows “tertiary” interactions; such interactions do, in fact, occur in many

RNAs, for example, in pseudoknots (see Sect. 3.3).

Structure formation—from an unfolded, random coil structure, C, into the folded

structure, S—is a standard equilibrium reaction with a temperature-dependent

equilibrium constant, K:

C Ð S;

K¼ S½ �
C½ � ;

DG0
T ¼ �RT lnK ¼ DH0 � T � DS0:

At the denaturation temperature Tm ¼ DH0=DS0 (melting temperature or mid-

point of transition), the folded structure S has the same concentration as the unfolded

structure (K ¼ 1;DG0
Tm

¼ 0). This is only true if the structure S denatures in an all-

or-none transition. In most cases, however, structural rearrangements and/or partial

denaturation take place prior to complete denaturation, as temperature is increased.

The number of possible secondary structures of a single sequence grows expo-

nentially ( � 1:8N) with the sequence length N (Waterman 1995). Accordingly, all

possible structures Si of a single sequence coexist in solution with concentrations

dependent on their free energies DG0ðSiÞ; that is, each structure is present as a

fraction given by (3.5):

fSi ¼ exp
�DG0

TðSiÞ
RT

� �
=Q: (3.5)

The partition function, Q, for the ensemble of all possible structures, is given

by (3.6):

Q ¼
X

all structures Si

exp
�DG0

TðSiÞ
RT

� �
: (3.6)
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