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Preface

Probabilistic approaches have played a prominent role in the study of complex phys-
ical systems for more than 30 years. Two outstanding protagonists of this approach
are Jiirgen Girtner and Erwin Bolthausen, to whom this volume is dedicated. Each
of them was honored with a workshop in 2010; these took place at Technische
Universitdt Berlin, where they both worked for decades. The conferences were
devoted to the most important aspects of their interests: ‘Random media’ and
‘Probabilistic techniques in complex physical systems’. They were organized by the
DFG Research Unit FOR718 Analysis and Stochastics in Complex Physical Systems
on the occasion of Jiirgen’s 60th birthday and Erwin’s 65th birthday.

Jiirgen and Erwin have been recognized for decades as outstanding experts in
the probabilistic treatment, spiced with a dash of analysis, of problems in statistical
mechanics and related fields. Their high esteem and profound impact are reflected
by their great number of students and collaborators and by their large number of
invitations to conferences, editorships, etc. over the years.

Erwin started his career with various distributional limit results of central limit
and martingale type, but soon turned to problems coming from large-deviation
analysis, like Laplace approximations and the maximum entropy principle. One
of the main types of problems that accompanied his career for decades are
intricate questions about the extremal behavior of the volume of the path of a
random walk or a Wiener sausage and of the intersection of two independent
such objects. Here he has derived a number of striking and deep results over the
years. Another core area of his research, which is closely related, is the description
of paths under the influence of a self-attracting or self-repellent force, partially
motivated by the polaron problem. In particular, Erwin derived several fundamental
properties of polymers with various kinds of interactions. His results also had
a strong influence on the understanding of interface models with gradient-type
interactions. Some of his favorite subjects in recent years have been random walks
in random environments, and spin glasses and the little-understood phenomenon of
ultrametricity.

Jirgen was educated within the Russian school in the 1970s, pioneering the
application of large deviation analysis to various models in statistical mechanics.
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One of the fundamental tools, the Géartner—Ellis theorem, is a side-result of his
thesis. Later he built up a theory of large deviations for projective limits. Also his
contributions to the McKean—Vlasov equation remain a vital element of the theory.
Over the last two decades, he has been one of the most active researchers on the
parabolic Anderson model, the Cauchy problem for the heat equation with random
potential.

Many of the above results were derived in close collaboration with students,
colleagues, and friends, many of whom also presented talks on the occasion of the
two 2010 workshops. The present volume collects 20 research and review papers
by participants in the fields in which Jiirgen and Erwin are best known for their
contributions. Most of these papers are, in some way or another, influenced by
Jiirgen’s and Erwin’s work, and all of them present state-of-the-art results in topics
that accompanied the two for decades and received significant impacts from them
over the years. All papers have been peer-refereed according to highest standards.

Almost half of the contributions to this volume are devoted to the parabolic
Anderson model, one of the most active research fields of Jiirgen. For more than 20
years, Jiirgen has formed and extended this subject like nobody else. Jiirgen’s co-
authors and students and their students and colleagues give an impressive account
on some of the latest developments for the parabolic Anderson model, among
which there are results on the long-time behavior for various time-dependent
and time-independent potentials, and novel aspects like several moving catalysts,
acceleration/deceleration, and front propagation.

Another main topic covered by this volume is random polymers interacting
with random and nonrandom environment and their critical behavior, a topic that
received much attention from Erwin and his coauthors. Furthermore, special aspects
of branching processes and interacting measure-valued processes are considered,
topics that Jiirgen studied many years ago. Finally, this volume offers a choice
of results on various models that Erwin worked on or was interested in for many
years, like Parisi’s formulas for the generalized random energy model, metastability,
hydrodynamic limits for gradient models and dimers.

In total, the collection of 20 papers in this volume presents important contribu-
tions to and surveys on research areas that are of current interest and have been
strongly influenced by these two eminent mathematicians. It is not too much to say
that these fields have benefited tremendously from their work.

Berlin Jean-Dominique Deuschel
June 2011 Barbara Gentz
Wolfgang Konig

Max von Renesse

Michael Scheutzow

Uwe Schmock
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Laudatio: The Mathematical Work of Jiirgen
Gartner

Frank den Hollander

Abstract Over the past 35 years, Jirgen Gértner has made seminal contribu-
tions to probability theory and analysis. In this brief laudatio, I describe what I
consider to be his five most important lines of research: (1) Girtner-Ellis large
deviation principle; (2) Kolmogorov—Petrovskii—Piskunov equation; (3) Dawson—
Girtner projective limit large deviation principle; (4) McKean—Vlasov equation; (5)
Parabolic Anderson model. Each of these lines is placed in its proper context, but
no attempt is made to fully trace the literature. What characterizes the papers of
Jiirgen is that they all deal with hard fundamental problems requiring a delicate
combination of probabilistic and analytic techniques. A red thread through his work
is the symbiosis of large deviation theory and potential theory, which he masterfully
combines to reach powerful and elegant solutions.

1 Girtner-Ellis Large Deviation Principle

In 1977, Jiirgen proved what is nowadays considered to be the most general form
of Cramér’s theorem in large deviation theory [21,22]. This work, which was
suggested to him by Mark Freidlin, took place while the architectural foundations
of large deviation theory were being laid. As such, Jiirgen’s theorem belongs to the
very heart of the field, as developed in the 1970s by Freidlin and Wentzell [20]
and Donsker and Varadhan [16]. In 1984, the assumptions under which Jiirgen had
proved his theorem were weakened by Richard Ellis [17].
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2 F. den Hollander

Theorem 1.1. Given a sequence (X,),eN of random variables taking values in
R, let

¢u(t) = E(eV" X)), 1 eRY,

denote their moment generating functions (where (-, -) is the standard inner product
on R?). Suppose that

1
lim — log¢,(nt) = ®(t) exists forallt € R?,
n—oon

and is everywhere finite and differentiable. Then the family (P,),eN with P,(-) =
P(X, € -) satisfies the large deviation principle (LDP) on R? with rate function
I: R? — [0, o0] given by the Legendre transform

I(x) = sup[{t,x) — D(1)], x e RY.

teR4

Theorem 1.1 says that
1
liminf —log P(X,, € O) > — inf I(x) VY O c RY open,
n—>00 n X€0

1
limsup —log P(X, € C) < — ing I(x) vV C c R? closed,
X€

n—oo N

which informally reads as
P(X, ~ x) ~ e vV x e RY, n — oo.

Hence Theorem 1.1 gives full control of the deviations of the random variable X,
away from its typical values for large n.
For the special case where

1
Xn == —(Y] + + Yn)a ne Na (Yi)iGN 11d7
n

we have ¢, (nt) = [¢(t)]" with ¢(t) = E(e’"1)) the moment-generating function
of Y|, and Theorem 1.1 reduces to Cramér’s theorem for the empirical mean of
i.i.d. random sequences. However, in its full generality, the theorem is applicable
far beyond the i.i.d. setting, including Markov sequences, Gibbs random fields, and
random processes in random media.

Over the years, the Girtner—Ellis LDP has become one of the workhorses of
large deviation theory. Due to its simplicity, generality, and flexibility, it appears
in every textbook on large deviations. It has been and is being applied in a great
many different contexts. For refinements as well as additional background, see the
monographs by Varadhan [39] and Dembo and Zeitouni [15].
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2 Kolmogorov—Petrovskii—-Piskunov Equation

In 1982, Jiirgen wrote a seminal paper [23] on the famous semi-linear diffusion
equation introduced in 1937 by Kolmogorov, Petrovskii, and Piskunov [32]:

9 1
3—?(x,t) = JAu(x.0) + f(x.0). xR 120,

Here, f: [0,1] — [0, 00) is assumed to be once continuously differentiable with
f(0) = f(1) =0and 0 < f(u)/u < f'(0) for u € (0, 1). The initial condition is
taken to be

u(x,0) = g(x), x e RY,

for some appropriate g: R — [0, 1] that is strictly positive near x = 0 and tends
to zero rapidly at infinity. The KPP equation describes a system of particles that
diffuse and that split into two at a rate that depends on their local density via the
function f', both in the continuum limit of many particles with small mass. This is
why it is referred to as a reaction-diffusion equation. The KPP equation plays a key
role in the understanding of wave front propagation phenomena, occurring, e.g., in
combustion processes.

Theorem 2.1. Abbreviate v¥ = [2 £(0)]'/?, and define

h(z) = Sup][f/(()) — f@/u],  z€(0.1].

u€(0,z

Suppose that
1
/h(z) 7 Mog*(1/z) dz < oo,
0
and that g(x) = g(||x||) with

~1/2

limsup r log[e”*’g'(r)] < 00.

r—>00

Then, for every € € (0, %), there exists a p(€) € (0, 00) such that, for all t sufficiently
large,
{x eR% e <u(x,t) <1—¢}
C {x € RY m(t) — ple) < [lx]| < m(®) + ple)}.

where

o0
1 *
logt + —*log/ pldtD/2 Vo g(r)dr.
v
0

d+2
VE

m(t) =v*t —
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The first condition in Theorem 2.1 controls the behavior of f near zero, and the
second condition controls the behavior of g near infinity. The result identifies the
location of the expanding wave front around which u drops fromu ~ 1 tou ~ 0:
this wave front is an annulus of finite width around the surface of the ball of radius
m(t). The leading term in m(¢) says that the speed of the wave front is v*, the
correction terms in m(t) are computed up to and including order 1.

Earlier work by McKean [33,34], Aronson and Weinberger [1], Bramson [5] and
Uchiyama [38] had fallen short of identifying the constant in 71 (¢) and had required
more severe restrictions on g, such as compact support. Part of this work was for
d = 1 only.

The proof of Theorem 2.1 centers around a delicate estimate of the first-exit
time distribution for a Brownian motion in a time-dependent domain. In later
work, Jiirgen extended Theorem 2.1 to a much broader class of reaction-diffusion
equations. This work was subsequently picked up and pushed further by others. See
Freidlin [18] for a survey.

3 Dawson—Girtner Projective Limit Large Deviation
Principle

In 1987, Jiirgen and Don Dawson proved a theorem that considers a nested sequence
of LDPs and obtains from this a new LDP via a projective limit [8]. This theorem
is a powerful tool, because it allows to first derive an LDP in a simple setting (e.g.,
on a finite or a compact space) and then draw from that an LDP in a more difficult
setting (e.g., on an infinite or a noncompact space). Over the years, also the Dawson—
Girtner projective limit LDP has become one of the workhorses of large deviation
theory.

Theorem 3.1. Let (P,),eN be a family of probability measures on a Hausdorff
topological space y. Let (t™)yen be a nested family of projections acting on ¥,
and let

WN=r"y, PN=Po@x")', NeN,

If, for each N € N, the family (PN ),en satisfies the LDP on x" with rate function
IN: 4N — [0, 00), then the family (P,),en satisfies the LDP on x with rate function
I: y — [0, 00] given by

I(x) = sup IY (7" x), X € y.
NeN

The 7 ’s can for instance be discretizations or truncations,

x =R, XN:Z_NZ or y=212Z, yyn =ZN[-N,N],
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and the Py ’s can for instance be probability distributions of the empirical means of
a sequence of random variables. The supremum defining / is monotone in N and
can often be computed explicitly. Apart from the nestling condition, the result in
Theorem 3.1 is again simple, general, and flexible. For more background, see, e.g.,
the monograph by Dembo and Zeitouni [15].

4 McKean-Vlasov Equation

In the period 1987-1989, Jiirgen and Don Dawson wrote a series of papers on
the McKean—Vlasov equation [8-10, 24]. Their main result reads as follows. Let
Hy: RY — R be the N -particle mean-field Hamiltonian

1 N N
Hy(x) = > D f—x) Y gxi). x=(xr.....xw),

ij=1 i=1

with f even and f, g both twice continuously differentiable ( f is a pair interaction,
g is an external field). For 7 > 0, which plays the role of a time horizon, let
(X))o = ((X1(2), ..., Xn(1)))0.7) evolve according to the system of N coupled
diffusion equations

9H
dX;(t) = %(X(t))dt +dB;(1), i=1,...,N,

where  (B(t))jo,r1=((B1(t),..., BN(t)))iejo,r; are iid. standard Brownian
motions. This system defines a stochastic dynamics that is reversible w.r.t. the
Gibbs measure with Hamiltonian Hy. A typical initial condition is where X (0) has
distribution AV for some probability measure on R.

Define the empirical path measure

N
1
LN — N Z S(Xi(l‘))te[().ﬂ ’

i=1

which is an element of M;(C[0, T']), the space of probability measures on the set of
continuous functions from [0, 7] to R.

Theorem 4.1. The family (Py)yen with Py(-) = P(Ly € ) satisfies the LDP on
M, (C[0, T) with rate function I: M,(C|[0,T]) — [0, o] given by

do .
1(0) = /mg(dTg)dQ, ifQ <« P29,

00, otherwise,

where P9 is the law of a single diffusion with self-interaction.
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Formally, P € is the law of the unique strong solution of the one-dimensional Ito
stochastic differential equation

dx(t) = B"(x(1)) dt +db(1). 1 €[0.T].

where x (0) has probability distribution A, (b(¢))o,7] is a standard Brownian motion
on R, m; Q is the evaluation of Q at time ¢, and

BY(x) = — / FO-04dd) —g(). xR qeM®).
R

Theorem 4.1 describes the large deviation properties of the paths of the interacting
diffusions. The rate function / has a unique zero solving the equation

0= P2,

The solution of this equation determines the law of (x(¢))jo 7] via the successive
time evaluations of Q. The resulting process, which is called the McKean—Viasov
process, is a diffusion with a time-inhomogenous drift that is to be determined from
self-consistency. This self-consistency is typical for mean-field models. In terms of
the McKean—Vlasov process, I can be written as an action functional, in the spirit
of Freidlin—Wentzell theory.

Related work was done by Sznitman [35, 36] and by Ben Arous and Brunaud
[2]. The results were later extended to random mean-field interactions by Dai Pra
and den Hollander [7] and to spin-glass mean-field interactions by Ben Arous and
Guionnet [3,4] and by Jiirgen’s student Malte Grunwald [30].

In the period 1991-1997, while extending their work on the McKean—Vlasov
equation, Jirgen and Don Dawson introduced the notion of multi-level large
deviations, describing the large deviation behavior of multi-array families of
dependent random variables [11, 12]. This work in turn gave rise to the Dawson—
Greven renormalization program for hierarchically interacting diffusions [13, 14],
introduced in 1993 and since then pursued by various groups. For an overview on
the latter, see den Hollander [31].

5 Parabolic Anderson Model

In 1990, Jiirgen wrote a seminal paper with Stas Molchanov on intermittency in the
Parabolic Anderson Model [26]. A lot of earlier work had been done in the physics
and in the chemistry literature, but this was the first paper that put the model on a
firm mathematical basis and provided a new way of looking at intermittency via the
study of Lyapunov exponents. A follow-up paper in 1998 [27] pushed the subject
further. Since then Jiirgen has been working intensively on the PAM with several
colleagues, both senior and junior. There are two versions of the model: static and
dynamic.
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The PAM is the partial differential equation:
u d
E(X’t) =xAu(x,t) + &E(x,H)u(x,t), xeZt>0,

where A is the discrete Laplacian, k € (0, 0o) is the diffusion constant, and & (x, ) is
a space—time random medium that drives the equation. Typical initial conditions are:

u(x,0) =1 or u(x,0) = dy(x).

The solution of the PAM describes the behavior of a reactant u under the influence
of a catalyst &.
The key objects of interest are the Lyapunov exponents

1
Ap = lim —log E([u(0,¢)]”), p>0,
t—>00 pt

o1
Ao = [1_1)120 ;log u(0,1), é£-as.,

where E denotes expectation over the &-field. The A,’s are referred to as the
annealed Lyapunov exponents, A¢ as the quenched Lyapunov exponent. The PAM
is said to be intermittent when

p = A, is strictly increasing.

The geometric interpretation behind this property is that the u-field develops sparse
high peaks, with A, being dominated by different classes of peaks for different p
(see Girtner, Konig, and Molchanov [28]). This is the reason why A, and A provide
insight into the behavior of u in space and time.

A key tool to study the PAM is the Feynman—Kac formula

u(x,t) = E, | exp /E(X’((s),t—s)ds u(X“(),0) |,
0

where (X“(7));>0 is simple random walk jumping at rate 2dk, and E, denotes
expectation given that X“(0) = x. This shows that understanding the PAM is
equivalent to understanding the large deviation properties of a random walk in a
random scenery.

* Static version: For the case where £ is time-independent, i.e., £ (x,¢) = £(x,0) =
£(x), the PAM is by now fairly well understood. The typical case is where & (x),
x € 79, are i.i.d., in which case there are four subclasses of distributions of
£(0) leading to qualitatively different behavior. A detailed description has been
obtained for the location and the height of the peaks in the u-field, which tend
to concentrate around the peaks in the &-field. The peaks in the u-field tend
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to live on sparse islands, whose locations and sizes change over time. For an
overview, see Girtner and Konig [25]. The development of the static PAM took
place parallel to the work by Alain-Sol Sznitman on Brownian motion among
Poissonian obstacles [37]. Both have substantially enriched our understanding of
random processes in random media.

Dynamic version: For the case where ¢ is time-dependent, work is still in
progress. Early work was done by Carmona and Molchanov [6] when & consists
of i.i.d. Brownian noises. Since then the focus has been on a number of choices
where £ evolves like an interacting particle system:

1. Independent random walks
2. Exclusion process
3. Voter model

It turns out that the behavior of A, as a function of d and « is extremely rich. For
instance, there is a critical dimension d,. such that A, is constant in « ford < d.
and nonconstant in « for d > d., with a delicate asymptotics for k — oo at
d = d.. For an overview, see Girtner, den Hollander, and Maillard [29].

The main collaborators of Jirgen on the PAM have been S. Molchanov,

F. den Hollander, W. K6nig, and G. Maillard. Many others have made important
contributions, including:

Jiirgen’s colleagues: M. Biskup, F. Castell, M. Cranston, O. Giin, R. van der
Hofstad, H. Kesten, H.-Y. Kim, L. Koralov, H. Lacoin, P. Morters, T. Mountford,
M. Ortgiese, A. Ramirez, T. Shiga, V. Sidoravicius, N. Sidorova, R. Sun, F. Viens,
A. Vizcarra.

Jiirgen’s students: A. Drewitz, J. Hidhnel, M. Heydenreich, A. Schnitzler,
A. Vosz, T. Wolff.

The present Festschrift contains several papers on the PAM, which include many
references to the literature.

The PAM has been the main focus of Jiirgen’s work in the past decade. He has

been the leader in the field and has shown to his colleagues what challenges the
PAM is offering. The above list of names shows that he has made school.

6 Personal Remarks

Over the years, three collaborators of Jiirgen have been a major inspiration to him:

Mark Freidlin
Don Dawson
Stas Molchanov

Each of them has played an important role in his career: Mark as his thesis advisor,
later co-authoring Jiirgen’s most cited paper (on wave propagation in random media
[19]) and following him ever since, Don as a long-term collaborator pursuing
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a variety of different themes over more than a decade, and Stas as the person
who brought him to the PAM, which became Jiirgen’s main focus in later years.
Each of them has drawn Jiirgen into exciting new areas of research, which he
has subsequently pursued with all his force. Without them, Jiirgen’s mathematical
itinerary would no doubt have been quite different.

For me, personally, it has been a wonderful experience to work with Jiirgen.
Our discussions over the past 20 years have covered a vast area. Most of what we
spoke about was never written up, but part did make it to the literature: we wrote 7
papers together, and number 8 appears in the present Festschrift. What I value most
in Jiirgen, apart from his mastery of probability theory and analysis, is his ability
to look far ahead, his constant search for elegance, his unwavering computational
skills, his humor and scepticism, as well as his friendship and loyalty.

Jiirgen holds the record as the most frequent visitor at EURANDOM. I trust that
he will continue to push up this record in the years to come!
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