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Preface

This book concerns the uncertainty of the hydrogeological modeling. In a sense, it
is a development of the ideas published long ago (Gorokhovski 1977). The topic of
that book was impossibility of evaluating the uncertainty of the simulation results
in a provable quantitative way. The book happened to be a success: I had difficulty
finding its copies for my friends, some prominent hydrogeologists and geological
engineers started treating me with more respect, and some colleagues stopped
speaking to me for a long time. But no other consequences followed.

I personally was not fully satisfied. The book was mostly a critique based on
common sense and illustrated by simple and transparent examples from hydro-
geology and geological engineering. The examples could be easily verified, using
just a calculator. The book stated that the impossibility to evaluate the uncertainty
of simulation results does not preclude obtaining the results which are best in a
reasonably defined sense, though the uncertainty of those best results remains
unknown. But I had a vague notion of how to assure such results at that time.

Quantitative predictions of responses of geological objects on man made and
natural impacts were, are, and will remain in the foreseeable future a considerable
element of engineering design and decision making. Even at that time and even in
the Soviet Union, where I resided and worked, it was possible to simulate many
applied hydrogeological processes, though access to the pertinent software and
computers was not easy, at least for me (see Afterword for more details). At
present, due to the fast development of computers and numerical methods, we can
simulate almost any process based on contemporary concepts and theories. The
gravest obstacle remains uncertainty of the simulation results caused by paucity of
the available data on properties of geological objects, boundary conditions, and
impacts when the natural impacts are affecting factors. So, one of the main issues,
in my opinion, is how to assure that the yielded results are the best, and effective in
the sense best is defined. I hope that this book is a considerable step to yielding the
effective simulation results.

The uncertainty of the results of hydrogeological modeling was and is discussed
intensively. Thus, Beck (1987) writes: ‘‘The difficulties of mathematical modeling
are not questions of whether the equations can be solved and the cost of solving
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them many times; not are they essentially questions of whether priory theories (on
transport, dispersion, growth, decay, predation, etc.) is potentially capable of
describing the system’s behavior. The important questions are those whether the
priory theory adequately matches observed behavior and whether the predictions
obtained from models are meaningful and useful.’’ Oreskes et al. (1994), hold that
geological models ‘‘predictive value is always open to question.’’ (See also
Oreskes 2003, 2004). This is not surprising, since in hydrogeology ‘‘the modeling
assumptions are generally false and known to be false’’ (Morton 1993, Beven
2005). I could continue this list of quotations. But let me restrict myself with one
more. As Beven (2004), puts it mildly: ‘‘There is uncertainty about uncertainty.’’ I
think he is wrong: the uncertainty of the hydrogeological modeling is the fact
about which there is no uncertainty. Indeed: ‘‘It’s a fundamental tenet of philos-
ophy of science that the truth of a model can never be proved; only disproved’’,
(Mesterton-Gibbons 1989).

The above quotations are a tribute to academism really. Experienced hydrog-
eologists are well aware of the uncertainty of most of their conclusions. And the
reason is obvious. The models include properties and combinations of the prop-
erties of geological objects. Those must be known continuously, at least, when
differential or integral equations are involved. That is, they must be known at each
point of the object and at each instant of the simulation period, excluding sets of
isolated points and instants. But geological objects are inaccessible to direct
observations and measurements and the data on them are sparse. The geological
models are a tool to interpolate and extrapolate the sparse data at every point of the
geological object which they represent in simulations and at every instant of the
periods of the simulations. The tool is limited. The geological interpolation and
extrapolation are based on the principle that geological settings of the same origin,
composition, and geological history have the same properties. This principle leads
to so-called piecewise homogeneous geological models. Sometimes the properties
are subjected to spatial trends whose mathematical descriptions are arbitrary in
essence (Chap. 3). So how can we evaluate in a quantitative way the reliability of
the geological models with respect to a problem at hand? It suffices just common
sense to conclude that it is impossible except, maybe, in some rare cases.

Since the issue is not simulations, solving the corresponding equations, but the
uncertainty of the yielded results, the question arises, what to do? US EPA (1987),
gives the answer related to environmental predictions, including hydrogeological
ones: ‘‘It should be recognized that the data base will always be inadequate, and
eventually there will be a finite sum that is dictated by time, common sense, and
budgetary constraints. One simply has to do the best one can with what is avail-
able’’. Unfortunately, US EPA (1987), does not explain what is and how ‘to do the
best’.

The situation seems to be clear enough: it is impossible to evaluate the
uncertainty of simulation results of the hydrogeological models in a provable
quantitative way. But, contrary to its own statement cited above (US EPA, 1989),
holds that ‘‘Sensitivity and uncertainty analysis of environmental models and their
predictions should be performed to provide decision-makers with an understanding
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of the level of confidence in model results and to identify key areas for future
study’’. It claims also that ‘‘A number of methods have been developed in recent
years for quantifying and interpreting the sensitivity and uncertainty of models’’.
NCR (1990), states ‘‘Over the past decade, the development of stochastic modeling
techniques has been useful in quantitatively establishing the extent to which
uncertainty in model input translates into uncertainty in model prediction.’’ Binley
and Beven (1992), Beven and Freer (2001) and Beven (2005) suggest a general
likelihood framework for uncertainty analysis, recognizing that it includes some
subjective elements and, therefore, in my opinion, may not be provable. Hill et al.
(2000) suggest the algorithm and program, permitting evaluating the uncertainty of
simulation results. Cooley (2004) suggests a theory for making predictions and
estimating their uncertainty. And so on (Feyen and Caers 2006; Hassan and Bekhit
2008; Rojas et al. 2008, 2010; Ch and Mathur 2010; Mathon et al. 2010; Ni et al.
2010; Singh et al. 2010a, b; Zhang et al. 2009; and many others).

Although the number of publications providing the methods as if quantifying
uncertainty of the results hydrogeological modeling growths very fast, the philo-
sophical tenet mentioned above leaves us still with the only real option: ‘‘to do the
best one can with what is available’’. In this book, it means obtaining the best
simulation results in the sense of the least squares criterion on a given monitoring
network, though other criteria of the efficiency are also possible. Besides, the
required best must relate not to the best fit during model identifications (calibra-
tions), but to the best results in the coupled predictive simulations. Such simulation
results are called effective. To achieve the predictive efficiency for a given sim-
ulation model, we need to find the effective parameters, that is, the parameters
making the pertinent predicting or evaluating effective. A model furnished with the
effective parameters is called effective. Once more, the goal must be the models
which are effective in predictive simulations and extended evaluations, and not in
model identification procedures like calibration. This can be achieved by intro-
ducing the transforming mechanisms converting the actual properties of geological
bodies into effective parameters of the predictive models (Chap. 5). Chapters 6 and
7 contain examples of such mechanisms. The standard procedure for evaluating
the transforming mechanisms is called by me the two-level modeling (Chap. 8).
The transforming mechanisms can be applied for solving inverse problems (
Chap. 9). The notion of the inverse problem in this book differs from the standard
one accepted in hydrogeological modeling. That is, the inverse problem is
understood as evaluating properties of more complex models using less complex
ones. Chapter 10 is a short conclusion. I included in the book Chap. 11 also where
I compare my Soviet and American experiences as a teacher and a scientist. I hope
it may by interesting for readers.

I hope that this book is helpful for modelers working with the underground
flows and mass transport. But its main addressees are common hydrogeologists
and, maybe, students of hydrogeology and environmental sciences. I knew and
know many excellent hydrogeologists who never differentiated or integrated
anything after passing the final tests on calculus. For these reasons, I resort to the
sound sense and the simplest mathematical models and examples, rather of the
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conceptual nature, i.e., ‘‘constructed to elucidate delicate and difficult points of a
theory’’ (Lin and Segel 1974, Kac 1969) as much as I can. However, the approach
to alleviating the issue of the uncertainty of the results of hydrogeological simu-
lations suggested in this book requires intensive computational calculations. This
does not permit avoiding mathematics completely. But the mathematics applied in
the text is mostly the least squares method. The examples and the results are
transparent and easy to understand and to interpret even for those readers who do
not want to mess with mathematics.
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Abstract

Effective Parameters of Hydrogeological Models Geological models applied in
predictive hydrogeological modeling are not exact replicas of the objects they
represent. Manifold of details related to structures and properties of the objects
remains unknown. Those details affect the simulation results considerably, dif-
ferently and unpredictably for different formulations of the simulation problem.
They cause the phenomenon of problem-dependence of model identification and
make the model parameters effective in calibration ineffective in predictive sim-
ulations. Due to them the provable evaluation of uncertainty of the simulation
results is impossible. However this does not preclude obtaining the best, effective,
simulation results based on the available data and predefined criteria of quality of
predicting. To provide such results, transforming mechanisms are introduced.
They are mathematical expressions for evaluating the model parameters which are
effective in predictive simulations. Examples of the mechanisms are provided as
well as a method for their evaluations. Shown also how the mechanisms can be
used for interpretation hydrogeological data which is possible due to the mention
above phenomenon of the problem-dependence. In his last chapter author com-
pares the conditions under which he worked in the Soviet Union (35 years) and in
the United States (20 years) which may be interesting for readers.
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Chapter 1
Introduction

Although hydrogeological conditions can be of interest per se, most hydrogeo-
logical investigations are of applied nature, and their results are used in decision-
making that may carry large ecological and financial risks. For example, when
developing a reservoir project, the developers have to evaluate possible losses of
water from the reservoir, the stability of the dam, and how adjacent soils and rocks
could be affected by different project decisions. Hydrogeological investigations
related to the use of an aquifer for water supply should not only conclude that the
usage is possible. The developers must also have estimates on how long and with
what intensity the aquifer can be exploited by a well or group of wells. The
developers of a landfill project must know whether the landfill can cause con-
tamination of the aquifer below and, if so, whether and when the contaminant
plume will reach water supply wells and the concentration of the pollutant at the
wells. The developers of an irrigation project need to know to what extent and how
fast the water table rise should be expected, what consequences are possible, how
to deal with them effectively, etc.

The point is that, for projects that affect the geological surroundings to be
effective environmentally and economically, the responses of the surroundings to
the planning impacts must be taken into consideration. To this end, the goal of
applied hydrogeological investigations is to provide quantitative predictions of
those responses. Moreover, to make a correct or optimal decision, decision-makers
must know the errors of the quantitative predictions. (The term ‘‘to predict’’ relates
to processes developing in time. In this text it is used also as a synonym for the
term ‘‘to evaluate’’ in cases of evaluating some instant value or steady-state
conditions, if such usage does not cause confusion).

The usual tool for obtaining quantitative hydrogeological predictions is math-
ematical modeling, i.e., solving differential and integral equations describing the
pertinent processes or states. The mathematical models are applied to geological
models substituting for real geological objects. In this book, the mathematical
models are assumed to be adequate, i.e., that they reproduce the processes of
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interest sufficiently accurately. This is not true in general, but mathematical
models recognized by the professional community and applied properly usually
yield satisfactory approximations of reality (see Sect. 4.4). The main source of
error occurring in simulations is the distinction between predictive geological
models and actual geological objects, and inaccurate or often just wrong boundary
conditions, though inaccuracies of the mathematical models also contribute to
those errors. Since the geological surroundings are inaccessible to direct obser-
vations and measurements, and data on them are sparse, the issue is how the parts
of geological objects which are unknown or wrongly represented by geological
models can affect the accuracy of the simulation results.

Let us start with a simple example: steady-state filtration in an unconfined
aquifer on a horizontal base when recharge is absent (Fig. 1.1). Under the
Dupuit–Forchheimer assumption, considering the vertical component of the Darcy
velocity to be negligibly small, the filtration can be treated as one dimensional. It is
governed by the following ordinary differential equation:

d K xð Þh xð Þ dh
dx

� �

dx
¼ 0; ð1:1Þ

where h(x) is the thickness of the aquifer at point x and K(x) is the hydraulic
conductivity varying along the x-axis. Equation 1.1 is derived based on the law of
conservation and the Darcy law stating that the velocity of filtration q (the Darcy
velocity, specific flux) is equal to

q ¼ �K xð Þ dh

dx
: ð1:2Þ

The boundary conditions are the thickness of the aquifer at the ends of the
interval [0, L], which is assumed to be known: h(0) = h0 and h(L) = hL.

Let the goal be to evaluate the thickness of the aquifer at any arbitrary location
x within the interval [0, L]. To this end, we have to integrate Eq. 1.1. Its first
integration yields

2K xð Þh xð Þ dh

dx
¼ C;

Fig. 1.1 One-dimensional
steady-state flow on the
interval [0, L]
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where C is an arbitrary constant (the factor of 2 being used to simplify Eq. 1.3
below). Assuming that K(x) = 0 in the interval [0, L], we can rewrite the above
equation as

2h xð Þdh ¼ C
dx

K xð Þ :

Integrating the above equation, we obtain

2
Zx

0

h xð Þdh ¼ h2 xð Þ � h2 0ð Þ ¼ C

Zx

0

dx

K xð Þ: ð1:3Þ

To obtain a unique solution to Eq. 1.1, we need to define the arbitrary constant
C. To this end we use the second boundary condition at x = L:

h2
L ¼ C

ZL

0

dx

K xð Þ þ h2
0 and C ¼ � h2

0 � h2
L

RL

0

dx
K xð Þ

:

Then, the solution to Eq. 1.1 with the given boundary conditions takes the form

h2 xð Þ ¼ h2
0 � h2

0 � h2
L

� �
Rx

0

dx
K xð Þ

RL

0

dx
K xð Þ

: ð1:4Þ

Thus, to obtain the thickness of the aquifer, h(x), at an arbitrary point x within
the interval [0, L], we need to know the boundary conditions h0 and hL at the ends
of the interval and the hydraulic conductivity, K(x), continuously, i.e. at each point
of the interval, excluding perhaps a countable set of points (i.e., a set of points that
can be enumerated, meaning separated from each other).

However, knowing K(x) at each point of the interval of interest is not possible
physically or economically. A few, sparse measurements of the hydraulic con-
ductivity are available at best. We need to fill in the information gap by inter-
polating and extrapolating the available data on the hydraulic conductivity over all
points of the interval [0, L]. Tools for doing this are geological (structural) models
(which I prefer to call geological ones, to emphasize that geologists with their
knowledge of geological settings and their spatial variability play the most
important role in interpolating and extrapolating geological data). The tools are
usually limited and even primitive. They are based on the principle that soils and
rocks of the same origin, lithological composition, geological age, and history are
homogeneous geologically; that is, each property of a geologically homogeneous
structure is considered constant. Simple trends in the property values are per-
missible, if the data reveal some spatial tendencies. Model calibration is also a tool
for generalization of the variable property values of interest in the predictive
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