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University of Wuppertal
Wuppertal
Germany

Michael Striebel
University of Wuppertal
Wuppertal
Germany

ISBN 978-3-642-25099-6 e-ISBN 978-3-642-25100-9
DOI 10.1007/978-3-642-25100-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012933374

Mathematics Subject Classification (2010): 34, 35, 49, 60, 62, 65, 68, 70, 74, 76, 87, 80, 81, 86,
91, 92, 94

c� Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com


Preface

The 16th conference of the European Consortium for Mathematics in Industry took
place in the Historische Stadthalle Wuppertal, the historical city hall of Wuppertal,
Germany, from July 26 to July 30, 2010. This venue, a member of the Historic
Conference Centers of Europe, is one of the most remarkable concert halls and
conference centers in Europe.

The organizers welcomed nearly 250 registered participants from 30 different
countries. Most of the participants contributed actively to the scientific program
of the conference, which included—besides a poster session accompanied by
an extended coffee break sponsored by ST Microelectronics—10 plenary talks,
132 talks within 27 minisymposia and 57 contributed talks. In this proceedings,
industrial mathematics appears in a wide range of applications and methods,
reflecting the topics addressed at ECMI 2010: from Circuit and Electromagnetic
Device Simulation, Model Order Reduction for Chip Design, Uncertainties and
Stochastics, Production, Fluids, Life and Environmental Sciences to Dedicated and
Versatile Methods. We should mention that of the 106 contributions that were
submitted to these proceedings, 76 have been selected for publication after a peer
review process.

We would like to recall some of the highlights of our conference: On Monday
evening, the public lecture Modern Mathematics for Better Technologies was given
by Volker Mehrmann, president of Matheon. He emphasized mathematics as an
innovation enabler for industry and business, and as an absolutely essential pre-
requisite for Europe on its way to becoming the leading knowledge-based economy
in the world. The same day, Volker Mehrmann chaired a panel discussion to
promote and facilitate this process based on the outcome and recommendations
of the Forward Look Project Mathematics and Industry of the European Science
Foundation.

On Wednesday, the Associazione Angelo Marcello Anile and ECMI together
awarded the first Anile-ECMI Prize for Mathematics in Industry, which is dedicated
to young researchers for excellent PhD theses in industrial mathematics. It was
initiated to honor the memory of the former ECMI council member Angelo Marcello
Anile (1948–2007), Professor of Applied Mathematics at the University of Catania,
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Italy. This prize was awarded to Andriy Vasyliovich Hlod for his PhD thesis at
TU Eindhoven, The Netherlands. It included an invited talk, which he gave on
Jets of Viscous Fluid. Continuing a long tradition of the ECMI conferences and
following the suggestion of the Local Organizing Committee, honorary membership
of ECMI was awarded to Willi Jäger, Professor of Applied Mathematics and founder
of the IWR at the University of Heidelberg, for his pioneering work in Applied
and Industrial Mathematics. The award ceremony took place during the conference
dinner in the large ballroom of the historical city hall, a magnificent example of the
art nouveau style of architecture.

ECMI 2010 would never have been the success it was without the help of many.
Among them, first of all, the participants, the speakers and the Program Committee.
We thank Lambert T. Koch, Rector of the Bergische Universität Wuppertal, whose
negotiation skills—together with the gratefully acknowledged financial support of
all our sponsors and partners (see: www.ecmi2010.eu)—allowed us to select
for the conference the unique venue of ECMI 2010, the Historische Stadthalle
Wuppertal for nearly 1 week. Special thanks go to our team assistants Elvira
Mertens, Lisa Hartmann and Eva Winnemöller for their excellent administrative
support. We are very grateful to our colleagues Matthias Ehrhardt and Roland Pulch
for their invaluable work within the local organizing committee. Finally we would
like to acknowledge the great support of the many students who helped us during the
conference, e.g., by setting up the equipment and answering technical and practical
questions.

Wuppertal and Stuttgart Michael Günther
Germany Andreas Bartel

Markus Brunk
Sebastian Schöps
Michael Striebel
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Model Reduction for Linear Descriptor Systems with Many Ports . . . . . . . . 137
Peter Benner and André Schneider
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Simone Göttlich, Stephan Martin, and Thorsten Sickenberger

Verified Simulation for Robustness Evaluation of Tracking
Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Marco Kletting and Felix Antritter

Structural Analysis for the Design of Reliable Controllers
and State Estimators for Uncertain Dynamical Systems . . . . . . . . . . . . . . . . . . . . 263
Andreas Rauh and Harald Aschemann



x Contents

Wiener Calculus for Differential Equations with Uncertainties . . . . . . . . . . . . 271
Florian Augustin, Peter Rentrop, and Utz Wever

Polynomial Chaos and Its Application to Delay Differential
Equations with Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Manuel Villegas Caballero

Part IV Production

Nonlinear Metamodeling of Bulky Data and Applications in
Automotive Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Igor Nikitin, Lialia Nikitina, and Tanja Clees

Heat Transfer During Annealing of Steel Coils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Winston L. Sweatman, Steven I. Barry, and Mark McGuinness

Deformations Arising During Air-Knife Stripping
in the Galvanisation of Steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Graeme C. Hocking, Winston L. Sweatman, Alistair D. Fitt,
and Chris Breward

Modelling Preform and Mould Shapes in Blow Moulding . . . . . . . . . . . . . . . . . . 319
J.A.W.M. Groot, R.M.M. Mattheij, and C.G. Giannopapa

Asymptotic Analysis of a Multi-Component Wet Chemical
Etching Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Jonathan Ward

Numerical Treatment of Fiber–Fiber and Fiber-Obstacle
Contacts in Technical Textile Manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
Ferdinand Olawsky, Martin Hering-Bertram, Andre Schmeißer,
and Nicole Marheineke

A Model of Rotary Spinning Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
Andriy Hlod, Alphons A.F. van de Ven, and Mark A. Peletier

Asymptotic Models of Different Complexity for Viscous Jets
and Their Applicability Regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Walter Arne, Nicole Marheineke, and Raimund Wegener

Wavelet Methods for the Representation, Analysis
and Simulation of Optical Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
Philipp Jester, Christoph Menke, and Karsten Urban

Modelling Two-Dimensional Photopolymer Patterns Produced
with Multiple-Beam Holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
Dana Mackey, Tsvetanka Babeva, Izabela Naydenova,
and Vincent Toal



Contents xi

Modeling Berry’s Phase in Graphene by Using a Quantum
Kinetic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
Omar Morandi and Ferdinand Schürrer

Multi Scale Random Sets: From Morphology to Effective Behaviour . . . . . 381
Dominique Jeulin

Part V Modeling, Analysis and Computation of Fluid
Dynamics Problems

Mathematical Modelling of Phase Change with a Flowing Thin Film . . . . . 399
Tim G. Myers and Sarah L. Mitchell

On Modeling of Curved Jets of Viscous Fluid Hitting a Moving
Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
Andriy Hlod

Air Elimination in Milk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
Michael Devereux and William Lee

Quantum Navier–Stokes Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
Ansgar Jüngel and Josipa-Pina Milišić
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Ohlberger, Oliver Sander, Gerd Schiffler, Nina Shokina, and
Kathrin Smetana

Part VII Dedicated and Versatile Methods

FEINS: Finite Element Solver for Shape Optimization with
Adjoint Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
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Part I
Circuit and Electromagnetic

Device Simulation

Overview

Today’s electric and electronic industries rely heavily on computer aided engineer-
ing tools. The high complexity of devices and the increasing speed of innovation
cycles necessitate virtual prototyping. This allows such production at a competitive
time to market because virtual experiments are faster and cheaper than their
physical ancestors. Thus numerical tools for those simulations play a key role
in the electrical engineering industry. Commonly, the underlying principles from
physics are well established but the simulation techniques are still a topic of ongoing
research, e.g. due to new computational possibilities stemming from advances in
computer architectures. The research focuses in particular on improving the general
efficiency and robustness of simulations (more accurate results in less time) and
the interaction/coupling of multiphysical problems (secondary effects cannot be
disregarded anymore).

In particular electronic industry relies on efficient numerical experiments of their
new designs, e.g., layouts for printed circuit boards. The corresponding circuits
result from combining smaller subcircuits. One of the most common configurations
is the oscillator, i.e., an electronic device that creates a repetitive signal. Owing to the
large number of such devices and their nonlinearity often computational expensive
time-domain simulations are necessary. New efficient methods are needed to
validate the designs in a reasonable time. To this end K. Bittner and E. Dautbegovic
propose in ‘Wavelet Algorithm for Circuit Simulation’ the usage of wavelets in
circuit simulation. The authors present a new algorithm based on spline wavelets.
The unknowns are expanded into a wavelet representation, which is determined as
a solution to nonlinear equations derived from the circuit equations by a Galerkin
discretization. Applications, e.g. an oscillator, show that for the same accuracy fewer
grid points are needed compared to standard transient analysis.

The structural aspects of circuit configurations with oscillations are analyzed by
R. Riaza and C. Tischendorf in ‘Structural Characterization of Circuit Configura-
tions with Undamped Oscillations’. Undamped oscillations in linear circuits arise
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from the existence of purely imaginary eigenvalues in the matrix pencil spectrum.
The authors investigate the corresponding circuit configurations based on branch-
oriented circuit models and on several results from digraph theory.

H.G. Brachtendorf and R. Laur study in ‘Entrainment Phenomena in Nonlinear
Oscillations’ entrainment phenomena in nonlinear oscillations in particular for
devices that mix down a radio frequency signal to an intermediate frequency (IF).
Circuit designs have been developed using injection locking for the design, but
unwanted temporary entrainment known as “pulling” can be a severe cause of
performance degradation for zero-IF or low-IF transceivers. The corresponding
entrainment effects have been studied for decades. The authors develop a new theory
based on a perturbation technique employing Floquet’s theory.

On the other hand, when analyzing oscillators in the frequency domain, the
simulation often suffers from poor initial conditions. Hence J. Virtanen et al.
propose in ‘Initial Conditions and Robust Newton-Raphson for Harmonic Balance
Analysis of Free-Running Oscillators’ to use time integration to obtain estimates for
the oscillation frequency and for the oscillator solution. They also describe new
techniques from bordered matrices and eigenvalue methods to improve Newton
methods for finite difference techniques in the time domain as well as for Harmonic
Balance.

The classical network approach is not sufficient if complex devices must be
taken into account and lumped device models are not available. Then the extraction
of macromodels by using tabulated S-parameter frequency responses allows us to
synthesize SPICE compatible models. In ‘Rational Modeling Algorithm for Passive
Microwave Structures and Systems’ D. Deschrijver et al. discuss a method that
constructs such macromodels which are passive by construction. The authors apply
a new passivity enforcement technique that is able to guarantee passivity by means
of an overdetermined least-squares fitting algorithm.

In contrast, if the simulation engineer is interested in both the macroscopic
behavior of the circuit and additionally in the microscopic phenomena inside of
a particular device, then only a full coupled simulation is the way out. G. Alı̀ et al.
discuss in ‘An Existence Result for Index-2 PDAE System Arising in Semiconductor
Modeling’ the existence of solutions for the case of an electric network containing
semiconductor devices. The coupled system consists of the Modified Nodal Analy-
sis equations with multi-dimensional elliptic partial differential equations modeling
the devices (drift diffusion model).

The microscopic behavior of charge carriers in semiconductors is described more
accurately by the solution of the Boltzmann transport equation (BTE). However,
the Monte-Carlo method, preferably used for solving the BTE suffers from intense
numerical complexity. A numerically less expensive approach is presented by
K. Rupp et al. in ‘Deterministic Numerical Solution of the Boltzmann Transport
Equation’. They consider the deterministic numerical solution of the Boltzmann
transport equation and present the deterministic Spherical Harmonic Expansion
(SHE) method for the determination of the solution of the BTE. The solution of
the SHE-model faces the problem of intense memory consumption. However, the
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authors present a new lossless system matrix compression scheme which allows for
a significant reduction of memory consumption.

Due to increasing complexity and ongoing miniaturization in the layout and
production of semiconductor devices, forecasting of thermal effects and prediction
of hotspots has become more and more important within the last years and compels
us to develop more reliable models. This subject has been addressed by several
authors during the ECMI 2010. In ‘Analysis of Self-Heating Effects in Sub-Micron
Silicon Devices with Electrothermal Monte Carlo Simulations’ O. Muscato and
V. Di Stefano solve the BTE with a thermal model by a Monte-Carlo method,
coupled to a Cattaneo-like equation for the lattice temperature, which is obtained
in the framework of extended irreversible thermodynamics.

G. Alı̀ et al. on the other hand present a new macroscopic energy-transport model
incorporating thermal effects in the crystal lattice of the semiconductors. This is
done by considering the diffusive limit of MEP hydrodynamical model obtained
from the Bloch-Boltzmann-Peierls equation for semiconductors in ‘Diffusive Limit
of a MEP Hydrodynamical Model Obtained from the Bloch-Boltzmann-Peierls
Equations for Semiconductors’. Thereby, the authors introduce a smallness param-
eter related to the transition probabilities in the collision operators and a diffuse
scaling at the level of the Lagrangian multipliers that appear in the closure relations.
Based on this procedure, the authors obtain a system of model equations, which
include energy-transport equations that are consistent with the linear irreversible
thermodynamics.

G. Greco and S. Rinaudo give us some insight into the application of semicon-
ductor device simulation at ST Microelectronics in Catania and present automatic
layout optimization of power discrete devices using innovative distributed model
techniques, ‘Automatic Layout Optimization of Power Discrete Devices Using Inno-
vative Distributed Model Techniques’. The increasing usage of power MOSFETs
in application enforces an optimization of the geometry. This is essential for the
reduction of hotspots. Since microscopic models are too costly to simulate in an
optimization loop, a distributed model technique is described where the device
is divided into several cells connected e.g. by transmission lines. This distributed
approach is embedded into an optimization algorithm in order to optimize geometry.

A. El Boukili presents 3D stress simulations of nano transistors, ‘3D Stress
Simulations of Nano Transistors’. Mechanical stress is intentionally used by
semiconductor manufacturers to optimize the performance of devices. This requires
semiconductor models to incorporate these effects. The author extends three dimen-
sional semiconductor model equations by coupling them with a mechanical stress
model from linear elasticity theory. Based on his simulation results he proposes the
modification of existing mobility results and gives interesting ideas in this direction.

On the macroscopic level, many devices can be represented by Maxwell’s
equations. They describe the spatial distribution of the electromagnetic field by
partial differential equations. Simulations follow typically the method of lines: the
equations are restated in a more compact formulation (e.g. using the magnetic vector
potential as its unknown) and then discretized in space. Finally the resulting system
is solved in the time domain.
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In ‘Hybrid Formulations and Discretisations for Magnetoquasistatic Models’
H. De Gersem et al. propose the usage of hybrid formulations and discretizations
for the magnetoquasistatic approximation of Maxwell’s equations. This increases
the modeling flexibility because distinct model regions can be tackled by different
approaches. The authors explain in detail which algebraic solution techniques are
necessary for solving the coupled systems of equations and demonstrate their
approach using numerical examples.

G. Ala et al. diverge from the standard discretization procedures and propose
in ‘A 3D Meshless Approach for Transient Electromagnetic PDE’ a new meshless
approach for the Maxwell’s 3D full wave equation. They employ the smoothed
particle hydrodynamic method by considering the particles as interpolation points,
arbitrarily placed in the computational domain. Simulations validate the method and
allow a comparison with standard approaches, i.e., the finite difference time domain
method.

The final contribution to this chapter, ‘Modelling and Analysis of the Nonlinear
Dynamics of the Transrapid and Its Guideway’, focusses on a coupled simulation
of a real-world industrial example: the Transrapid and its guideway. M. Dellnitz
et al. couple the mechanical and electromagnetic parts, i.e., the control subsystems,
magnet subsystems, a lateral cross-section and a vertical dynamics model as
a multibody system. It is verified using simulations, eigenmode analysis and
displacement measurements from train passages on a test track. They show that
ground vibrations caused by the vehicle can be significantly reduced by a flexible
spring-mass system as a support for the girders.

Wuppertal and Stuttgart, Sebastian Schöps
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Wavelet Algorithm for Circuit Simulation

Kai Bittner and Emira Dautbegovic

Abstract We present a new adaptive circuit simulation algorithm based on spline
wavelets. The unknown voltages and currents are expanded into a wavelet repre-
sentation, which is determined as solution of nonlinear equations derived from the
circuit equations by a Galerkin discretization. The spline wavelet representation
is adaptively refined during the Newton iteration. The resulting approximation
requires an almost minimal number of degrees of freedom, and in addition the
grid refinement approach enables very efficient numerical computations. Initial
numerical tests on various types of electronic circuits show promising results when
compared to the standard transient analysis.

1 Introduction

Wavelet theory emerged during the twentieth century from the study of Calderon-
Zygmund operators in mathematics, the study of the theory of subband coding
in engineering and the study of renormalization group theory in physics. Recent
approaches [1, 4, 7–9] to the problem of multirate envelope simulation indicate that
wavelets could also be used to address the qualitative simulation challenge by a
development of novel wavelet-based circuit simulation techniques capable of an
efficient simulation of a mixed analog-digital circuit [6].
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The wavelet expansion of a function f is given as

f D
X

k2I
ck �k C

1X

jD0

X

k2Kj

djk  jk: (1)

Here, j refers to a level of resolution, while k describes the localization in time
or space, i.e.,  jk is essentially supported in the neighborhood of a point xjk of
the domain, where the wavelet expansion is defined. The wavelet expansion can
be seen as coarse scale approximation

P
k2I ck �k by the scaling functions �k

complemented by information on details of increasing resolution j in terms of the
wavelets  jk . Since a wavelet basis consist of an infinite number of wavelets one
has to consider approximations of f by partial sums of the wavelet expansion (1),
which can, e.g., be obtained by ignoring small coefficients.

2 Wavelet-Based Galerkin Method

We consider circuit equations in the charge/flux oriented modified nodal analysis
(MNA) formulation, which yields a mathematical model in the form of an initial-
value problem of differential-algebraic equations (DAEs):

d

dt
q
�
x.t/

�C f
�
x.t/

� D s.t/: (2)

Here x is the vector of node potentials and specific branch voltages and q is the
vector of charges and fluxes. Vector f comprises static contributions, while s contains
the contributions of independent sources.

In our adaptive wavelet approach we first discretize the MNA equation (2)
in terms of the wavelet basis functions, by expanding x as a linear combination
of wavelets or related basis functions 'i , i.e., x D Pn

iD 0 ci 'i . Furthermore, we
integrate the circuit equations against test functions �` and obtain the equations

Z T

0

� d
dt

q
�
x.t/

�C f
�
x.t/

�� s.t/
�
�` dt D 0; (3)

for ` D 1; : : : ; n. Together with the initial conditions x.0/ D x0, we have now nC1

vector valued equations, which determine the coefficients ci provided that the test
functions �` are chosen suitably to the basis functions 'i .

The nonlinear system (3) is solved by Newton’s method. With a good initial
guess, Newton’s method is known to converge quadratically. Unfortunately, a good
initial guess is usually not available, and convergence can often only be obtained
after a large number of (possibly damped) Newton steps. On the other hand, to get a
good approximation of the solution of (2), the space X D spanf'k W kD 0; : : : ; ng
has to be sufficiently large and the computational cost of each step depends on
nD dimX .
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Here, we take advantage from the use of wavelets. The Newton iteration is started
on a coarse subspace X0 of small dimension, which provides us with a first coarse
approximation x.0/ of the solution. Then x.0/ is used as initial guess for a Newton
iteration in a finer space X1 � X0, leading to an improved approximation x.1/. One
positive effect, which can be observed in numerical tests, is that a single Newton
step in the beginning of the algorithm is relatively cheap, i.e., having only a poor
initial guess for x.i/ with i small has only a negligible effect on the performance
of the algorithm. On the other hand, due to the excellent initial guess in the higher
dimensional spaces Xi with i large, we need only a few of the costly Newton steps,
which are necessary in order to achieve a required accuracy. The embedding Xi �
XiC1 is ensured by the use of wavelet subsets, i.e.,

Xi D span
�
f�k W k 2 I g [ f jk W .j; k/ 2 �i g

�
; �i � �iC1;

i.e., we add adaptively more and more wavelets to the expansion.
Due to the intrinsic properties of wavelets [6] an adaptive wavelet approximation

can provide an efficient representation of functions with steep transients, which
often appear in a mixed analog/digital electronic circuit. However, for an efficient
circuit simulation we have to take further properties of a wavelet system into
account. We consider spline wavelets to be the optimal choice since spline wavelets
are the only wavelets with an explicit formulation. This permits the fast computation
of function values, derivatives and integrals, which is essential for an efficient
solution of a nonlinear problem as given in (2) (see also [3,5]). Spline wavelets have
already been used for circuit simulation [10]. However, here we use a completely
new approach based on spline wavelets from [2].

3 Numerical Tests

A prototype of the proposed wavelet algorithm is implemented within the frame-
work of a productively used circuit simulator and tested on a variety of circuits. For
all examples we have compared the CPU time and the grid size (i.e., the number of
spline knots or time steps) with the corresponding results from transient analysis of
the same circuit simulator.

The error is estimated by comparison with well-established and highly-accurate
transient analysis. The estimate shown in the signal is the maximal absolute
difference over all grid points of the transient analysis, which gives a good
approximation of the maximal error. That is, if we can obtain a small error for
the wavelet analysis, which proves good agreement with the standard method. In
particular, since we compare the solutions of two independent methods we have
very good evidence that we approximate the solution of the underlying DAE’s with
the estimated error.
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3.1 Amplifier

The amplifier is simulated with a pulse signal of period 1 ns, which is modulated by
a piecewise smooth amplitude (see Fig. 1). The wavelet method runs over 100 ns.
The results show a satisfying performance also for digital-like input signals (Figs. 2
and 3).

3.2 Oscillator

The oscillator is an autonomous circuit without an external input signal. The
simulation runs over 20 ns. As can be seen from Fig. 4, an excellent agreement
with highly-accurate transient analysis is achieved. It should be noted that after
the oscillator has reached its periodic steady state the wavelet method works very
fast, since the solution from one interval is an excellent initial guess for the next
interval.

Fig. 1 Detail of input and output signal for the amplifier
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Fig. 2 Simulation statistics for the amplifier. Computation time versus error (left), and grid size
versus error (right) for transient analysis and adaptive wavelet analysis
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Fig. 3 Output signal for the oscillator
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Fig. 4 Simulation statistics for the oscillator. Computation time versus error (left), and grid size
versus error (right) for transient analysis and adaptive wavelet analysis

Fig. 5 Time domain input and output signal for the mixer

3.3 Mixer

The mixer is simulated with input frequencies 950 MHz and 1 GHz. The simulation
runs over 30 ns. In particular, for high accuracies the number of degrees of freedom
is essentially reduced, while the computation time is at least of the same order
(Fig. 6).
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Fig. 6 Simulation statistics for the mixer. Computation time versus error (left), and grid size versus
error (right) for transient analysis and adaptive wavelet analysis

4 Conclusion

The results of the simulations indicate that the wavelet based method may achieve
and in some cases surpass performance of the standard transient analysis. Appar-
ently, the number of degrees of freedom can be smaller than for the transient analysis
for comparable accuracy. However, this advantage of the wavelet algorithm does
not always result (yet) in a smaller computation time. On the other hand it can be
expected that the productive implementation of the wavelet algorithm can be further
optimized. Therefore our activities on optimization and further development of the
wavelet-based algorithm are continuing.

Acknowledgements This work has been supported within the EU Seventh Research Framework
Project (FP7) ICESTARS with the grant number 214911.
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Structural Characterization of Circuit
Configurations with Undamped Oscillations

Ricardo Riaza and Caren Tischendorf

Abstract Undamped oscillations in linear circuits arise from the existence of
purely imaginary eigenvalues (PIEs) in the matrix pencil spectrum which character-
izes the circuit dynamics. We investigate here the circuit configurations which yield
purely imaginary eigenvalues for all values of the capacitances and inductances in
strictly passive problems. Our analysis is based on the use of branch-oriented circuit
models and on several results from digraph theory.

1 Introduction

This communication extends our previous research on qualitative aspects of elec-
trical and electronic circuits [7, 8] by elaborating on the so-called hyperbolicity
problem. A circuit composed of independent voltage and current sources, and
linear time-invariant resistors, inductors, and capacitors is said to be hyperbolic
if all the eigenvalues in the spectrum are away from the imaginary axis [8]; this
is a standard concept in dynamical systems theory. Linear time-invariant circuits
displaying purely imaginary eigenvalues (PIEs) are important for two main reasons:
on the one hand, they are responsible for undamped oscillations in linear cases and,
on the other hand, when a linear circuit describes the linearization of a nonlinear
one, the existence of PIEs may be responsible for Hopf bifurcations in the nonlinear
problem, which in turn generate nonlinear oscillations. Our present goal is to discuss
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a full characterization of the configurations which lead to purely imaginary eigen-
values for all positive values of the capacitances and inductances involved in the
circuit.

Current approaches to circuit analysis in the time-domain make systematic use of
models based on differential-algebraic equations (DAEs) (see e.g. [1–3, 5, 6, 9, 10]).
Background material on the DAE circuit models to be used is given in Sect. 2.
The attention will be focused on so-called branch-oriented models. In Sect. 3 we
characterize the circuit configurations which yield PIEs for all reactive values,
the graph-theoretic notion of a P-structure being the key element in our analysis.
Finally, Sect. 4 comprises some concluding remarks.

2 Circuit Model

A linear electrical circuit defined by resistors, capacitors, inductors, and independent
voltage and current sources can be modelled by means of the DAE

Cv0c D ic (1a)

Li 0l D vl (1b)

0 D Bcvc C Blvl C Brvr C Bjvj C Buvs.t/ (1c)

0 D Qcic CQlil CQrir CQj is.t/CQuiu (1d)

0 D ir �Gvr : (1e)

We split the vectors of (capacitor, inductor, resistor, current and voltage sources)
branch voltages and currents as vD .vc; vl ; vr ; vj ; vs.t// and i D .ic; il ; ir ; is.t/; iu/.
Equations (1c) and (1d) express in matrix form Kirchhoff’s voltage and current laws,
making use of the reduced loop and cutset matrices B D .Bc Bl Br Bj Bu/,
QD .Qc Ql Qr Qj Qu/. Further details on these models can be found in [4, 6].
We will assume throughout the paper that the capacitance and inductance matrices
C and L are diagonal with positive entries, and that the conductance matrix G is
positive definite. Hence, all devices are linear and strictly passive, and capacitors and
inductors are uncoupled. Additionally, the circuits will have neither IC-cutsets (that
is, cutsets formed just by current sources and/or capacitors) nor VL-loops (namely,
loops defined by voltage sources and/or inductors only).

The eigenvalue analysis can be simplified by working with the so-called reduced
circuit obtained after open-circuiting current sources and short-circuiting voltage
sources (cf. [8]). We will hence look for values of � of the form ˙ j̨ , with ˛ 2
R � f0g (and j D p�1), yielding non-trivial solutions for the linear system

�Cvc D ic (2a)

�Lil D vl (2b)
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Bcvc CBlvl C Brvr D 0 (2c)

Qcic CQlil CQrir D 0 (2d)

ir D Gvr : (2e)

Besides standard properties of digraphs [6,8] we will need the concept of a block.

Definition 1. A node is said to be an articulation if the removal of it and its incident
branches increases the number of connected components of the digraph. A digraph
is said to be non-separable if it is connected and has no articulations. A block is a
maximal non-separable subgraph.

For our purposes, the main property of blocks is the fact that the branches of a
block do not belong to any loop or cutset including branches from outside the block.
Given a distinguished set of branches K , we will call a loop or cutset including
elements from bothK andG�K a hybrid loop or cutset, respectively. The branches
of a block K do not take part either in hybrid loops or in hybrid cutsets.

3 Purely Imaginary Eigenvalues

We will make use of some previous results detailed in [8]. Specifically, the
circuit pencil is known to have a zero eigenvalue if and only if the circuit has at
least one IC-cutset or one VL-loop; we preclude these configurations in order to
focus the hyperbolicity analysis on the existence of non-zero, purely imaginary
eigenvalues. We also know from [8] that eigenvectors associated with purely
imaginary eigenvalues must necessarily have vanishing voltage and current in the
resistor branches.

Additionally, a well-known property in circuit theory states that all eigenvalues
of an LC-circuit are purely imaginary. Hence, if after open-circuiting current
sources and short-circuiting voltage sources in a VIRLC circuit there exists an
LC-block, then the spectrum includes a PIE. The converse is not true, however;
counterexamples can be found in [8], where certain strictly passive RLC circuits
without LC-blocks are shown to exhibit PIEs for certain values of the reactances.
However, a natural conjecture says that if a circuit has PIEs for all positive values
of the reactances, it must be because an LC-block shows up after open-circuiting
current sources and short-circuiting voltage sources. This is actually true, as stated
below.

Theorem 1. A linear, time-invariant circuit has a pair of purely imaginary eigen-
values for all positive values of capacitances and inductances if and only if there
exists an LC-block in the circuit obtained after open-circuiting current sources and
short-circuiting voltage sources.

The proof proceeds via the notion of a P-structure as introduced below. In what
follows we work with the reduced RLC circuit without further explicit mention.
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In view of the identities vr D ir D 0 holding true for PIEs, the eigenvalue-
eigenvector equations (2) read

�Cvc D ic (3a)

�Lil D vl (3b)

Bcvc C Blvl D 0 (3c)

Qcic CQlil D 0; (3d)

for which a solution � D j̨ ¤ 0 is assumed to exist for all positive values of C
and L. Needless to say, the actual values of � and ˛ will depend on C , L. Fix a
set of values for C and L, and focus on the non-vanishing entries of vc , vl , ic and
il within an associated eigenvector. Note that, from (3a) and (3b), exactly the same
entries vanish in the voltage and the current vector. Additionally, not all vl ’s (hence
not all il ’s) can vanish since, otherwise, the equation Bcvc D 0 resulting from (3c)
would indicate the existence of a C-cutset. Analogously, not all ic’s (hence not all
vc’s) may vanish since Qlil D 0 from (3d) would signal an L-loop.

Denote by K the set of capacitive and inductive branches with non-vanishing
voltage and current in the above-referred eigenvector. We will use the subscript
k to denote the corresponding (non-vanishing) entries of vc , vl , ic and il , and
also to specify the submatrices of Bc , Bl , Qc and Ql defined by the columns
which correspond to K-branches, as well as the capacitances and inductances of
the K-branches. This makes it possible to recast (3) as

�Ckvck D ick (4a)

�Lkilk D vlk (4b)

Bckvck C Blkvlk D 0 (4c)

Qckick CQlkilk D 0: (4d)

Note that every K-branch forms at least one cutset just with other K-branches,
as a consequence of the fact that all vck and vlk in (4c) do not vanish. Indeed,
since .vck; vlk/ 2 ker .Bck Blk/, this vector can be written as a linear combination
of vectors describing K-cutsets; additionally, every K-branch must have a non-
vanishing entry in at least one of these vectors since, otherwise, the corresponding
entry in vck or vlk would vanish. Proceeding analogously, (4d) indicates that every
K-branch forms at least one loop just with other K-branches. This motivates the
following definition.

Definition 2. A set K of capacitive and inductive branches, together with their
incident nodes, is said to form a P-structure if every branch in K forms at least
one cutset and at least one loop just with other branches from K .

Here the cutset and the loop need not include all the branches in K; nor it must
happen that the cutset and the loop involve the same branches. For the sake of
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terminological simplicity we will use K also to mean the subgraph defined by the
K-branches and their incident nodes. P-structures are the candidates which may
(but not necessarily do) support the existence of a PIE. In the light of Definition 2,
the discussion above indicates that the branches corresponding to the non-vanishing
entries of an eigenvector associated with a PIE form a P-structure.

Now, an LC-block which does not amount to a single branch can be checked to be
a P-structure (note, incidentally, that the P-structures from which a PIE-eigenvector
arises include at least two branches, namely a capacitor and an inductor). Certainly,
the converse is not true. The proof of Theorem 1 will be closely related to this fact.

Fix an eigenvector associated with a PIE, to be denoted by .vc; vl ; ic; il /, and
consider the associated P-structure K signaled by its non-vanishing entries. Let bk ,
nk and ck stand for the number of branches, nodes and connected components ofK .

Lemma 1. If the P-structure K is not a block, then the rank of Bk D .Bck Blk/ is
greater than bk � nk C ck; if it is a block then rkBk D bk � nk C ck .

Indeed, K defines a subgraph and therefore its cycle space has dimension bk �
nk C ck . This implies that there exist bk � nk C ck linearly independent K-loops,
which are loops of the original digraph. If K is a block, then the absence of hybrid
loops and cutsets easily yields rkBk D bk � nk C ck . By contrast, if it is not a
block, it can be shown that there must exist a hybrid loop; its K-entries cannot be
expressed in terms of those corresponding to the bk � nk C ck K-loops mentioned
above, meaning that in this case the rank of Bk must be greater than bk � nk C ck .

According to Lemma 1, the first bk � nk C ck rows of (4c) read QBkvk D 0,
where vk stands for .vck; vlk/. In turn, regarding the cutset matrix Q, notice that
kerQk is spanned by linearly independentK-loops. Since theK-loops are the same
in the original circuit and in theK-subcircuit, this means that kerQk equals ker QQk ,
where QQk is any (reduced) cutset matrix of the K-circuit. This means that (4d) can
be recast as QQkik D 0, ik standing for .ick; ilk/. The next result follows from these
remarks.

Lemma 2. A PIE of the original circuit is also a PIE of the corresponding
K-subcircuit, the non-vanishing entries of the original eigenvector defining an
eigenvector of theK-subcircuit.

Proof of Theorem 1. Our reasoning is supported on the fact that all PIE-eigenvectors
must arise from some P-structure, according to Lemma 2. Consider a P-structure
K , and choose the values of capacitances and inductances of the K-subcircuit in
such a way that all eigenvalues of that subcircuit are simple. This can be done for
parameter values lying on an open dense subset in R

bkC , where bk is the number
of branches in K and RC is the set of positive real numbers, as a consequence
of the fact that eigenvalues are given by the roots of the pencil determinantal
polynomial, which has the form p.�; C;L/ D am.C;L/�

m C : : :C a0.C;L/: Note
that a0.C;L/ ¤ 0 because the absence of C-cutsets and L-loops rules out null
eigenvalues. Multiple eigenvalues are defined by the intersection of p.�; C;L/ D 0

and @p=@�.�; C;L/ D 0 and, therefore, occur only on a lower dimensional set
of the parameter space. This means that the set of values of Ck, Lk for which all


