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Preface

Over the past few decades, scientific research became increasingly dependent
on large-scale numerical simulations to assist the analysis and comprehension of
physical phenomena. This in turn has led to an increasing dependence on scientific
visualization, i.e., computational methods for converting masses of numerical data
to meaningful images for human interpretation.

In recent years, the size of these data sets has increased to scales which vastly
exceed the ability of the human visual system to absorb information, and the
phenomena being studied have become increasingly complex. As a result, scientific
visualization, and scientific simulation which it assists, have given rise to systematic
approaches to recognizing physical and mathematical features in the data.

Of these systematic approaches, one of the most effective has been the use of
a topological analysis, in particular computational topology, i.e., the topological
analysis of discretely sampled and combinatorially represented data sets. As
topological analysis has become more important in scientific visualization, a need
for specialized venues for reporting and discussing related research has emerged.

This book results from one such venue: the Fourth Workshop on Topology Based
Methods in Data Analysis and Visualization (TopoInVis 2011), which took place
in Zürich, Switzerland, on April 4–6, 2011. Originating in Europe with successful
workshops in Budmerice, Slovakia (2005), and Grimma, Germany (2007), this
workshop became truly international with TopoInVis 2009 in Snowbird, Utah,
USA (2009). With 43 participants, TopoInVis 2011 continues this run of successful
workshops, and future workshops are planned in both Europe and North America
under the auspices of an international steering committee of experts in topological
visualization, and a dedicated website at http://www.TopoInVis.org/.

The program of TopoInVis 2011 included 20 peer-reviewed presentations and
two keynote talks given by invited speakers. Martin Rasmussen, Imperial College,
London, addressed the ongoing efforts of our community to formulate a vector field
topology for unsteady flow. His presentation An introduction to the qualitative the-
ory of nonautonomous dynamical systems was highly appreciated as an illustrative
introduction into a difficult mathematical subject. The second keynote, Looking
for intuition behind discrete topologies, given by Thomas Lewiner, PUC-Rio,
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Rio de Janeiro, picked up another topic within the focus of current research, namely
combinatorial methods, for which his talk gave strong motivation. At the end of the
workshop, Dominic Schneider and his coauthors were given the award for the best
paper by a jury.

Nineteen of the papers presented at TopoInVis 2011 were revised and, in a second
round of reviewing, accepted for publication in this book. Based on the major topics
covered, the papers have been grouped into four parts.

The first part of the book is concerned with computational discrete Morse theory,
both in 2D and in 3D. In 2D, Reininghaus and Hotz applied discrete Morse theory
to divergence-free vector fields. In contrast, Günther et al. present a combinatorial
algorithm to construct a hierarchy of combinatorial gradient vector fields in 3D,
while Gyulassy and Pascucci provide an algorithm that computes the distinct cells of
the MS complex connecting two critical points. Finally, an interesting contribution
is also made by Reich et al. who developed a combinatorial vector field topology
in 3D.

In Part 2, hierarchical methods for extracting and visualizing topological struc-
tures such as the contour tree and Morse-Smale complex were presented. Weber
et al. propose an enhanced method for contour trees that is able to visualize two
additional scalar attributes. Harvey et al. introduce a new clustering-based approach
to approximate the Morse–Smale complex. Finally, Wagner et al. describe how to
efficiently compute persistent homology of cubical data in arbitrary dimensions.

The third part of the book deals with the visualization of dynamical systems, vec-
tor and tensor fields. Tricoche et al. visualize chaotic structures in area-preserving
maps. The same problem was studied by Sanderson et al. in the context of an
application, namely the structure of magnetic field lines in tokamaks, with a focus on
the detection of islands of stability. Jadhav et al. present a complete analysis of the
possible mappings from inflow boundaries to outflow boundaries in triangular cells.
A novel algorithm for pathline placement with controlled intersections is described
by Weinkauf et al., while Wiebel et al. propose glyphs for the visualization of
nonlinear vector field singularities. As an interesting result in tensor field topology,
Lin et al. present an extension to asymmetric 2D tensor fields.

The final part is dedicated to the topological visualization of unsteady flow.
Kasten et al. analyze finite-time Lyapunov exponents (FTLE) and propose alterna-
tive realizations of Lagrangian coherent structures (LCS). Schindler et al. investigate
the flux through FTLE ridges and propose an efficient, high-quality alternative
to height ridges. Pobitzer et al. present a technique for detecting and removing
false positives in LCS computation. Schneider et al. propose an FTLE-like method
capable of handling uncertain velocity data. Sadlo et al. investigate the time
parameter in the FTLE definition and provide a lower bound. Finally, Fuchs et al.
explore scale-space approaches to FTLE and FTLE ridge computation.

Acknowledgements TopoInVis 2011 was organized by the Scientific Visualization Group of
ETH Zurich, the Visualization Group at the University of Bergen, and the Visualization and
Virtual Reality Group at the University of Leeds. We acknowledge the support from ETH Zurich,
particularly for allowing us to use the prestigious Semper Aula in the main building. The Evento
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Research of the European Commission, under FET-Open grant number 226042.
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Part I
Discrete Morse Theory



Computational Discrete Morse Theory
for Divergence-Free 2D Vector Fields

Jan Reininghaus and Ingrid Hotz

1 Introduction

We introduce a robust and provably consistent algorithm for the topological analysis
of divergence-free 2D vector fields.

Topological analysis of vector fields has been introduced to the visualization
community in [10]. For an overview of recent work in this field we refer to Sect. 2.
Most of the proposed algorithms for the extraction of the topological skeleton
try to find all zeros of the vector field numerically and then classify them by an
eigenanalysis of the Jacobian at the respective points. This algorithmic approach
has many nice properties like performance and familiarity. Depending on the data
and the applications there are however also two shortcomings.

1.1 Challenges

If the vector field contains plateau like regions, i.e. regions where the magnitude
is rather small, these methods have to deal with numerical problems and may lead
to topologically inconsistent results. This means that topological skeletons may be
computed that cannot exist on the given domain. A simple example for this problem
can be given in 1D. Consider an interval containing exactly three critical points as
shown in Fig. 1a. While it is immediately clear that not all critical points can be of
the same type, an algorithm that works strictly locally using numerical algorithms
may result in such an inconsistent result. A second problem that often arises is that

J. Reininghaus (�) � I. Hotz
Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
e-mail: reininghaus@zib.de; hotz@zib.de

R. Peikert et al. (eds.), Topological Methods in Data Analysis and Visualization II,
Mathematics and Visualization, DOI 10.1007/978-3-642-23175-9 1,
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4 J. Reininghaus and I. Hotz

Fig. 1 Illustration of the algorithmic challenges. (a) shows 1D function with a plateau-like region.
From the topological point of view the critical point in the middle needs to be a maximum since
it is located between the two minima on the left and on the right side. However, depending on the
numerical procedure the determination of its type might be inconsistent. (b) illustrates a noisy 1D
function. Every fluctuation caused by the noise generates additional minima and maxima

of noise in the data. Depending on its type and quantity, a lot of spurious critical
points may be produced as shown in Fig. 1b. Due to the significance of this problem
in practice, a lot of work has been done towards robust methods that can deal with
such data, see Sect. 2.

1.2 Contribution

This paper proposes an application of computational discrete Morse theory for
divergence-free vector fields. The resulting algorithm for the topological analysis
of such vector fields has three nice properties:

1. It provably results in a set of critical points that is consistent with the topology
of the domain. This means that the algorithm cannot produce results that are
inadmissible on the given domain. The consistency of the algorithm greatly
increases its robustness as it can be interpreted as an error correcting code.
We will give a precise definition of topological consistency for divergence-free
vector fields in Sect. 3.

2. It allows for a simplification of the set of critical points based on an importance
measure related to the concept of persistence [5]. Our method may therefore
be used to extract the structurally important critical points of a divergence-free
vector field and lends itself to the analysis of noisy data sets. The importance
measure has a natural physical interpretation and is described in detail in Sect. 4.

3. It is directly applicable to vector fields with only near zero divergence. These
fields often arise when divergence-free fields are numerically approximated or
measured. This property in demonstrated in Sect. 5.
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2 Related Work

Vector field topology was introduced to the visualization community by Helman
and Hesselink [11]. They defined the concept of a topological skeleton consisting
of critical points and connecting separatrices to segment the field into regions of
topologically equivalent streamline behavior. A good introduction to the concepts
and algorithms of vector field topology is given in [30], while a systematic survey
of recent work in this field can be found in [15].

As the topological skeleton of real world data sets is usually rather complex, a
lot of work has been done towards simplification of topological skeletons of vector
fields, see [14, 28, 29, 31].

To reduce the dependence of the algorithms on computational parameters like
step sizes, a combinatorial approach to vector field topology based on Conley index
theory has been developed [3, 4]. In the case of divergence-free vector fields their
algorithm unfortunately encounters many problems in practice.

For scalar valued data, algorithms have been developed [1, 8, 13, 16, 25] using
concepts from discrete Morse theory [7] and persistent homology [5]. The basic
ideas in these algorithms have been generalized to vector valued data in [23, 24]
based on a discrete Morse theory for general vector fields [6]. This theory however
is not applicable for divergence-free vector fields since it does not allow for center-
like critical points. Recently, a unified framework for the analysis of vector fields
and gradient vector fields has been proposed in [22] under the name computational
discrete Morse theory.

Since vector field data is in general defined in a discrete fashion, a discrete
treatment of the differential concepts that are necessary in vector field topology has
been shown to be beneficial in [21, 27]. They introduced the idea that the critical
points of a divergence-free vector field coincide with the extrema of the scalar
potential of the point-wise-perpendicular field to the visualization community. The
critical points can therefore be extracted by reconstructing this scalar potential and
extracting its minima, maxima, and saddle points. In contrast to our algorithm, their
approach does not exhibit the three properties mentioned in Sect. 1.

3 Morse Theory for Divergence-Free 2D Vector Fields

This section shows how theorems from classical Morse theory can be applied in the
context of 2D divergence-free vector fields.

3.1 Vector Field Topology

A 2D vector field v is called divergence-free if r � v D 0. This class of vector fields
often arises in practice, especially in the context of computational fluid dynamics.
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For example, the vector field describing the flow of an incompressible fluid, like
water, is in general divergence-free. The points at which a vector field v is zero
are called the critical points of v. They can be classified by an eigenanalysis of
the Jacobian Dv at the respective critical point. In the case of divergence-free 2D
vector fields one usually distinguishes two cases [10]. If both eigenvalues are real,
then the critical point is called a saddle. If both eigenvalues are imaginary, then
the critical point is called a center. Note that one can classify a center furthermore
into clockwise rotating (CW-center) or counter-clockwise rotating (CCW-center) by
considering the Jacobian as a rotation.

One consequence of the theory that will be presented in this section is that
the classification of centers into CW-centers and CCW-centers is essential from a
topological point of view. One can even argue that this distinction is as important
as differentiating between minima and maxima when dealing with gradient vector
fields.

3.2 Morse Theory

The critical points of a vector field are often called topological features. One
justification for this point of view is given by Morse theory [17]. Loosely speaking,
Morse theory relates the set of critical points of a vector field to the topology of
the domain. For example, it can be proven that every continuous vector field on a
sphere contains at least one critical point. To make things more precise we restrict
ourselves to gradient vector fields defined on a closed oriented surface. The ideas
presented below work in principal also for surfaces with boundary, but the notation
becomes more cumbersome. To keep things simple, we therefore assume that the
surface is closed. We further assume that all critical points are first order, i.e. the
Jacobian has full rank at each critical point. Let c0 denote the number of minima,
c1 the number of saddles, c2 the number of maxima, and g the genus of the surface.
We then have the Poincaré-Hopf theorem

c2 � c1 C c0 D 2 � 2g; (1)

the weak Morse inequalities

c0 � 1; c1 � 2g; c2 � 1; (2)

and the strong Morse inequality

c1 � c0 � 2g � 1: (3)
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3.3 Helmholtz-Hodge Decomposition

To apply these theorems from Morse theory to a divergence-free vector field v
we can make use of the Helmholtz-Hodge decomposition [12]. Let r �  D
.@y ; �@x / denote the curl operator in 2D. We then have the orthogonal
decomposition

v D r� C r �  C h: (4)

We can thereby uniquely decompose v into an irrotational part r�, a solenoidal part
r � , and a harmonic part h, i.e.�h D 0. Due to the assumption that the surface is
closed, the space of harmonic vector fields coincides with the space of vector fields
with zero divergence and zero curl [26]. Since v is assumed to be divergence-free
we have 0 D r � v D r � r� which implies � D 0 due to (4). The harmonic-free
part Ov D v � h can therefore be expressed as the curl of a scalar valued function

Ov D r �  : (5)

3.4 Stream Function

The function is usually referred to as the stream function [19]. Let Ov? D .v2;�v1/
denote the point-wise perpendicular vector field of Ov D .v1; v2/. The gradient of the
stream function is then given by

r D Ov?: (6)

Note that Ov has the same set of critical points as Ov? . The type of its critical points is
however changed: CW-center become minima, and CCW-center become maxima.
Since (6) shows that Ov? is a gradient vector field, we can use this identification to see
how (1)–(3) can be applied to the harmonic-free part of divergence-free 2D vector
fields.

3.5 Implications

The dimension of the space of harmonic vector fields is given by 2g [26]. A vector
field defined on a surface which is homeomorphic to a sphere is therefore always
harmonic-free, i.e. Ov D v. Every divergence-free vector field on a sphere which only
contains first order critical points therefore satisfies (1)–(3). For example, every such
vector field contains at least one CW-center and one CCW-center.

Due to the practical relevance in Sect. 5 we note that every divergence-free vector
field defined on a contractible surface can be written as the curl of a stream function
 as shown by the Poincaré-Lemma. For such cases, the point-wise perpendicular
vector field can therefore also be directly interpreted as the gradient of the stream
function.
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4 Algorithmic Approach

4.1 Overview

We now describe how we can apply computational discrete Morse theory to
divergence-free vector fields. Let v denote a divergence-free vector field defined
on an oriented surface S . The first step is to compute the harmonic-free part Ov
of v. If S is contractible or homeomorphic to a sphere, then v is itself the curl of
a stream function  , i.e. Ov D v . Otherwise, we need to compute the Helmholtz-
Hodge decomposition (4) of v to get its harmonic part. To do this, one can employ
the algorithms described in [20, 21, 27].

We now make use of the fact that the point-wise perpendicular vector field Ov?
has the same critical points as Ov. Due to (5), we know that Ov? is a gradient vector
field. To compute and classify the critical points of the divergence-free vector field
Ov it therefore suffices to analyze the gradient vector field Ov?.

One approach to analyze the gradient vector field Ov? would be to compute a
scalar valued function  such that Ov? D r . One can then apply one of the
algorithms mentioned in Sect. 2 to extract a consistent set of critical points. In
this paper, we will apply an algorithm from computational discrete Mose theory
to directly analyze the gradient vector field Ov?. The main benefit of this approach
is that it allows us to consider Ov? as a gradient vector field even if it contains a
small amount of curl. This is a common problem in practice, since a numerical
approximation or measurement of a divergence-free field often contains a small
amount of divergence. By adapting the general approach presented in [22], we
can directly deal with such fields with no extra pre-processing steps. Note that
the importance measure for the critical points of a gradient vector field has a nice
physical interpretation in the case of rotated stream functions. This will be explained
in more detail below.

4.2 Computational Discrete Morse Theory

The basic idea in computational discrete Morse theory is to consider Forman’s
discrete Morse theory [7] as a discretization of the admissible extremal struc-
tures of a given surface. The extremal structure of a scalar field consists of
critical points and separatrices – the integral lines of the gradient field that
connect the critical points. Using this description of the topologically consistent
structures we then define an optimization problem that results in a hierarchy of
extremal structures that represents the given input data with decreasing level of
detail.
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4.2.1 Definitions

LetC denote a finite regular cell complex [9] that represents the domain of the given
vector field. Examples of such cell complexes that arise in practice are triangulations
or quadrangular meshes. We first define its cell graph G D .N;E/, which encodes
the combinatorial information contained in C in a graph theoretic setting.

The nodesN of the graph consist of the cells of the complexC and each node up

is labeled with the dimension p of the cell it represents. The edges E of the graph
encode the neighborhood relation of the cells in C . If the cell up is in the boundary
of the cell wpC1, then ep D fup;wpC1g 2 E. We refer to Fig. 2a for an example of
a simple cell graph. Note that we additionally label each edge with the dimension
of its lower dimensional node.

A subset of pairwise non-adjacent edges is called a matching. Using these
definitions, a combinatorial vector field V on a regular cell complex C can be
defined as a matching of the cell graph G, see Fig. 2a for an example. The set of
combinatorial vector fields on C is thereby given by the set of matchings M of the
cell graph G.

We now define the extremal structure of a combinatorial vector field. The
unmatched nodes are called critical points. If up is a critical point, we say that the
critical point has index p. A critical point of index p is called sink .p D 0/, saddle
.p D 1/, or source .p D 2/. A combinatorial p-streamline is a path in the graph
whose edges are of dimension p and alternate between V and its complement. A
p-streamline connecting two critical points is called a p-separatrix. If a p-
streamline is closed, we call it either an attracting periodic orbit .p D 0/ or a
repelling periodic orbit .p D 1/. For examples of these combinatorial definitions of
the extremal structure we refer to Figs. 2b–d.

As shown in [2], a combinatorial gradient vector field V � can be defined as a
combinatorial vector field that contains no periodic orbits. A matching of G that
gives rise to such a combinatorial vector field is called a Morse matching. The set
of combinatorial gradient vector fields on C is therefore given by the set of Morse
matchings M of the cell graph G. In the context of gradient vector fields, we refer
to a critical point up as a minimum .p D 0/, saddle .p D 1/, or maximum .p D 2/.

0
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1
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Fig. 2 Basic definitions. (a) a combinatorial vector field (dashed) on the cell graph of a single
triangle. The numbers correspond to the dimension of the represented cells, and matched nodes are
drawn solid. (b) a critical point of index 0. (c) a 0-separatrix. (d) an attracting periodic orbit
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We now compute edge weights! W E ! R to represent the given vector field Ov?.
The idea is to assign a large weight to an edge ep D fup;wpC1g if an arrow pointing
from up to wpC1 represents the flow of Ov? well. The weight for ep is therefore
computed by integrating the tangential component of the vector field Ov? along the
edge ep .

4.2.2 Computation

We can now define the optimization problem

V
�

k D arg max
M2M� ; jM jDk

!.M/: (7)

Let k0 D arg maxk2N !.Vk/ denote the size of the maximum weight matching,
and let kn D maxk2N jVkj denote the size of the heaviest maximum cardinality
matching. The hierarchy of combinatorial gradient vector fields that represents the
given vector field Ov? with decreasing level of detail is now given by

V � D
�
V
�

k

�
kDk0;:::;kn

: (8)

For a fast approximation algorithm for (8) and the extraction of the extremal
structure of a particular combinatorial gradient vector field we refer to [22].

4.2.3 Importance Measure

Note that the sequence (8) is ordered by an importance measure which is closely
related to homological persistence [5]. The importance measure is defined by the
height difference of a certain pairing of critical points. Since we are dealing with
the gradient of a stream function of a divergence-free vector field there is a nice
physical interpretation of this value. The height difference between two points of
the stream function is the same as the amount of flow passing through any line
connecting the two points [19]. This allows us to differentiate between spurious and
structurally important critical points in divergence-free 2D vector fields, as will be
demonstrated in the next section.

5 Examples

The purpose of this section is to provide some numerical evidence for the properties
of our method mentioned in Sect. 1. The running time of our algorithm is 47 s for a
surface with one million vertices using an Intel Core i7 860 CPU with 8GB RAM.
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5.1 Noise Robustness

To illustrate the robustness of our algorithm with respect to noise, we sampled the
divergence-free vector field

v.x; y/ D r �
�

sin.6 x/ sin.6 y/ e�3 .x2Cy2/
�

(9)

on the domain Œ�1; 1�2 with a uniform 5122 grid. A LIC image of this divergence-
free vector field is shown in Fig. 3, left. To simulate a noisy measurement of this
vector field, we added uniform noise with a range of Œ�1; 1� to this data set. A
LIC image of the resulting quasi-divergence-free vector field is shown in Fig. 3,
right. Since the square is a contractible domain, we can directly apply the algorithm
described in Sect. 4 to both data sets and extracted the 23 most important critical
points. As can be seen in Fig. 3, our method is able to effectively deal with the noisy
data.

5.2 Importance Measure

To illustrate the physical relevance of the importance measure for the extracted crit-
ical points we consider a model example from computational fluid dynamics [18].
Figure 4, top, shows a LIC image of a simulation of the flow behind a circular
cylinder – the cylinder is on the left of the shown data set. Since we are considering
only a contractible subset of the data set, we can directly apply the algorithm
described in Sect. 4. Note that due to a uniform sampling of this data set a small
amount of divergence was introduced. The divergence is depicted in Fig. 4, bottom.

Fig. 3 A synthetic divergence-free vector field is depicted using a LIC image colored by
magnitude. The critical points of V �

kn�11 are shown. The saddles, CW-centers, and CCW-centers
are depicted as yellow, blue, and red spheres. Left: the original smooth vector field. Right: a noisy
measurement of the field depicted on the left
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Fig. 4 Top: A quasi-divergence-free vector field of the flow behind a circular cylinder is depicted
using a LIC image colored by magnitude. The saddles, CW-centers, and CCW-centers are depicted
as yellow, blue, and red spheres and are scaled by our importance measure. Bottom: the divergence
of the data set is shown using a colormap (white: zero divergence, red: high divergence)

The data set exhibits the well-known Kármán vortex street of alternating clockwise
and counter-clockwise rotating vortices. This structure is extracted well by our
algorithm. The strength of the vortices decreases the further they are from the
cylinder on the left. This physical property is reflected well by our importance
measure for critical points in divergence-free vector fields.

6 Conclusion

We presented an algorithm for the extraction of critical points in 2D divergence-free
vector fields. In contrast to previous work this algorithm is provably consistent in
the sense of Morse theory for divergence-free vector fields as presented in Sect. 3.
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It also allows for a consistent simplification of the set of critical points which enables
the analysis of noisy data as illustrated in Fig. 3. The computed importance measure
has a physical relevance as shown in Fig. 4, and allows to discriminate between
dominant and spurious critical points in a data set. By combinatorially enforcing the
gradient vector field property we are able to directly deal with data sets with only
near zero divergence (see Fig. 4, bottom).

The only step of our algorithm that is not combinatorial is the Helmholtz-
Hodge decomposition which is necessary for surfaces of higher genus to get the
harmonic-free part of the vector field. It would therefore be interesting to inves-
tigate the possibility of a purely combinatorial Helmholtz-Hodge decomposition.
Alternatively, one could try to develop a computational discrete Morse theory for
divergence-free vector fields containing a harmonic part.
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Efficient Computation of a Hierarchy
of Discrete 3D Gradient Vector Fields

David Günther, Jan Reininghaus, Steffen Prohaska, Tino Weinkauf,
and Hans-Christian Hege

1 Introduction

The analysis of three dimensional scalar data has become an important tool in
scientific research. In many applications, the analysis of topological structures –
the critical points, separation lines and surfaces – are of great interest and may help
to get a deeper understanding of the underlying problem. Since these structures have
an extremal characteristic, we call them extremal structures in the following.

The extremal structures have a long history [2, 14]. Typically, the critical points
are computed by finding all zeros of the gradient, and can be classified into
minima, saddles, and maxima by the eigenvalues of their Hessian. The respective
eigenvectors can be used to compute the separation lines and surfaces as solutions
of autonomous ODEs. For the numerical treatment of these problems we refer to
Weinkauf [22].

One of the problems that such numerical algorithms face is the discrete nature
of the extremal structures. For example, the type of a critical point depends on the
signs of the eigenvalues. If the eigenvalues are close to zero, the determination of
the type is ill-posed and numerically challenging. Depending on the input data,
the resulting extremal structure may therefore strongly depend on the algorithmic
parameters and numerical procedures. From a topological point of view, this can be
quite problematic. Morse theory relates the extremal structure of a generic function
to the topology of the manifold, e.g., by the Poincaré-Hopf Theorem or by the
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strong Morse inequalities [15]. The topology of the manifold restricts the set of
the admissible extremal structures.

Another problem is the presence of noise, for example due to the imaging
process, or sampling artifacts. Both can create fluctuations in the scalar values
that may create additional extremal structures, which are very complex and hard
to analyze, in general. A distinction between important and spurious elements is
thereby crucial.

To address these problems, one may use the framework of discrete Morse
theory introduced by Forman who translated concepts from continuous Morse
theory into a discrete setting for cell complexes [5]. A gradient field is encoded
in the combinatorial structure of the cell complex, and its extremal structures are
defined in a combinatorial fashion. A finite cell complex can therefore carry only a
finite number of combinatorial gradient vector fields, and their respective extremal
structures are always consistent with the topology of the manifold.

The first computational realization of Forman’s theory was presented by Lewiner
et al. [12, 13] to compute the homology groups of 2D and 3D manifolds. In
this framework, a sequence of consistent combinatorial gradient fields can be
computed such that the underlying extremal structures become less complex with
respect to some importance measure. The combinatorial fields are represented by
hypergraphs and hyperforests, which allow for a very compact and memory efficient
representation of the extremal structure. However, the framework is only applicable
to relatively small three dimensional data sets since the construction of the sequence
requires several graph traversals. This results in a non-feasible running time for
large data sets. Recently, several alternatives for the computation of a discrete
Morse function were proposed, for example by Robins et al. [18] and King et al.
[11].

An alternative approach to extract the essential critical points and separation lines
was proposed by Gyulassy [7]. His main idea is to construct a single initial field and
extract its complex extremal structures by a field traversal. To separate spurious
elements from important ones, the extremal structures are then directly simplified.
One advantage of this approach is a very low running time. One drawback is that
certain pairs of critical points, i.e., the saddle points, may be connected among
each other arbitrarily often by saddle connectors [21]. This can result in a large
memory overhead [8] since the connectors as well as their geometric embedding
need to be stored separately. Note that the reconstruction of a combinatorial gradient
vector field based only on a set of critical points and their separation lines is
challenging.

In this work, we construct a nested sequence of combinatorial gradient fields.
The extremal structures are therein implicitly defined, which enables a memory-
efficient treatment of these structure. Additionally, the complete combinatorial flow
is preserved at different levels of detail, which allows not only the extraction of
separation surfaces, but may also be useful for the analysis of 3D time-dependent
data as illustrated by Reininghaus et al. [17] for 2D.
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The computation of our sequence is based on the ideas of Reininghaus et al. [16].
A combinatorial gradient field is represented by a Morse matching in a derived cell
graph. In this paper, we focus on scalar data given on a 3D structured grid.

Although the computation of a sequence of Morse matchings is a global problem,
an initial Morse matching can be computed locally and in parallel. We use an
OpenMP implementation of the ProcessLowerStar-algorithm proposed by Robins
et al. [18] to compute this initial matching. The critical points in this matching
correspond one-to-one to the changes of the topology of the lower level cuts of
the input data.

As mentioned earlier, the presence of noise may lead to a very complex
initial extremal structure. The objective of this paper is to efficiently construct
a nested sequence of Morse matchings such that every element of this sequence
is topologically consistent, and the underlying extremal structures become less
complex in terms of number of critical points. The ordering of the sequence is
based on an importance measure that is closely related to the persistence measure
[4, 24], and is already successfully used by Lewiner [12] and Gyulassy [7]. This
measure enables the selection of a Morse matching with a prescribed complexity
of the extremal structure in a very fast, almost interactive post-processing step. The
critical points and the separation lines and surfaces are then easily extracted by
collecting all unmatched nodes in the graph and a constrained depth-first search
starting at these nodes.

The rest of the paper is organized as follows: in Sect. 2, we formulate elements
of discrete More theory in graph theoretical terms. In Sect. 3, we present our new
algorithm for constructing a hierarchy of combinatorial gradient vector fields. In
Sect. 4, we present some examples to illustrate the result of our algorithm and its
running time.

2 Computational Discrete Morse Theory

This section begins with a short introduction to discrete Morse theory in a graph
theoretical formulation. We then recapitulate the optimization problem that results
in a hierarchy of combinatorial gradient vector fields representing a 3D image data
set. For simplicity, we restrict ourselves to three dimensional scalar data given on
the vertices of a uniform regular grid. The mathematical theory for combinatorial
gradient vector fields, however, is defined in a far more general setting [5].

2.1 Cell Graph

Let C denote a finite regular cell complex [9] defined by a 3D grid. In this paper,
we call a cell complex regular if the boundary of each d -cell is contained in a union
of .d � 1/-cells. The cell graphG D .N;E/ encodes the combinatorial information
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Fig. 1 Illustration of a cell complex and its derived cell graph. (a) shows the cells of a 2 � 2 � 2
uniform grid in an exploded view. A single voxel is represented by eight 0-cells, twelve 1-cells,
six 2-cells, and one 3-dimensional cell. These cells and their boundary relation define the cell
complex. (b) shows the derived cell graph. The nodes representing the 0-, 1-, 2-, and 3-cells are
shown as blue, green, yellow and red spheres respectively. The adjacency of the nodes is given by
the boundary relation of the cells. The edges are colored by the lower dimensional incident node.
(c) shows the cell complex and the cell graph to illustrate the neighborhood relation of the cells

contained in C . The nodes N of the graph consist of the cells of the complex C
and each node up is labeled with the dimension p of the cell it represents. The
scalar value of each node is also stored. Higher dimensional nodes are assigned
the maximal scalar value of the incident lower dimensional nodes. The edges E of
the graph encode the neighborhood relation of the cells in C . If the cell up is in the
boundary of the cell wpC1, then ep D fup;wpC1g 2 E. We label each edge with
the dimension of its lower dimensional node. An illustration of a cell complex and
its graph is shown in Fig. 1. Note that the node indices, their adjacence and their
geometric embedding in R

3 are given implicitly by the grid structure.

2.2 Morse Matchings

A subset of pairwise non-adjacent edges is called a matching M � E. Using these
definitions, a combinatorial gradient vector field V on a regular cell complex C
can be defined as a certain acyclic matching of the cell graph G [3]. The set of
combinatorial gradient vector fields on C is given by the set of these matchings,
i.e., the set of Morse matchings M � of the cell graph G. An illustration of a 2D
Morse matching is shown in Fig. 2a.

2.3 Extremal Structures

We now define the extremal structures of a combinatorial gradient vector field
V in G. The unmatched nodes are called critical nodes. If up is a critical node,
we say that the critical node has index p. A critical node of index p is called
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Fig. 2 Depiction of algorithm constructHierarchy. Image (a) shows a 2D Morse matching M .
The matched and unmatched edges of the cell graph G are depicted as solid and dashed lines
respectively. The unmatched nodes of G are shown as black dots. Each node of G is labeled by
its dimension. Image (b) shows the two minima (blue dots) and the saddle (yellow dot) as well
as the only two possible augmenting paths (blue and green stripes) in M . Image (c) shows the
augmentation ofM along the left (green) path. The start- and endnode of this path are now matched
and not critical anymore. A single minimum (blue dot) remains in M

minimum .p D 0/, 1-saddle .p D 1/, 2-saddle .p D 2/, or maximum .p D 3/.
A combinatorial p-streamline is a path in the graph whose edges are of dimension
p and alternate between V � E and its complement E n V . In a Morse matching,
there are no closed p-streamlines. This defines the acyclic constraint for Morse
matchings. A p-streamline connecting two critical nodes is called a p-separation
line. A p-separation surface is given by all combinatorial 1-streamlines that
emanate from a critical point of index p. The extremal structures give rise to a
Morse-Smale complex that represents the topological changes in the level sets of
the input data. Since we have assigned the maximal value to higher dimensional
cells, there are no saddles with a scalar value smaller or greater than their connected
minima or maxima respectively.

2.4 Optimization Problem

The construction of a hierarchy can be formulated as an optimization problem [16].
Given edge weights ! W E ! R, the objective is to find an acyclic matching
Vk 2 M � such that

Vk D arg max
M2M� ; jM jDk

!.M/: (1)

However, (1) becomes an NP-hard problem in the case of 3D manifolds [10]. We
therefore only use (1) to guide our algorithmic design to construct a nested sequence
of combinatorial gradient vector fields V D .Vk/kDk0;:::;kn . For each k, we are
looking for the smallest fluctuation to get a representation of our input data at
different levels of detail. Note that this proceeding differs from the homological
persistence approach introduced by Edelsbrunner et al. [4]. There are persistence
pairs in 3D that cannot be described by a sequence V as shown in a counterexample
by Bauer et al. [1].


