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Preface

The book is aimed at natural science undergraduates, as well as at graduate and post-
graduate students studying the theory of nonlinear waves of various physical nature.
It may also be useful as a handbook for engineers and researchers who encounter
the necessity of taking nonlinear wave effects into account in their work.

Evolution of sufficiently intense waves is determined by nonlinear processes, in
which the progress is substantially influenced by dispersion (a dependence of the
phase velocity on its frequency). Media without dispersion, where the phase ve-
locity does not depend on the frequency, are the simplest ones with respect to their
physical properties and are the most common in nature. But nonlinear interactions of
the Fourier spectral components in such media are particularly complex and diverse.
Here, practically all “virtual” energy-exchangeprocesses between waves of different
frequencies become resonant ones and occur with a high efficiency. An avalanche-
like increase of the number of spectral components of the field takes place, which,
within the space-time representation, corresponds to formation of structures with
strongly pronounced nonlinear properties. Examples of such structures are discon-
tinuities of a function describing the wave field or discontinuities of its derivative,
steep shock fronts of various types and multidimensional cellular structures.

Nonlinear structures can be stable only in strong fields, under the conditions of
competition with effects of absorption, dispersion, etc, which contribute to the decay
of such structures. These objects have properties of quasiparticles. For instance,
shock fronts undergo inelastic collisions. Thus, in nondispersive media, nonlinearity
provides both a possibility of interactions between stable structures and their very
existence. Solitons are other well-known objects in nonlinear physics, which are,
generally speaking, stable only in idealized conservative systems. At the same time,
quasi stability of shock-front structures or sawtooth waves occurs in real dissipative
systems.

Structures of different physical nature are described by similar mathematical
models. These models are used not only in the wave theory, but also to describe
various non-wave objects, viz.: forest-fire fronts, density of a flow of non-interacting
particles, etc. Because of the universality of such nonlinear models, it is necessary to
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analyze them on the basis of general principles of mathematical physics, irrespective
of the nature of the described phenomena.

On the other hand, nondispersive waves and structures are widely used in science
and technology. A review of these applications, from the authors’ viewpoint, is what
“brightens up” the theory and may be of interest to many readers.

The theory of nonlinear waves and structures is a very extensive and constant de-
veloping field of physics (especially radiophysics and mathematical physics). It has
many specific applications. Among them there are both the well-known problems of
acoustics, electrodynamics and plasma physics (see, e.g., [1–5]), and the less-known
problems, such as surface-growth description [6, 7], dynamics of turbulence [8, 9]
and development of a gravitational instability of the large-scale distribution of mat-
ter in the Universe [10–14]. A wide range of phenomena arising here have led to the
development of a variety of mathematical methods, which are effective in address-
ing various kinds of nonlinear fields and waves (see, e.g., [15–17]). It is clear that
within a single monograph, it is not possible to give an exhaustively comprehen-
sive overview of the whole problem. For this reason, the authors limited themselves
to a discussion of the “hydrodynamic” type of nonlinear waves in nondispersive
medium. First of all, the properties of solutions to such standard nonlinear wave
equations in nondispersive media as the simple wave equation, the Burgers equation
and the Kardar-Parisi-Zhang equation have been studied in detail. Apart from the
importance of these equations for the theory and applications, an analysis of these
solutions allows us to trace stages of development of typical nonlinear processes
and, above all, nonlinear distortion of profiles, the gradient catastrophe and emer-
gence of shock waves. In order for the theory of nonlinear waves in nondispersive
media not to look too abstract, the presentation is based on illustrative geometric
interpretations of both the equations themselves and their solutions, as well as on a
comprehensive discussion of the physical meaning of these solutions and the meth-
ods used to obtain them.

The monograph consists of two parts. The first part is devoted to a detailed de-
scription of the concepts and analysis methods of nonlinear waves and structures in
nondispersive media. The second part focuses on an in-depth description of the non-
linear theory as applied only to one type of waves — high intensity acoustic waves.
This object, on the one hand, is the most straightforward and, on the other hand, has
important practical applications.

The authors have attempted to communicate all materialls at the following “two
levels” of complexity. The first level is intended to introduce beginning investi-
gators (above all undergraduate, graduate and PhD students) to the concepts and
methods of the theory of nonlinear waves and structures in nondispersive media.
In order to achieve a deeper understanding of the foundations, it is useful to solve
the problems given in the end of the chapters in Part I. The second, higher, level
is meant for researchers, who already have experience in this field of study and
are interested in the state of the art or in specific results. Naturally, it is impossi-
ble to reflect the entire diversity of approaches used to study nonlinear fields and
waves in a single monograph. This is why the material is presented at a simple,
“physical” level of rigor, where possible. Those, who are interested in a more rigor-
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ous mathematical foundation of the problems discussed here, are advised to turn to
monographs [15,17], where mathematical foundations of many topics touched upon
in this book are thoroughly discussed. An in-depth review of the methods used to
solve nonlinear problems, along with profound results of the nonlinear field theory,
can be found in book [16]. In monograph [18], and also in textbook [19], the theory
of generalized functions necessary for construction of generalized solutions of non-
linear equations is comprehensively elucidated. We recommend those who intend
deeper to delve into the nonlinear field theory, without burying themselves in math-
ematical subtleties, the following thorough monographs and textbooks: [1, 2, 4, 5],
which are written by physicists for physicists. Basic concepts of the nonlinear wave
theory, along with illustrative physical examples, can be found in the remarkable
textbook [14]. To those who are going professionally to engage themselves in the
field of nonlinear acoustics, we recommend monograph [3] and the books of prob-
lems [20, 21], where a set of problems aiding in mastering various aspects of non-
linear acoustics is given. If one is interested in statistical properties of nonlinear
random waves as applied to nonlinear acoustics, astrophysics and turbulence, he or
she can pick up necessary information from monograph [10]. We also advise to turn
to monograph [8], which covers the foundations of the theory of strong turbulence
and its inherent phenomena, such as intermittency and multifractality.

We are grateful to the renowned scientists, fruitful interactions with whom over
the years have formed our vision of the problems and methods of the nonlinear
science. First of all, they are: academicians A.V. Gaponov-Grekhov, Ya.B. Zel-
dovich, R.V. Khokhlov, V.I. Arnold and Ya.G. Sinai; corresponding members of
the Russian Academy of Sciences M.I. Rabinovich and D.I. Trubetskov; Profes-
sors A.N. Malakhov, L.A. Ostrovsky, S.A. Rybak, S.I. Soluyan, A.P. Sukhorukov,
A.S. Chirkin and S.F. Shandarin. We are delighted to remember the years of col-
laboration with international colleagues, among whom are: D. Crighton, U. Frisch,
B. Enflo, D. Blackstock, M. Hamilton, L. Cram, E. Aurell, A. Noullez, W.A. Woy-
czynski and many others.

We would like also to thank our translators, O. Simdyankina and S. Simdyankin,
not only for the speedy production of an English translation of this book, but also
for the lucid clarity of their literary representation of the original text.

Nizhny Novgorod, Moscow, Sergey N. Gurbatov
July 2011 Oleg V. Rudenko

Alexander I. Saichev

References

1. M.J. Lighthill,Waves in Fluids, 2nd edn. (Cambridge University Press, 2002)
2. M.I. Rabinovich, D.I. Trubetskov, Oscillations and Waves in Linear and Nonlinear Systems.

(Springer, Berlin, 1989)
3. O.V. Rudenko, S.I. Soluyan, Theoretical Foundations of Nonlinear Acoustics (Plenum, New

York, 1977)



viii Preface

4. M.B. Vinogradova, O.V. Rudenko, A.P. Sukhorukov, Theory of Waves (Nauka, Moscow,
1979). In Russian

5. G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974)
6. A.L. Barabási, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University

Press, 1995)
7. M. Kardar, G. Parisi, Y.C. Zhang, Dynamical scaling of growing interfaces, Phys. Rev. Lett.

56, 889–892 (1986)
8. U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov (Cambridge University Press, 1995)
9. A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics, vol. 2 (MIT Press, Cambridge, Mass,

1975)
10. S.N. Gurbatov, A.N. Malakhov, A.I. Saichev, Nonlinear Random Waves and Turbulence in

Nondispersive Media: Waves, Rays and Particles. (Manchester University Press, 1991)
11. P.J.E. Peebles, Large-Scale Structure of the Universe (Princeton University Press, 1980)
12. S.F. Shandarin, Y.B. Zeldovich, The large-scale structure of the universe: turbulence, intermit-

tency, structures in a self-gravitating medium, Rev. Mod. Phys. 61, 185–220 (1989)
13. S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972)
14. Y.B. Zeldovich, Elements of Mathematical Physics (Nauka, Moscow, 1973). In Russian
15. V.I. Arnold, Ordinary Differential Equations (MIT Press, Cambridge, Mass, 1978)
16. R. Richtmyer, Principles of Advanced Mathematical Physics, vol. 1 (Springer, Berlin, 1978)
17. B.L. Rozhdestvenskii, N.N. Yanenko, Systems of Quasilinear Equations (Nauka, Moscow,

1978). In Russian
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(Birkhäuser, Boston, 1997)
19. S.A. Lapinova, A.I. Saichev, V.A. Filimonov, Generalized Functions and Asymptotic Methods

(Nizhny Novgorod University Press, 2006). In Russian
20. S.N. Gurbatov, O.V. Rudenko (eds.), Acoustics in Problems (Fizmatlit, Moscow, 2009). In

Russian
21. O.V. Rudenko, S.N. Gurbatov, C.M. Hedberg, Nonlinear Acoustics through Problems and

Examples (Trafford, 2010)



Contents

Part I Foundations of the Theory of Waves in Nondispersive Media . . . . . . 1

1 Nonlinear Equations of the First Order . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Simple wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 The canonical form of the equation . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Particle flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Discussion of the Riemann solution . . . . . . . . . . . . . . . . . . . . . 5
1.1.4 Compressions and expansions of the particle flow . . . . . . . . . 6
1.1.5 Continuity equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.6 Construction of the density field . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.7 Momentum-conservation law . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.8 Fourier transforms of density and velocity . . . . . . . . . . . . . . . 11

1.2 Line-growth equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.1 Forest-fire propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.2 Anisotropic surface growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.3 Solution of the surface-growth equation . . . . . . . . . . . . . . . . . 18

1.3 One-dimensional laws of gravitation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.1 Lagrangian description of one-dimensional gravitation . . . . . 20
1.3.2 Eulerian description of one-dimensional gravitation . . . . . . . 22
1.3.3 Collapse of a one-dimensional Universe . . . . . . . . . . . . . . . . . 24

1.4 Problems to Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2 Generalized Solutions of Nonlinear Equations . . . . . . . . . . . . . . . . . . . . . 39
2.1 Standard equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.1 Particle-flow equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.1.2 Line growth in the small angle approximation . . . . . . . . . . . . 40
2.1.3 Nonlinear acoustics equation . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 Multistream solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.1 Interval of single-stream motion . . . . . . . . . . . . . . . . . . . . . . . . 42



x Contents

2.2.2 Appearance of multistreamness . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.3 Gradient catastrophe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3 Sum of streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.1 Total particle flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.2 Summation of streams by inverse Fourier transform . . . . . . . 47
2.3.3 Algebraic sum of the velocity field . . . . . . . . . . . . . . . . . . . . . . 47
2.3.4 Density of a “warm” particle flow . . . . . . . . . . . . . . . . . . . . . . 48

2.4 Weak solutions of nonlinear equations of the first order . . . . . . . . . . . 50
2.4.1 Forest fire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4.2 The Lax-Oleinik absolute minimum principle . . . . . . . . . . . . 52
2.4.3 Geometric construction of weak solutions . . . . . . . . . . . . . . . . 53
2.4.4 Convex hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.4.5 Maxwell’s rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.5 The E-Rykov-Sinai global principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.5.1 Flow of inelastically coalescing particles . . . . . . . . . . . . . . . . . 59
2.5.2 Inelastic collisions of particles . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.5.3 Formulation of the global principle . . . . . . . . . . . . . . . . . . . . . 61
2.5.4 Mechanical meaning of the global principle . . . . . . . . . . . . . . 62
2.5.5 Condition of physical realizability . . . . . . . . . . . . . . . . . . . . . . 63
2.5.6 Geometry of the global principle . . . . . . . . . . . . . . . . . . . . . . . 66
2.5.7 Solutions of the continuity equation . . . . . . . . . . . . . . . . . . . . . 69

2.6 Line-growth geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.6.1 Parametric equations of a line . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.6.2 Contour in polar coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.6.3 Contour envelopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.7 Problems to Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3 Nonlinear Equations of the Second Order . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.1 Regularization of nonlinear equations . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.1.1 The Kardar-Parisi-Zhang equation . . . . . . . . . . . . . . . . . . . . . . 84
3.1.2 The Burgers equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.2 Properties of the Burgers equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.2.1 Galilean invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.2.2 Reynolds number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.2.3 Hubble expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.2.4 Stationary wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.2.5 Khokhlov’s solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.2.6 Rudenko’s solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.3 General solution of the Burgers equation . . . . . . . . . . . . . . . . . . . . . . . 100
3.3.1 The Hopf-Cole substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.3.2 General solution of the Burgers equation . . . . . . . . . . . . . . . . . 102
3.3.3 Averaged Lagrangian coordinate . . . . . . . . . . . . . . . . . . . . . . . 103
3.3.4 Solution of the Burgers equation with vanishing

viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



Contents xi

3.4 Model equations of gas dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.4.1 One-dimensional model of a polytropic gas . . . . . . . . . . . . . . 105
3.4.2 Discussion of physical properties of a model gas . . . . . . . . . . 108

3.5 Problems to Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4 Field Evolution Within the Framework of the Burgers Equation . . . . . 117
4.1 Evolution of one-dimensional signals . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.1.1 Self-similar solution, once more . . . . . . . . . . . . . . . . . . . . . . . . 117
4.1.2 Approach to the linear stage . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.1.3 N-wave andU-wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.1.4 Sawtooth waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.1.5 Periodic waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.2 Evolution of complex signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.2.1 Quasiperiodic complex signals . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.2.2 Evolution of fractal signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.2.3 Evolution of multi-scale signals — a dynamic turbulence

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.3 Problems to Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5 Evolution of a Noise Field Within the Framework of the Burgers
Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.1 Burgers turbulence — acoustic turbulence . . . . . . . . . . . . . . . . . . . . . . 153
5.2 The Burgers turbulence at the initial stage of evolution . . . . . . . . . . . 155

5.2.1 One-point probability density of a random Eulerian
velocity field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.2.2 Properties of the probability density of a random velocity
field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.2.3 Spectra of a velocity field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.3 Turbulence evolution at the stage of developed discontinuities . . . . . 166

5.3.1 Phenomenology of the Burgers turbulence . . . . . . . . . . . . . . . 167
5.3.2 Evolution of the Burgers turbulence: statistically

homogeneous potential and velocity (n> 1 and n<−3) . . . 171
5.3.3 Exact self-similarity (n> 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
5.3.4 Violation of self-similarity (1 < n< 2) . . . . . . . . . . . . . . . . . . 176
5.3.5 Evolution of turbulence: statistically inhomogeneous

potential (−3 < n< 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5.3.6 Statistically homogeneous velocity and inhomogeneous

potential (−1 < n< 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
5.3.7 Statistically inhomogeneous velocity and inhomogeneous

potential (−3 < n<−1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
5.3.8 Evolution of intense acoustic noise . . . . . . . . . . . . . . . . . . . . . 182

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185



xii Contents

6 Multidimensional Nonlinear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.1 Nonlinear equations of the first order . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.1.1 Main equations of three-dimensional flows . . . . . . . . . . . . . . . 189
6.1.2 Lagrangian and Eulerian description of a three-dimentional

flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.1.3 Jacobian matrix for the transformation from Lagrangian to

Eulerian coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
6.1.4 Density of a multidimensional flow . . . . . . . . . . . . . . . . . . . . . 193
6.1.5 Weak solution of the surface-growth equation . . . . . . . . . . . . 194
6.1.6 Flows of locally interacting particles and a singular density

field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
6.2 Multidimensional nonlinear equations of the second order . . . . . . . . 201

6.2.1 The two-dimensional KPZ equation . . . . . . . . . . . . . . . . . . . . . 201
6.2.2 The three-dimensional Burgers equation . . . . . . . . . . . . . . . . . 202
6.2.3 Model density field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
6.2.4 Concentration field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

6.3 Evolution of the main perturbation types in the KPZ equation and
in the multidimensional Burgers equation . . . . . . . . . . . . . . . . . . . . . . 207
6.3.1 Asymptotic solutions of the multidimensional Burgers

equation and local self-similarity . . . . . . . . . . . . . . . . . . . . . . . 208
6.3.2 Evolution of simple localized perturbations . . . . . . . . . . . . . . 212
6.3.3 Evolution of periodic structures under infinite Reynolds

numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
6.3.4 Evolution of the anisotropic Burgers turbulence . . . . . . . . . . . 219
6.3.5 Evolution of perturbations with complex internal

structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
6.3.6 Asymptotic long-time behavior of a localized

perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
6.3.7 Appendix to Section 6.3. Statistical properties of maxima

of inhomogeneous random Gaussian fields . . . . . . . . . . . . . . . 233
6.4 Model description of evolution of the large-scale structure of the

Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
6.4.1 Gravitational instability in an expanding Universe . . . . . . . . . 236
6.4.2 From the Vlasov-Poisson equation to the Zeldovich

approximation and adhesion model . . . . . . . . . . . . . . . . . . . . . 238
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Part II Mathematical Models and Physical Phenomena in Nonlinear
Acoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

7 Model Equations and Methods of Finding Their Exact Solutions . . . . 247
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

7.1.1 Facts from the linear theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
7.1.2 How to add nonlinear terms to simplified equations . . . . . . . . 253
7.1.3 More general evolution equations . . . . . . . . . . . . . . . . . . . . . . . 255



Contents xiii

7.1.4 Two types of evolution equations . . . . . . . . . . . . . . . . . . . . . . . 256
7.2 Lie groups and some exact solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

7.2.1 Exact solutions of the Burgers equation . . . . . . . . . . . . . . . . . . 257
7.2.2 Finding exact solutions of the Burgers equation by using

the group-theory methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
7.2.3 Some methods of finding exact solutions . . . . . . . . . . . . . . . . . 261

7.3 The a priori symmetry method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

8 Types of Acoustic Nonlinearities and Methods of Nonlinear
Acoustic Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

8.1.1 Physical and geometric nonlinearities . . . . . . . . . . . . . . . . . . . 271
8.2 Classification of types of acoustic nonlinearity . . . . . . . . . . . . . . . . . . 274

8.2.1 Boundary nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
8.3 Some mechanisms of bulk structural nonlinearity . . . . . . . . . . . . . . . . 280

8.3.1 Nonlinearity of media with strongly compressible
inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

8.3.2 Nonlinearity of solid structurally inhomogeneous media . . . . 284
8.4 Nonlinear diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

8.4.1 Inverse problems of nonlinear diagnostics . . . . . . . . . . . . . . . . 292
8.4.2 Peculiarities of nonlinear diagnostics problems . . . . . . . . . . . 294

8.5 Applications of nonlinear diagnostics methods . . . . . . . . . . . . . . . . . . 297
8.5.1 Detection of bubbles in a liquid and cracks in a solid . . . . . . . 297
8.5.2 Measurements based on the use of radiation pressure . . . . . . 299
8.5.3 Nonlinear acoustic diagnostics in construction industry . . . . 300

8.6 Non-typical nonlinear phenomena in structurally inhomogeneous
media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

9 Nonlinear Sawtooth Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
9.1 Sawtooth waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
9.2 Field and spectral approaches in the theory of nonlinear waves . . . . . 312

9.2.1 General remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
9.2.2 Generation of harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
9.2.3 Degenerate parametric interaction . . . . . . . . . . . . . . . . . . . . . . 314

9.3 Diffracting beams of sawtooth waves . . . . . . . . . . . . . . . . . . . . . . . . . . 318
9.4 Waves in inhomogeneous media and nonlinear geometric

acoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
9.5 The focusing of discontinuous waves . . . . . . . . . . . . . . . . . . . . . . . . . . 328
9.6 Nonlinear absorption and saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
9.7 Kinetics of sawtooth waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
9.8 Interaction of waves containing shock fronts . . . . . . . . . . . . . . . . . . . . 344
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350



xiv Contents

10 Self-action of Spatially Bounded Waves Containing Shock Fronts . . . . 357
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
10.2 Self-action of sawtooth ultrasonic wave beams due to the heating

of a medium and acoustic wind formation . . . . . . . . . . . . . . . . . . . . . . 359
10.3 Self-refraction of weak shock waves in a quardatically nonlinear

medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
10.4 Non-inertial self-action in a cubically nonlinear medium . . . . . . . . . . 373
10.5 Symmetries and conservation laws for an evolution equation

describing beam propagation in a nonlinear medium . . . . . . . . . . . . . 379
10.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

11 Nonlinear Standing Waves, Resonance Phenomena and Frequency
Characteristics of Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
11.2 Methods of evaluation of the characteristics of nonlinear

resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
11.3 Standing waves and the Q-factor of a resonator filled with a

dissipating medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
11.4 Frequency responses of a quadratically nonlinear resonator . . . . . . . . 400
11.5 Q-factor increase under introduction of losses . . . . . . . . . . . . . . . . . . . 408
11.6 Geometric nonlinearity due to boundary motion . . . . . . . . . . . . . . . . . 412
11.7 Resonator filled with a cubically nonlinear medium . . . . . . . . . . . . . . 423
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

Appendix Fundamental Properties of Generalized Functions . . . . . . . . . . 441
A.1 Definition of generalized functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
A.2 Fundamental sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
A.3 Derivatives of generalized functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
A.4 The Leibniz formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
A.5 Derivatives of discontinuous functions . . . . . . . . . . . . . . . . . . . . . . . . . 453
A.6 Generalized functions of a composite argument . . . . . . . . . . . . . . . . . 456
A.7 Multidimensional generalized functions . . . . . . . . . . . . . . . . . . . . . . . . 458
A.8 Continuity equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

A.8.1 Singular solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
A.8.2 Green’s function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
A.8.3 Lagrangian and Eulerian coordinates . . . . . . . . . . . . . . . . . . . . 466

A.9 Method of characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471



Part I
Foundations of the Theory of Waves in

Nondispersive Media



Chapter 1
Nonlinear Equations of the First Order

The basic patterns of nonlinear fields and waves of the hydrodynamic type already
can be discerned by the behavior of solutions to the simplest nonlinear partial differ-
ential equations of the first order. This chapter discusses solutions of such equations.
Those wishing to study the theory of the first-order nonlinear equations more fully
are advised to turn to the following literature: [1–4].

1.1 Simple wave equation

The simplest and, at the same time, crucial equation of the nonlinear wave theory
of the hydrodynamic type is the simple wave equation. In what follows, we will pay
tribute to the remarkable mathematician Riemann, who laid the foundations of the
nonlinear wave theory, and call this equation the Riemann equation. In mathematical
literature, this equation is often called the Hopf equation. By using the equation as
an example it is most instructive to explain such typically nonlinear effects as the
wave steepening and gradient catastrophe.

1.1.1 The canonical form of the equation

The simple wave (Riemann) equation is the following first order partial differential
equation:

∂u
∂ t

+C(u)
∂u
∂x

= 0 (1.1)

with respect to the function u(x,t) which has different geometric, mechanical, eco-
nomic, etc. meanings in different applications.

By multiplying Eq. (1.1) by C ′(u), it is reduced to the equivalent, but simpler in
form, canonical Riemann equation:
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∂v
∂ t

+ v
∂v
∂x

= 0 (1.2)

with respect to the new function v(x,t) =C(u(x,t)). Thus, without loss of general-
ity, in what follows, we will limit ourselves to a detailed analysis of the Riemann
equation (1.2) with an initial condition v(x,t = 0) = v0(x). The following instructive
mechanical interpretation of solutions to the Riemann equation helps better famil-
iarize oneself with peculiarities of solutions to this equation.

1.1.2 Particle flow

The easiest way to comprehend properties of solutions to the Riemann equation is
by using a flow of particles uniformly moving along the x-axis as an example. Let
a particle at the point y at the initial moment of time t = 0 have the velocity v 0(y).
Then the particle’s motion is given by the following equations:

X(y,t) = y+ v0(y)t, V (y,t) = v0(y). (1.3)

By varying y, we obtain the laws of motion of other particles in the flow. Note
that apart from the time t, another argument y, the initial particle position, appears
here. Such coordinates, which are rigidly bound to the particles of a flow, are called
Lagrangian coordinates (a pictorial comparative discussion of flow descriptions in
the Lagrangian and Eulerian coordinate systems is given in textbook [4]).

Usually, an observer measures the velocity of a flow at some fixed position with
a Cartesian coordinate x. These, more natural for an external observer, coordinates
are called Eulerian. The mapping from the Lagrangian into Eulerian coordinates is
described by the following equation:

x= X(y,t). (1.4)

In the case of uniformly moving particles, this equation has the following form:

x= y+ v0(y)t. (1.5)

Let the field v(x,t) of particle velocities in a flow be given as a function of the
Eulerian coordinate x and time t. If, in addition to that, the mapping (1.4) of the La-
grangian to Eulerian coordinates is also known, then the dependence of the velocity
field on the Lagrangian coordinates is given by the following equation:

V (y,t) = v(X(y,t),t). (1.6)

In what follows, the fields describing the behavior of particles in the Lagrangian
coordinate system will be called the Lagrangian fields, and the fields in the Eulerian
coordinate system will be referred to as the Eulerian fields. So v(x,t) is the Eulerian
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particle-velocity field, and X(y,t) is the Lagrangian field of the Eulerian coordinates
of the particles.

From the uniformity of particle motion follows that the velocity V (y,t) of a par-
ticle with the Lagrangian coordinate y does not depend on time, i.e. it satisfies the
following simplest differential equation:

dV
dt

= 0, (1.7)

and its coordinate obeys a no less obvious equation:

dX
dt

=V. (1.8)

Equations (1.7) and (1.8) are nothing else than characteristic equations for the first
order partial differential equation (1.2). In order to reconstruct the solution of the
Riemann equation from the solutions of the characteristic equation (1.7), (1.8), it is
sufficient to find the inverse of function (1.4)

y= y(x,t),

which maps the Eulerian coordinates to the Lagrangian ones. If this function is
known, then, with provision for (1.3) and (1.6), the solution of the Riemann equa-
tions takes on the following form:

v(x,t) =V (y(x,t),t) = v0(y(x,t)). (1.9)

Let us emphasize that the single-valued inverse function y(x,t) exists, and
Eq. (1.9) gives the classical Riemann solution of Eq. (1.2), only if the mapping
from the Lagrangian coordinates to the Eulerian ones (1.4), (1.5) is a monotonically
increasing function y from R onto R. In the following chapter we will discuss in
detail what happens if this condition is violated. At the moment, let us assume that
it is satisfied.

1.1.3 Discussion of the Riemann solution

Let us discuss the characteristic peculiarities of the behavior of the Riemann solution
v(x,t) as a function of the x-coordinate and time t. But, before doing that, let us list
the main forms of notation for solutions of the Riemann equation. By substituting
y(x,t) for y in the equation of uniform motion of a particle (1.5)

y(x,t) = x− v0(y(x,t))t ⇒ y(x,t) = x− v(x,t)t (1.10)

and by inserting the right-hand side of this expression into Eq. (1.9), we obtain the
implicit form of the Riemann solution:

v(x,t) = v0(x− v(x,t)t). (1.11)
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After elementary computations, an even more direct form of the Riemann solution
follows from Eq. (1.10):

v(x,t) =
x− y(x,t)

t
. (1.12)

Its meaning is absolutely clear: the velocity v of a uniformly moving particle is equal
to the distance x−y travelled by the particle by the moment of time t, divided by the
total time of motion. In what follows, a deeper mechanical and geometric meaning
of the expression (1.12) will be uncovered.

While constructing a plot of an Eulerian field v(x,t), it is convenient to employ
Lagrangian fields and to construct v(x,t) parametrically:

x= y+ v0(y)t, v= v0(y). (1.13)

The Riemann solution in Fig. 1.1 is so constructed in the case when the initial profile
of the velocity field has a Gaussian form:

v0(x) =V0 exp

(
− x

2

2�2

)
. (1.14)

This figure shows, in the following dimensionless variables

z=
x
�
, τ =

V0

�
t, (1.15)

the velocity field at the moment of time τ = 1. It also depicts (dashed line) the initial
velocity v0(x). Arrows show particle displacements travelled during the time inter-
val τ . It is seen that the greater the velocity of a particle, the greater the displacement
travelled by the particle during a time interval. This leads to the steepening of the
front of the field v(x,t) on the right-hand-side and to the stretching of the left front.

1.1.4 Compressions and expansions of the particle flow

The steepening of the right part of the velocity-field profile v(x,t) in Fig. 1.1 is
accompanied by the thickening of the particle flow. Indeed, particles within the left-
hand-side of this interval have a greater velocity than the particles on the right-
hand-side. As a result, the faster left particles in time catch up with the slower right
particles. On the contrary, the expansion of the left part of the velocity-field profile
v(x,t) leads to the rarefaction of the flow. Quantitatively, the measure of rarefaction
of different parts of a flow is expressed by a Jacobian, which, in the one-dimensional
case, is equal to

J(y,t) =
∂X(y,t)
∂y

. (1.16)

For uniformly moving particles, whose law of motion is given by Eq. (1.5), the
Jacobian is equal to
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Fig. 1.1 The Riemann solu-
tion in the case of a Gaussian
initial field.

Fig. 1.2 Particle motion pattern X(y, t) (left) and the corresponding Lagrangian divergence field
J(y, t) (right) at different moments of time. It is seen that compressed and expanded parts appear
in the flow, where J(y, t) is not equal to unity.

J(y,t) = 1+ v′0(y)t. (1.17)

The greater the Jacobian at a given value of y, the more rarefied the flow in a vicinity
of the particle with the Lagrangian coordinate y. For this reason, let us call J(y,t)
the flow’s divergence. A plot of the law of motion X(y,t) and the corresponding
divergence for uniformly moving particles (whose Eulerian field obeys the Riemann
equation (1.2) with the initial condition (1.14)), are depicted in Fig. 1.2.

The field J(y,t) (1.16) is a Lagrangian divergence field. The corresponding Eu-
lerian field is obviously equal to

j(x,t) = J(y(x,t),t) ⇐⇒ J(y,t) = j(X(y,t),t). (1.18)

If the rule for transformation of Eulerian coordinates into Lagrangian ones y(x,t) is
known, the divergence field can be determined by a more direct method by means
of the following geometrically evident expression:

∂y(x,t)
∂x

=
1

j(x,t)
. (1.19)



8 1 Nonlinear Equations of the First Order

1.1.5 Continuity equation

A natural question arises in the framework of the mechanical interpretation of the
solution to the Riemann equation (1.2) as the velocity field of a flow of uniformly
moving particles: how does their density ρ(x,t) change in time and space? It is
known that the density obeys the universal continuity equation, which describes the
law of mass conservation of the particles in a flow. Let us derive this equation by
using a method, which allows one better to understand the following analysis of
solutions to partial differential nonlinear equations.

Let, for definiteness, the initial particle density of a flow ρ0(x) be such that the
mass of particles to the left of any point x

m0(x) =
∫ x

−∞
ρ0(z)dz

is finite. Let the function m(x,t) describe the variation of the mass of particles to
the left of an arbitrary x. Like the velocity field v(x,t), this is an Eulerian field.
Knowing the law of particle motion X(y,t), it is easy to make a transformation from
the Eulerian left-mass field to the corresponding Lagrangian field:

M(y,t) =m(X(y,t),t).

The latter is easily obtained from obvious physical considerations. Indeed, if by
the current moment of time t the particles have not overtaken each other (have not
swapped places), the mass of particles on the left from any point with the Lagrangian
coordinate y does not depend on time:

M(y,t) =
∫ y

−∞
ρ0(z)dz= m0(y). (1.20)

In other words, the Lagrangian mass field on the left satisfies the following equation:

dM
dt

= 0.

The equivalent to it equation of the Eulerian field is

∂m
∂ t

+ v
∂m
∂x

= 0. (1.21)

Now let us determine the particle density. In the one-dimensional case, the Eulerian
density field is equal to the derivative of the mass on the left:

ρ(x,t) =
∂m(x,t)
∂x

. (1.22)

Hence, by differentiating Eq. (1.21) term by term with respect to x, we arrive at the
sought-for one-dimensional variant of the continuity equation:
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∂ρ
∂ t

+
∂
∂x

(vρ) = 0. (1.23)

Note. Let us note that while deriving the continuity equation, we nowhere used
the fact of the uniformity of motion. Therefore, in this derivation, the universality
of the continuity equation has been exhibited, which holds for any laws of particle
motion.

1.1.6 Construction of the density field

In order to find a solution of the continuity equation (1.23), let us write down the
Eulerian mass field on the left. From Eq. (1.20) and the link between Lagrangian
and Eulerian fields follows that

M(y,t) = m0(y) ⇐⇒ m(x,t) = m0(y(x,t)). (1.24)

By differentiating the last equation with respect to x, we obtain

ρ(x,t) = ρ0(y(x,t))
∂y(x,t)
∂x

(1.25)

or, by taking Eq. (1.19) into account,

ρ(x,t) =
ρ0(y(x,t))
j(x,t)

⇐⇒ R(y,t) =
ρ0(y)
J(y,t)

. (1.26)

These formulas have an apparent geometric meaning: the flow density at any point
is equal to the initial density in a vicinity of the particle at this point divided by the
degree of compression of particles.

Let us separately discuss the density of a flow of uniformly moving particles,
whose velocity field v(x,t) obeys the Riemann equation, and y(x,t) is given by
(1.10). Here, as it is seen from (1.25), (1.10), the flow density is expressed via the
solution of the Riemann equation in the following way:

ρ(x,t) = ρ0 (x− v(x,t)t)
(

1− ∂v(x,t)
∂x

t
)

. (1.27)

In particular, when the initial density is uniform, i.e. if ρ 0 = const does not depend
on x, the density is described by the following relation:

ρ(x,t) = ρ0

(
1− ∂v(x,t)

∂x
t
)

, (1.28)

which demonstrates a close link between the density of a flow and the steepening of
its velocity-field profile.
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Fig. 1.3 Density of uniformly
moving particles with a Gaus-
sian initial velocity field
(1.14) and a constant initial
density ρ(x, t = 0) = ρ0.

As in the case of the velocity field, it is convenient to plot the density of a flow
of uniformly moving particles parametrically, by using the fact that the Lagrangian
laws of flow evolution are given explicitly:

x= y+ v0(y)t, ρ =
ρ0(y)

1+ v′0(y)t
. (1.29)

The plots of ρ(x,t) in Fig. 1.3 are constructed in this way.

1.1.7 Momentum-conservation law

Apart from the mass conservation law, a flow of uniformly moving particles also
possesses an infinite set of invariants (see, e.g., [3, 5]). Most of them do not have
any significant physical meaning, while others, for instance the law of conservation
of momentum, play a paramount role in physical applications. Here, we discuss this
law in more detail.

Let us remind you, that the total momentum of particles to the left of a point x is
equal

p(x,t) =
∫ x

−∞
v(x,t)ρ(x,t)dx.

By substituting here Eqs. (1.9) and (1.25) for the velocity and density of a flow,
respectively, and then by changing to integration with respect to the Lagrangian
coordinate, we reduce the expression for the momentum on the left to the following
form:

p(x,t) =
∫ x

−∞
v0(y(x,t))ρ0(x(y,t))

∂y(x,t)
∂x

dx=
∫ y(x,t)

−∞
v0(y)ρ0(y)dy.

From here, it is seen that, for uniformly moving particles, the Lagrangian field of
the momentum on the left does not depend on time:

P(y,t) = p0(y) =
∫ y

−∞
ρ0(y)v0(y)dy. (1.30)
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Hence, in analogy with the mass on the left, the corresponding Eulerian field of the
momentum on the left obeys the following equation:

∂ p
∂ t

+ v
∂ p
∂x

= 0, (1.31)

and the momentum density

g(x,t) = ρ(x,t)v(x,t) =
∂ p(x,t)
∂x

satisfies the continuity equation

∂g
∂ t

+
∂
∂x

(vg) = 0. (1.32)

Note 1. It is easy to derive this equation as a corollary of the Riemann equa-
tion (1.2) and the continuity equation (1.23). But we have deliberately chosen the
round-about “integral” method, for it will help, in the following, construct general-
ized solutions of the equations mentioned here.

Note 2. Since the momentum density obeys the same equation as the simple
density ρ(x,t), we obtain expressions for the Eulerian and Lagrangian momentum-
density fields “gratis” by substituting the initial momentum for the initial density in
(1.26):

g(x,t) =
ρ0(y(x,t))v0(y(x,t))

j(x,t)
⇐⇒ G(y,t) =

ρ0(y)v0(y)
J(y,t)

. (1.33)

1.1.8 Fourier transforms of density and velocity

In applications, it is often important to know not the fields themselves, but their
spectra. Therefore we will find expressions for the spatial Fourier transforms of the
velocity and density. Let us start with the density

ρ̃(κ ,t) =
1

2π

∫ ∞

−∞
e−iκxρ(x,t) dx. (1.34)

By substituting the solution of the continuity equation found earlier (1.25) into the
integral (1.34), we obtain

ρ̃(κ , t) =
1

2π

∫ ∞

−∞
e−iκxρ0(y(x,t))dy(x,t).

By transforming to integration with respect to the Lagrangian coordinate, we finally
obtain

ρ̃(κ ,t) =
1

2π

∫ ∞

−∞
e−iκX(y,t)ρ0(y)dy. (1.35)
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More unwieldy calculations, based on the same idea of transformation to inte-
gration with respect to the Lagrangian coordinates in the Fourier integral, give

ṽ(κ ,t) =
i

2πκt

∫ ∞

−∞

[
e−iκX(y,t)− e−iκy

]
dy. (1.36)

A discussion of this solution can be found in monograph [6].

Example. Generation of harmonics. Formulas (1.35) and (1.36) are remarkable
in that they express the Fourier transforms of implicitly given (e.g. by Eq. (1.11))
fields ρ(x,t) and v(x,t) via integrals of explicitly given functions.

Let us use this opportunity to find an explicit expression for the Fourier transform
of the density ρ(x,t) in the case of the initial harmonic field and uniform density

v0(x) = asin(kx), ρ0(x) = ρ0 = const. (1.37)

In doing so, we need the following formula from the theory of Bessel functions:

eiwsinz =
∞

∑
n=−∞

Jn(w)einz. (1.38)

In the case under study, the law of transformation from Lagrangian to Eulerian
coordinates is given as

x= X(y,t) = y+at sin(ky). (1.39)

By substituting this equality into (1.35), we obtain

ρ̃(κ ,t) =
ρ0

2πk

∫ ∞

−∞
e−iμz−iμτ sinz dz.

Here we introduced the dimensionless variable of integration z = ky, time τ = kat
and spatial frequency μ = κ/k. By taking Eq. (1.38) into account we obtain

ρ̃(κ , t) = ρ0

∞

∑
n=−∞

Jn(−μτ) 1
2πk

∫ ∞

−∞
e−i(μ−n)z dz.

According to the theory of generalized functions, the last integral (see, e.g., [7, 8])
has the form:

1
2πk

∫ ∞

−∞
e−i(μ−n)z dz=

1
k
δ (μ− n) = δ (κ− kn).

From this and the previous expression, it follows that the density field investigated
here possess the following generalized Fourier transform:

ρ̃(κ ,t) = ρ0

∞

∑
n=−∞

Jn(−nτ)δ (κ− kn).

By substituting it into the inverse Fourier integral
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Fig. 1.4 Plot of ρ(x, t) for the
initial harmonic velocity field
and the uniform density (1.37)
at τ = akt = 0.7. Profiles of
the first two (one harmonic
term) and eleven terms of the
Fourier series are also shown.
It is seen that the profile of the
last sum nearly coincides with
the density profile.

ρ(x,t) =
∫ ∞

−∞
ρ̃(κ ,t)eiκx dκ

and taking the symmetry properties of the Bessel function

J−n(−w) = Jn(w) (1.40)

into account, we arrive at the explicit expression for the density field in the form of
a Fourier series:

ρ(x,t) = ρ0 + 2ρ0

∞

∑
n=1

(−1)nJn(nτ)cos(kx). (1.41)

Comparison between the sum of the first terms of this series and the exact density
profile constructed parametrically by means of Eqs. (1.29), shows that a few first
terms of Fourier series already give a good approximation to the exact solution.

1.2 Line-growth equation

Let us discuss one more of numerous applications of the first order nonlinear par-
tial differential equations: analysis of line and surface growth. It may be: deposited
surface of an electronic chip, wave front of a light wave, shock wave of a jet plane
and a fire line consuming a forest. All of these surfaces and lines are described by
nonlinear partial differential equations (see, e.g., [9–12]). The simplest example of
these equations is given below.

1.2.1 Forest-fire propagation

Let a fire move within a forest. In order mathematically to describe the process
of fire propagation, we assume that the surface of the forest is flat and introduce
within this plane the Cartesian coordinates (x,z). Let us direct the z-axis along the
predominant direction of the fire. As a result, it is possible to describe the fire-front
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Fig. 1.5 Fire line and its
tendency to grow

line by a function
z= h(x,t). (1.42)

It is natural to assume that a fire spreads perpendicularly to the line of fire h(x,t)
with a speed c. This means that if one selects a point {y,h(y,t = 0)} on the line of
fire at the initial moment of time t = 0 and traces its motion along the trajectory
perpendicular to the lines of fire, as it is seen in Fig. 1.5, then the velocity of the
point will be equal to c. Let the coordinates of the specified point change with time
according to the laws {X(t), Z(t)}. Let us call the trajectory of the point’s motion a
ray.

From what has just been said, it is clear that the coordinates of the ray satisfy the
equations:

dX
dt

= csinθ ,
dZ
dt

= ccosθ , (1.43)

where θ is the angle between the ray and the z-axis. Further we note that the vertical
coordinate Z(t) of the ray can be expressed in terms of the fire line (1.42):

Z(t) = h(X(t),t). (1.44)

By substituting this equality into the second of Eqs. (1.43), we obtain

∂h
∂ t

+
dX
dt

∂h
∂x

= ccosθ

or, by taking the first of Eqs. (1.43) into account, we arrive at the partial differential
equation for the sought-for line of fire h(x,t):

∂h
∂ t

+ csinθ
∂h
∂x

= ccosθ . (1.45)

It would seem that the equation is not closed, because it links two functions: the
line of fire h(x,t) and the angle θ (x,t) between the z-axis and the normal to the
line of fire. However, it is easy to make it closed by using the obvious geometric
relationship between the line h(x,t) and the angle θ :

∂h
∂x

=− tanθ . (1.46)

In terms of the last result, Eq. (1.45) can be rewritten as
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Fig. 1.6 Geometric illustra-
tion of the validity of the
equation (1.47)

∂h
∂ t

=
c

cosθ
. (1.47)

Finally, by noting that

cosθ =
1√

1+ tan2 θ
,

we obtain the final form of the sought-for equation:

∂h
∂ t

= c

√
1+

(
∂h
∂x

)2

. (1.48)

Note 1. At first, it seems that the juggling with analytical transformations has
led to an absurd from the point of view of the common geometric sense Eq. (1.47).
Indeed, one would think, the more the normal to the line h(x,t) deviates from z-axis,
i.e. the greater the angle θ between the z-axis and the direction of line growth, the
slower the line h(x,t) must grow along the axis z. But the Eq. (1.47) signifies that
the greater θ , the faster the growth, and at θ = π/2 the growth rate becomes infinite.
However, an accurate geometric study convinces one in the validity of Eq. (1.47).
Relevant geometrical constructions are given in Fig. 1.6, where fragments of the line
h(x,t) are shown at close moments of time t and t+Δ . It is seen that the increment
of the line’s height at an arbitrary point x

Δh= h(x,t+Δ)−h(x,t)≈ cΔ
cosθ

is inversely proportional to cosθ . Perhaps this geometric derivation will convince
someone of the correctness of Eqs. (1.47) and (1.48) sooner than the above-stated
formal analysis.

Note 2. If the speed in Eq. (1.48) is negative (c< 0), we obtain the equation not
for growth, but for decay of the line h(x,t). Accordingly, Eq. (1.48) will describe,
e.g., the melting of ice in a glass of water or hull corrosion of an oceanic ship.

Note 3.We deliberately called the trajectory {X(t),Z(t)} perpendicular to the fire
front a ray. This is because the wavefront of an optic wave obeys the above-stated
law of propagation perpendicularly to the front with a given speed. The lines, every-



16 1 Nonlinear Equations of the First Order

where perpendicular to the wave fronts, by definition, are optic rays. Thus Eq. (1.48)
represents a one-dimensional version of the equations describing evolution of wave-
fronts of optic waves.

Note 4. Typically, optic waves propagate in a preferential direction — at small
angles to it. If the preferential direction of the optic wave is directed along the z-axis,
then tilt angles of rays to the z-axis are small, and instead of Eq. (1.48) a simpler,
approximate equation is used. That is the following substitutions are used:

−∂h
∂x

= tanθ ≈ θ ,
√

1+ tan2 θ ≈ 1+
1
2

(
∂h
∂x

)2

and Eq. (1.48) is rewritten as

∂h
∂ t

= c+
c
2

(
∂h
∂x

)2

.

For a plane wave propagating exactly along the z-axis, this equation has a simple so-
lution: h= ct. If we are interested only in the shape of wavefront, and not in its exact
position, then one can exclude the indicated trivial forward motion (translation) by
introducing a new function:

w(x,t) = h(x,t)− ct. (1.49)

The latter satisfies a more elegant equation:

∂w
∂ t

=
c
2

(
∂w
∂x

)2

. (1.50)

1.2.2 Anisotropic surface growth

Let us introduce the following new notation

u(x,t) =−∂h(x,t)
∂x

. (1.51)

Recall that u= tanθ characterizes the direction of surface growth. Therefore, u(x,t)
came to be called a tilt-angle field. Sometimes the surface is growing at different
speeds in different directions [9]. For example, during the propagation of an optic
wave in an anisotropic medium, or the melting of glaciers, when the melt rate de-
pends on the angle at which a part of the glacier surface is facing the sun. Let us
take an anisotropy of growth into account assuming that the speed depends on u and
transform from Eq. (1.47) to a more general equation:

∂h
∂ t

= Φ(u), h(x,t = 0) = h0(x), (1.52)


