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Preface

Secretions and emissions in biological systems play important signaling roles

within the organism but also in its communication with the surrounding environ-

ment. This relatively recent knowledge is in stark contrast with the view of secre-

tions that is available in most text books in different biological science disciplines.

Not too long ago, secretions and emissions were considered biological waste

products that were simply discharged out of plants through a chemical gradient

with no function to the environment whatsoever. The realization of this void of

information was the driving force behind the compilation of this volume. This

volume brings together state-of-the-art information about the role of secretions and

emissions in different organs and organisms ranging from flowers and roots of

plants to human organs.

The plant chapters will relate information regarding the biochemistry of flower

volatiles and root exudates, and their role in attracting pollinators and interacting

with soil microbial communities, respectively. Furthermore, these chapters will

illustrate information about the fine molecular and biochemical machinery that is

involved in the biosynthesis and secretion of these compounds; which suggests that

the organism actively coordinates the release of these chemical signals. The release

of compounds by roots is further highlighted by the most economically important

root–microbe association in agriculture. The rhizobium–legume root association

forms an organ called the nodule that can fix the nitrogen from the air and entirely

eliminates the need of nitrogen fertilization in legume plants such as soybean.

Proteoid roots release proteases for improving nitrogen and phosphorus availability

for their mineral nutrition. Roots of plants not only release compounds, but also

entire cells and the detailed mechanisms and functions of this phenomenon will be

highlighted. Plants emit fine bouquets of smell not only through their flowers but

through several organs; the biosynthesis and function of volatile organic com-

pounds (VOCs) in plants are also covered in this volume. Moreover, in order to

manipulate their animal pollinators, plants provide them with nutritive exudates.

Microbial chapters will explain the biochemistry and ecology of quorum sensing

and how microbial communities aggregate in different environments through the
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continuous release and sensing of compounds that regulate the “quorum” in the

community. A related chapter will touch upon highly coadapted association bet-

ween plants and soil microbes that can aid in bioenergy applications by degrading

lignocellulosic materials.

Other chapters will explain the biology of secretions by algae and humans,

among other organisms. All in all, this volume will be a welcome addition to the

literature as no other book covers aspects related to biological secretion in such a

holistic and integrative manner.

Fort Collins, CO, USA Jorge Vivanco

Bonn, Germany František Baluška

.
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Plant Volatiles and Other Specialized Metabolites: Synthesis,

Storage, Emission, and Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Vasiliki Falara and Eran Pichersky

Lignocellulose Decomposition by Microbial Secretions . . . . . . . . . . . . . . . . . . . 125

Navaneetha Santhanam, Dayakar V. Badri, Stephen R. Decker,

Daniel K. Manter, Kenneth F. Reardon, and Jorge M. Vivanco

vii



Sugary Exudates in Plant Pollination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Massimo Nepi, Patrick von Aderkas, and Ettore Pacini

Nectar Secretion: Its Ecological Context and Physiological

Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Marı́a Escalante-Pérez and Martin Heil
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Plant Root Secretions and Their Interactions

with Neighbors

Clelia De-la-Peña, Dayakar V. Badri, and Vı́ctor M. Loyola-Vargas

Abstract The rhizosphere biology at the molecular level has advanced dramatically

since last decade. The continuous supply of carbon compounds from plant roots

engages complex interactions among rhizosphere organisms including interactions

between microbes and plants and between plants with other plants being these of the

same or different species. Root exudation is part of the rhizodeposition process, which

is a major source of soil organic carbon released by plant roots which clearly

represents a significant carbon cost to the plant. Root exudates also play a role in

soil nutrient availability by altering soil chemistry and soil biological processes.

Different studies have highlighted that the rhizosphere soil surrounded by plant

roots is more abundant in microbes than the nonrhizosphere soils. Therefore, the

major responses in the interaction between plants and microbes must happen in that

limited zone. Plants respond to the presence of microbes by releasing a mixture of

phytochemicals, volatiles, and high-molecular-weight compounds. Soil microbes, on

the other hand, modulate the secretion of root exudates to positively regulate plant

growth and disease resistance. Several negative interactions are mediated by root

exudates including antimicrobial, biofilm inhibitors, and quorum-sensing mimics to

prevent soil-borne pathogens. There is a need to understand these rhizospheric

multitrophic interactions in the realistic field conditions to improve the plant growth

at species and community level. In addition, studies should be conducted in the field
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e-mail: vmloyola@cicy.mx
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conditions to understand the rhizospheric complex interactions in monocultures and

polycultures. This will help to understand the dynamics of interactions and their

outcome in influencing the plant’s success when they are in monocultures and in

polycultures. The combination of techniques and the continuous development of new

techniques in the field of rhizosphere biology coupled with systems approach will

allow us partly to elucidate these complex interactions under field conditions.

1 Introduction

Until recently, the difficulty of working underground has kept the rhizosphere in a

scientific state of “out of sight, out of mind.” However, our understanding of the

rhizosphere biology at themolecular level has advanced dramatically since last decade,

thanks in large part to the completion of the Arabidopsis genome and the experimental

tools and resources that have resulted from this key event. Rhizosphere processes are

driven mainly by photosynthetically fixed carbonwhich is either directly transferred to

symbionts or released as root exudates and is considered as a major factor in regulating

soil microbiota. Soil microbiota regulates carbon storage via mineralization and

immobilization of soil organic carbon (Paterson et al. 1997) and in terrestrial

ecosystems the mineralization is not only due to the activity of microorganisms. The

continuous supply of carbon compounds fromplant roots engages complex interactions

among rhizosphere organisms including interactions between microbes and plants,

among microbes, between microfauna and microbes, between animals and plants,

among animals, and among plants. Rhizosphere ecological interactions are broadly

classified into two types: indirect ecological interactions and direct ecological

interactions. Interactions between organisms that involve physical contact are consid-

ered direct ecological interactions and indirect ecological interactions include any

mechanism of interaction between organisms mediated by a number of steps, where

one organism affects another one without direct contact (Strauss 1991). These types of

indirect interactions that occur in the rhizosphere can be grouped by considering the

nature of the interacting organisms as plant–plant, plant–microbe, microbe– microbe,

microbe–fauna, plant–fauna, etc., which are mediated by their secretions or mediator

species. A large body of literature exists about rhizosphere interactions (Badri and

Vivanco 2009; Badri et al. 2009; Bais et al. 2004, 2006, 2008; Bertin et al. 2003;

Lambers et al. 2009; Prithiviraj et al. 2007). In this chapter, we focus on the current

knowledge of the indirect ecological interactions mediated by their secretions.

2 Root-Secreted Components

For the last decade the field of rhizosphere biology has discovered the importance

of root exudates in mediating complex rhizospheric interactions (Bais et al. 2004;

Broeckling et al. 2008; Walker et al. 2003; Weir et al. 2004). Root exudation is part

of the rhizodeposition process, which is a major source of soil organic carbon

2 C. De-la-Peña et al.



released by plant roots (H€utsch et al. 2002; Nguyen 2003). The quantity and quality
of the compounds secreted by the roots depends on the plant species, the physio-

logical stage of the plant, presence or absence of neighbors, plant nutritional status,

mechanical impedance, sorption characteristics of the soil, and the microbial

activity in the rhizosphere. Typically root exudation clearly represents a significant

carbon cost to the plant (Marschner 1995) and with young seedlings typically

exuding about 30–40% of their fixed carbon as root exudates (Lynch and Whipps

1990). Root exudates encompass ions (i.e., H+), inorganic acids, oxygen, and water

but mainly consist of carbon-based containing compounds (Bais et al. 2006; Uren

2000). These carbon-containing compounds can often be separated into two classes

of compounds: low-molecular-weight compounds, which include amino acids,

organic acids, sugars, phenolics, secondary metabolites, and volatile compounds

such as terpenoids, and high-molecular-weight compounds, which include muci-

lage and proteins. The classes of compounds secreted by roots are listed in Table 1.

Table 1 Classes of compounds released in plant root exudates

Class of compounds Single componentsa

Carbohydrates Arabinose, glucose, galactose, fructose, sucrose, pentose, rhamnose,

raffinose, ribose, xylose and mannitol, alanine, and threonine

Amino acids All 20 proteinogenic amino acids, L-hydroxyproline, homoserine,

mugineic acid, and aminobutyric acid

Organic acids Acetic acid, succinic acid, L-aspartic acid, malic acid, L-glutamic acid,

salicylic acid, shikimic acid, isocitric acid, chorismic acid, sinapic

acid, caffeic acid, p-hydroxybenzoic acid, gallic acid, tartaric acid,
ferulic acid, protocatacheuic acid, and p-coumaric acid

Flavonols Naringenin, kaempferol, quercitin, myricetin, naringin, rutin,

genistein, strigolactone, and their substitutes with sugars

Lignins Catechol, benzoic acid, nicotinic acid, phloroglucinol, cinnamic acid,

gallic acid, ferulic acid, syringic acid, sinapoyl aldehyde,

chlorogenic acid, coumaric acid, vanillin, sinapyl alcohol, quinic

acid, and pyroglutamic acid

Coumarins Umbelliferone

Aurones Benzyl aurones synapates and sinapoyl choline

Glucosinolates Cyclobrassinone, desuphoguconapin, deslphoprogoitrin,

desulphonapoleiferin, and desulphoglucoalyssin

Anthocyanins Cyanidin, delphinidin, pelargonidin, and their substitutes with sugar

molecules

Indole compounds Indole-3-acetic acid, brassitin, sinalexin, brassilexin, methyl indole

carboxylate, and camalexin glucoside

Fatty acids Linoleic acid, oleic acid, palmitic acid, and stearic acid

Sterols Campestrol, sitosterol, and stigmasterol

Allomones Jugulone, sorgoleone, 5,7,40-trihydroxy-30, 50-dimethoxyflavone,

DIMBOA, and DIBOA

Proteins and enzymes PR proteins, lectins, proteases, acid phosphatases, peroxidases,

hydrolases, and lipase

Volatile organic

compounds (VOCs)

Carbon dioxide, ethanol, methanol, acetone, acetaldehyde, b-
phellanderene, 1,8-cineol, and longifolene

aList of compounds presented in this table are mostly reported from model plant Arabidopsis (see

Narasimhan et al. 2003) and this list is not complete. This table was adopted and modified from

Badri and Vivanco (2009)
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3 Plant–Plant Interactions by Root-Secreted Phytochemicals

Plants are sessile and therefore cannot move in response to biotic or abiotic attack.

However, they respond to these attacks by releasing a mixture of chemical

compounds. Communication between plants has not been studied in detail. The

best known example is the communication mediated by volatile compound methyl

salicylate (Shulaev et al. 1997). Plant hormones, such as ethylene and jasmonic

acid, play an indispensable role in mediating plant–plant communication, and plant

communication with other organisms (Lou et al. 2005; Ruther and Kleier 2005).

Similarly, below-ground plant communication is orchestrated by roots through

secreting phytochemicals and emitting volatiles. The most widely studied below-

ground chemical mediated plant–plant interference is called allelopathy by which

plants gain an advantage over their neighbors by using interfering chemicals called

as allamones. Plant produced allamones vary considerably in structure, mode of

action, and their effect on plants. Different compounds in root exudates affect

metabolite production, respiration, photosynthesis, membrane transport, and inhi-

bition of root and shoot growth in susceptible plants (Einhelling 1995; Weir et al.

2004). For example, a potent allamone juglone produced by black walnut (Juglans
nigra) plants act as an electron donor and acceptor in photosynthesis and respiration
reactions, affecting these processes in susceptible plants (Jose and Gillespie 1998).

Recently, a flavonoid called catechin was identified in the root exudates of Centau-
rea maculosa, an invasive spotted knapweed exhibits a strong inhibitory effect on

a number of plant species (Bais et al. 2003; Weir et al. 2003), and considered as

a potent factor for its successful invasion in a nonnative range. Root exudates

are also playing a big role in establishing associations between parasitic plants

and their hosts. There are several examples that demonstrate the chemical cross talk

to establish the parasitic association, including Striga spp. and Orobanche spp.

(Palmer et al. 2004). Very recently, a root-secreted allelochemical identified as

gallic acid from the roots of the noxious weed Phragmites australis which is con-

sidered a potent factor for its successful invasion in marsh and wetland com-

munities by displacing the native species was identified (Rudrappa et al. 2007).

Besides these negative interactions, root exudates can also have positive effects

in plant–plant interactions. However, these positive interactions are less frequently

reported. The best studied interaction is the root exudates that induce herbivore

resistance in neighboring plants. For example, when Hordeum vulgare (barley)

plants were treated with Elytrigia repens (couch-grass) root exudates or the phyto-
toxic compound identified from E. repens exudates called carboline, H. vulgare
were chosen less by aphids than the control (Glinwood et al. 2003). Besides, having

direct effect on herbivore behavior, root exudates have an indirect effect by

inducing defense responses in neighboring plants resulting in reduced herbivore

populations indirectly by attracting predators and parasites of the offending herbi-

vore (Du et al. 1998; Guerrieri et al. 2002).

Root exudates also play a role in soil nutrient availability by altering soil

chemistry and soil biological processes (Hopkins et al. 1998). Certain compounds

4 C. De-la-Peña et al.



such as phytosiderophores, mugineic acid, and malate improve iron availability

(Dakora and Phillips 2002; Fan et al. 2001). Roots secrete a range of chemicals

including the secretion of organic acids and acid phosphatases and the production of

proteoid roots to survive in P-deficient soils (Ascencio 1997; Raghothama 1999).

For example, several plants including Lupinus alba, Brassica napus, andMedicago
sativa increase the release of organic acids in P-deficient soils (Hoffland et al. 1992;
Johnson et al. 1994; Lipton et al. 1987).

3.1 Plant–Plant Interactions Mediated by Root-Emitting Volatiles

Many interactions between organisms are based on the emission and perception of

volatiles. These volatiles act as communication signals for chemoattractant or

repellent for species-specific interactions or mediators for cell-to-cell recognition.

These volatiles do not only function as signals in the above-ground interactions, but

below-ground volatile interactions are similarly complex. The majority of volatile

organic compounds (VOCs) tend to be lipophilic, small in molecular mass (less

than 300 Da), and have a high vapor pressure (0.01 kPa or higher at 20�C). Most of

the volatile compounds belong to the following three chemical groups: terpenoids,

phenylpropanoids, or fatty acid derivatives. Unlike, the root-secreted phyto-

chemicals, volatiles can travel long distances in the atmosphere and also in the

soil by permeating through air-filled pores. The efficiency of volatile penetration in

the soil depends on the type of mineral, texture, and particle architecture (Aochi and

Farmer 2005). Also, different VOCs exchange rates indicate that soils have the

potential to act as VOC sinks rather than VOC sources (Asensio et al. 2007).

Volatiles emitted in the underground enable plants to influence directly or indirectly

the community of soil-dwelling organisms and combat competitive plant species

(Nardi et al. 2000). Several studies demonstrated that the emission of terpenoids

by plant roots and particularly obvious in forest soils (Hayward et al. 2001; Lin

et al. 2007; Rohloff 2002). Furthermore, a blend of unidentified root volatiles of

Echinacea angustifolia showed allelopathic effect on different plant species

such as Lactuca sativa, Panicum virgatum, and Sporobolus heterolepis (Viles and
Reese 1996).

4 Plant–Microbe Interactions Mediated by Root-Secreting

Phytochemicals

The rhizosphere soil surrounded by plant roots is more abundant in microbes than

the nonrhizosphere soils (Bending 2003; Lynch 1987; Rouatt and Katznelson 1960;

Rouatt et al. 1960). However, more recently the term “rhizosphere” has broadened

to include both the volume of soil influenced by the root and the root tissues

Plant Root Secretions and Their Interactions with Neighbors 5



colonized by microorganisms (Pinton et al. 2001). Microorganisms in the rhizo-

sphere react to the many metabolites secreted by plant roots. The microorganisms

and their products also interact with plant roots or root-secreting compounds in

a variety of positive, negative, and neutral ways. The positive interactions include

classic symbioses, association with biocontrol agents, epiphytes, and mycorrhizal

fungi. The negative interactions include association with parasitic plants, patho-

genic bacteria, fungi, and invertebrate herbivores. Colonization and dominance of

specific microbe species in the rhizosphere is very critical for pathogenic soil

microbes and also important in the application of beneficial microorganisms for

plant protective purposes. Although a general increase in microbes in the rhizo-

sphere is always noted, the community structure and functional consequences of

this increase are poorly understood.

The well-known classical example for positive plant–microbe interaction is the

interaction between legume roots and Rhizobia bacteria, which are capable of

forming dinitrogen-fixing nodules in the roots of legumes. However, in this chapter

we intended to focus only on the nonlegumes–microbes interactions because

legumes–microbe interactions are discussed as a separate chapter in this book.

Similarly to Rhizobia, arbuscular mycorrhizal fungi (AMF) and plant roots

form associations in more than 80% of terrestrial plants. Mycorrhizal fungus

and bacterial rhizobial associations are thought to derive from a common-ancestral

plant–microbe interaction likely of fungal origin and it was demonstrated that the

activity of some host proteins regulates both mycorrhizal and rhizobial associations

(Lévy et al. 2004). Root exudates play a role in the recognition of mycorrhizal fungi

with the compatible host plant (Nagahashi and Douds 1999; Tamasloukht et al.

2003). Although root exudates have long been suspected to play a communicative

role in mycorrhizal associations, the identification of specific molecule interactions

from AMF and host still remains elusive. Recently, a sesquiterpene called

strigolactone 5-deoxystrigol was identified in the root exudates of Lotus japonicus
which is responsible for inducing AMF hyphal branching in germinating spores

(Akiyama et al. 2005). In the presence of AMF symbiosis, plants trade carbon with

phosphate from their fungal partners (Harrison 2005; Karandashov and Bucher

2005; Paszkowski 2006). Molecular data and fossil studies suggest that AMF

have facilitated the adaptation and evolution of primitive plant species to life on

land demonstrating more than 400 million years of coevolution which shows that

plants and AMF are highly interdependent (Remy et al. 1994; Simon et al. 1993).

Although less understood, similar processes are thought to control symbioses

between nitrogen-fixing Frankia bacteria and their actinorhizal plant hosts (Wall

2000). Recently, a leucine-rich-repeat receptor kinase (SymRK) was identified

as a common genetic basis for plant root endosymbioses with AMF, Rhizobia,
and Frankia bacteria (Gherbi et al. 2008).

Soil microbes can also modulate the secretion of root exudates to positively

regulate plant growth and disease resistance by indirect mechanisms. Plant growth

promoting rhizobacteria (PGPR) have been found to positively influence plants

through a wide variety of direct and indirect mechanisms (Gray and Smith 2005).

Bacteria are likely to locate plant roots through cues extended from the root and the

6 C. De-la-Peña et al.



carbohydrates and amino acids stimulate PGPR chemotaxis on root surfaces

(Somers et al. 2004). A very recent report demonstrated that the rhizobacterial

elicitor acetoin from Bacillus subtilis induces systemic resistance in Arabidopsis to

reduce plant’s susceptibility by pathogen attack (Rudrappa et al. 2010).

Several negative interactions are mediated by root exudates including antimi-

crobial, biofilm inhibitors, and quorum-sensing mimics to prevent soil-borne

pathogens (Bais et al. 2006, 2008). Plants are known to use diverse chemical

molecules for defense, although some groups of compounds (phenylpropanoids)

are used for defensive function across taxa (Bouarab et al. 2002). Recent years of

research have clarified the antimicrobial properties of root exudates. For example,

rosamarinic acid from hairy root cultures of sweet basil (Ocimum basilicum),
pigmented napthoquinones from Lithospermum erythrorhizon hairy root cultures,

and aromatic phenolic compounds from the exudates of Gladiolus spp. have shown
potent antimicrobial activity against an array of soil-borne pathogens (Bais et al.

2002; Brigham et al. 1999; Taddei et al. 2002).

Plant–microbe interactions in the rhizosphere are responsible for a number of

intrinsic processes such as carbon sequestration, ecosystem functioning, and nutri-

ent cycling (Singh et al. 2004). A great variety of biotic and abiotic factors shape soil

and plants associated habitats, as well as modify the composition and activities of

their microbial communities (Bever et al. 1997). Bacterial communities in root-

associated habitats respond specifically with respect to density and composition of

root exudates, eventually yielding plant species-specific microfloras which may also

vary depending upon the plant developmental stage (Mahaffee and Kloepper 1997;

Wieland et al. 2001; Yang and Crowley 2000). Recent evidence suggests that

specific plant species are responsible for driving their own soil fungal community

composition and diversity mediated by root-secreting compounds (Broeckling

et al. 2008). In addition, a recent report demonstrated that a mutation in the

ABC transporter (AtPDR2) dramatically changes the composition of root-secreted

phytochemicals which influenced the qualitative and quantitative changes in the

Arabidopsis native soil microbiota by culturing more beneficial microbes compared

to the wild type (Badri et al. 2009). Plant root exudates also affect the level of

contamination found in soil and groundwater from various environmental pollutants

by a process called “rhizoremediation.” For example, Pseudomonas putida from the

rhizosphere of corn and wheat helps to effectively decontaminate 3-methylbenzoate

and 2,4-D, respectively (Kingsley et al. 1994; Ronchel and Ramos 2001). Several

lines of evidences demonstrated the role of root exudates in metal remediation either

directly by solubilizing the metals by root-secreting organic acids or indirectly with

the help of soil microbes (Do Nascimento and Xing 2006).

4.1 Plant–Microbe Interactions Influenced by Root Volatiles

The microbial community in the rhizosphere is limited by carbon availability but

carbon-containing root volatiles especially monoterpenes contribute significantly to

Plant Root Secretions and Their Interactions with Neighbors 7



the below-ground carbon cycle (Owen et al. 2007). Becard and Piche (1989) first

demonstrated that the carbon dioxide is a crucial root volatile that stimulates hyphal

growth of vesicular–arbuscular mycorrhizal (VAM) fungus. They also showed that

elevated carbon dioxide promotes hyphal length of VAM and depresses the growth

of non-VAM at low nitrogen availability. In addition, Scher et al. (1985) reported

that Pseudomonas fluorescens was attracted by carbon dioxide. Besides carbon

dioxide, there are other simple compounds such as acetaldehyde, acetone, acetic

acid, ethanol, and methanol emitted by Arabidopsis roots (Steeghs et al. 2004).

Root volatiles are important for defense response against microbial populations. For

example, the root volatile b-phellanderene was effective against the root fungal

pathogen Fomes annosus (Cobb et al. 1968), which was emitted from the roots of

Smyrnium olusatrum (Bertoli et al. 2004) and Rhodiola rosea (Rohloff 2002).

Similarly, the monoterpene 1,8-cineol emitted from Arabidopsis roots in

response to pathogen infection (Steeghs et al. 2004) had antimicrobial property

against several microbes (Kalemba et al. 2002; Vilela et al. 2009). Besides the role

of volatiles in plant defense, they also influence in symbiotic association either

positively or negatively. For instance, the sesquiterpene longifolene from the roots

of Pinus sylvestris inhibits the vegetative growth of mycorrhizal fungus Boletus
varigatus and Rhizopogon roseolus (Melin and Krupa 1971).

5 Plant–Faunal Interactions

Protozoa and microbial feeding nematodes are known to be the most important

grazers of the microflora in the terrestrial ecosystems (Ingham et al. 1985). Thus,

grazing of the microflora by microbivores is considered as a critical mechanism to

maintain the balance in the competition between microbes and plants. Despite the

critical importance of interactions between roots (root exudates), microbes, and

their predators for plant growth, knowledge of these interactions is still fragmentary

and the mechanisms are poorly understood (Zwart et al. 1994). The outcome of the

rhizosphere plant–faunal, plant–microbial, and faunal–microflora interactions may

be either positive (e.g. mutualistic and associative) or negative (predatory and

competitive) (Bonkowski et al. 2000). Much attention has been drawn only to the

negative plant–faunal interactions (parasitic nematodes) (Curtis 2008). It should

also be noted that root-feeding by nematodes may increase allocation of carbon

below-ground and increase significantly the leaking of carbon from roots that

stimulate rhizosphere microbial processes (Bardgett et al. 1998). Although most

nematodes are free-living organisms that consume bacteria, there are some

nematodes that are pathogenic for plants causing important economic losses each

year (Barker and Koenning 1998). Some of the most harmful plant–parasitic

nematodes include root-knot and cyst nematodes such as Meloidogyne spp.,

Heterodera spp., and Globodera spp. (Chitwood 2003).

During coevolution with the host plant, parasitic nematodes have developed the

capacity to recognize and respond to the chemical signals of particular host species.
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Understanding the complexity of the chemical signal exchange and response during

the early stage of host–parasite interactions is important to identify the critical steps

in the parasite life cycle to disrupt the host–nematode recognition. Plant signals are

indispensible for nematodes to locate hosts and feeding sites (Robinson et al. 1987).

However, the identities of the plant signals involved in the key stages of the

plant–nematode interactions are not yet clearly dissected. Chemical components

of root exudates may deter one organism while attracting another and these

compounds alter the nematode behavior by attracting the nematodes to the roots

or result in repellence, motility inhibition, or even death (Robinson 2002; Wuyts

et al. 2006). For instance, root exudates of cucumber and their fractions having both

repellent and attractant activity to M. incognita were reported (Castro et al. 1989).

Similarly, the root cap exudates that include enzymes, antibiotics, and other soluble

chemicals and mucilage repelled both plant parasitic nematodes and free-living

nematode Caenorhabditis elegans and resulted in reversible state of immobility in

these nematodes (Hubbard et al. 2005; Wuyts et al. 2006; Zhao et al. 2000). This

study indicates that the root tip delivered products has the potential to temporarily

immobilize nematodes.

The best examples describing the role of plant signals in synchronizing

host–parasite life cycle are the two species of potato cyst nematodes (Globodera
spp.), as these nematodes are completely dependent on root exudates for hatching.

Several hatching factors have been identified in crop plants to explore the potential

of using these compounds for agrochemical use (Devine and Jones 2001;

Timmermans et al. 2007). For example, Solanum sisymbriifolium is being used

successfully as a trap crop for potato cyst nematodes in Europe, because the plant

root exudates stimulate hatching of the second-stage juveniles but does not support

their development to complete their life cycle (Timmermans et al. 2007). Mostly,

the root exudates act as attractants for nematodes to move closer to individual host

roots; these are considered “short distance attractants.” However there are “long-

distance attractants” that enable the nematodes to locate roots. So far, only carbon

dioxide has been identified as a prime long-distance attractant to nematodes includ-

ing M. incognita (Robinson 2002). Other additional short-distance attractants such

as amino acids, sugars, and metabolites are also reported (Bird 1959; Perry 2001;

Robinson 2002). In addition, plant roots also produce allelochemicals to defend

other plant species or soil-borne pathogens, which have been shown to function as

nematodes antagonists (Guerena 2006). For example, cucurbitacin A from cucum-

ber plants repels nematodes and b-terthienyl from Tagetes erecta acts as repellent as
well as nematotoxic (Castro et al. 1989). Other compounds such as cyclic

hydroxamic acid from maize root exudates affect the behavior of M. incognita,
Pratylenchus zea, and Xiphinema americanum (Friebe et al. 1998; Zasada et al.

2005). Root exudate compounds not only induce nematode hatching, attraction, and

repellence, but also induce the exploratory behavior of nematodes including stylet

thrusting and aggregation and increase in nematode mobility (Curtis 2007;

Robinson 2002). In addition, root exudate compounds and phytohormones such as

IAA induce the changes in the surface cuticle of nematodes (Curtis 2008). The

surface changes in the cuticle might allow the nematodes (M. incognita) to adapt and
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survive plant defense responses (Curtis 2007). Identifying the signaling and percep-

tion process executed by root exudate compounds occurring in plant–nematode

interactions will reveal targets for chemical or genetic intervention.

Besides the role of root exudates compounds in attracting and repelling

nematodes, nematodes also respond to the host by secreting specific proteins to

complete their life cycle within the host. The way nematodes secrete proteins is

mainly through their stylet, a hollow, protrusible spear at the anterior of the worm

(Davis et al. 2000). The stylet secretions are studied widely for their role in host

penetration, feeding site induction, and disease induction (Hussey 1989). The first

analysis of the stylet-secreted proteins was realized in one-dimensional electropho-

resis (Robertson et al. 1999; Veech et al. 1987). However, with the modern

techniques of proteomics, knowledge of the nematode secretome has been extended

(Bellafiore et al. 2008).

In the secretome ofM. incognitawere identified 486 proteins mainly required for

invasion, immune suppression, and host cell reprogramming (Bellafiore et al.

2008). In another proteomic study on M. incognita, calreticulin a calcium-binding

protein was identified as the most abundant stylet-secreted protein (Jaubert et al.

2002). Calreticulin has already been studied for its role in many host–parasite

interactions (Nakhasi et al. 1998; Pritchard et al. 1999). In plants, calreticulin has

been involved in cell-to-cell trafficking and pressure support (Baluska et al. 2001;

Sivaguru et al. 2000). The fact that nematode protein homologues were found in

plants indicates that nematodes could manipulate plant cell functions during the

compatible interaction (Caillaud et al. 2008) to elude the defense plant response.

Most of the nematode proteins secreted in the root–nematode interaction have been

found in the first 18 h of infection being some of these glycoproteins (Veech et al.

1987) proteases and superoxide dismutases (Robertson et al. 1999).

Some of the secreted proteins have been determined to have important roles in

parasitism (Davis et al. 2000; De Meutter et al. 1984; Popeijus et al. 2000).

Enzymes such as b-1,4-endoglucanases, cellulases, pectate lyase, and polygalac-

turonase are likely to be used by nematodes in softening the cell wall in order to

facilitate their movement through the root (Davis et al. 2000; Doyle and Lambert

2002; Goellner et al. 2000; Popeijus et al. 2000; Smant et al. 1998). Mawuenyega

et al. (2003) found, by two-dimensional liquid chromatography (2DLC) coupled

with electrospray ionization (ESI) tandem mass spectrometry (MS/MS), 110

secreted/targeted proteins and 242 transmembrane proteins. Also, it was found

that many peptides of these proteins have N-terminal glycosylation and phosphory-

lation, which suggest the importance of posttranslational modification for recogni-

tion and infection. Depending on the modification that the protein has, it would

have critical effects on cell regulatory and signaling processes (Mann and Jensen

2003). For instance, it was found in a human–filanial nematode parasite

Acanthocheilonema viteae that the covalent attachment of phosphorylcholine to

a major secreted protein named ES-62 is likely involved in the interference of the

host immune system (Houston et al. 1997). This effect may also happen in plant

nematodes that secrete numerous posttranslational modified proteins (Bellafiore

et al. 2008; Caillaud et al. 2008; Mawuenyega et al. 2003).

10 C. De-la-Peña et al.



Reports are also available in the model plant A. thaliana response to the

nematodes. Huang et al. (2006) found that the root-knot nematode M. incognita
secretes a peptide named 16D10 that interacts with the plant SCARECROW-like

transcription factor; this peptide–protein interaction probably represents an early

signaling event in the plant–nematode interaction. Some nematodes induce the

well-known salicylic acid-related defense response during incompatible

interactions. The fact that salicylic acid inhibits the parasitism of H. schachtii by
inducing the expression of PRP genes in Arabidopsis roots (Wubben et al. 2008)

suggests that pathogenesis-related proteins play a role in signaling and perception

process in the host–nematode interactions.

6 Plant-Root-Secreting Proteins Involve in Neighbors

Interaction

Studies on proteins involved in root–microorganism interaction have provided

strong evidence about the importance of root-secreted proteins during the recog-

nition between pathogenic and nonpathogenic interactions. One of the most

studied common proteins found in root exudates are lectins (De-la-Peña et al.

2008; Wen et al. 2007). Lectins are a diverse group of carbohydrate binding

proteins that are found in dual systems, functioning in defense with some

pathogens, and in recognition of a compatible symbiosis (De Hoff et al. 2009;

Sharon and Lis 2004). De Hoff et al. (2009) illustrated a hypothetical model of the

perception of pathogenic and symbiotic bacteria where the lectin gradient is

secreted from the root to permit the growth of symbiotic bacteria and agglutination

of the pathogenic bacteria. However, those bacteria that elude the first line of

the plant defense can be recognized by specific receptors in the root triggering

a cascade of MAP kinase signaling leading to antipathogen response or prosym-

biotic response depending on the microbe that is in contact with the root. Another

set of proteins found highly secreted in the rhizosphere are the PRP. PRP, such as

chitinases, osmotin, and thaumatin-like proteins, have been found in root exudates

under pathogen contact as well as secreted constitutively (Basu et al. 2006; De-

la-Peña et al. 2008; Nóbrega et al. 2005). Root-secreted proteins are not only

important for defense, but also for attracting microbes to the roots, a process

known as chemotaxis (Currier and Strobel 1977). Chemotaxis is one of the earliest

essential events in the interaction between plants and bacteria (Hawes and Smith

1989; Manson 1990). Proteins in the rhizosphere are so important for chemotaxis

that even a glycoprotein, named trefoil chemotactin, from Lotus corniculatus has
been identified (Currier and Strobel 1977, 1981). After that, other secreted

proteins, able to recognize bacterial surface carbohydrate structures, which help

to adhere to root hairs of many plants, have been identified in Rhizobium

(Ausmees et al. 2001).
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In order to colonize the roots, bacteria usually congregate together by using

of quorum-sensing (QS) signals. The most common type of QS signal in

proteobacteria are the N-acyl-homoserine lactones (AHL) (von Bodman et al.

2003), which affect the expression of more than 600 genes in bacteria (Schuster

et al. 2003). Biofilm-forming bacteria is a dense population that perform many

biological responses as community, including production of extracellular

polysaccharides, degradative enzymes, antibiotics, Hrp protein secretion, Ti plas-

mid transfer, and other functions (von Bodman et al. 2003). QS stimulates the

production of extracellular enzymes which has been related to pathogenesis in

P. aeruginosa PAO1 (Passador et al. 1993), P. fluorescens (Worm et al. 2000),

and Aeromonas hydrophila (Swift et al. 1999). More recent evidence suggests that

QS-related enzymes such as chitinases and proteases could be involved in nitrogen

mineralization process instead of pathogenesis (DeAngelis et al. 2008). On the

other hand,M. truncatula roots are able to detect low concentrations of bacterial QS

signals from the pathogenic bacterium P. aeruginosa by change and accumulation

of 154 proteins, from which 21 are related to defense and stress responses

(Mathesius et al. 2003). Based on these information one can easily predict that

considerable percentage of root-secreted proteins function in the rhizosphere still

remains elusive.

Studies on the secretome of Gram-positive bacteria B. subtilis started 10 years

ago (Hirose et al. 2000; Tjalsma et al. 2000) revealed nearly 300 possible proteins

secreted into the soil, among them more than a half have not been yet identified

(Antelmann et al. 2006). The secretome analysis of pathogenic bacteria is very

important in revealing new virulence proteins (Desvaux and Hébraud 1978;

Kaffarnik et al. 2009; Kazemi-Pour et al. 2004; Saarilahti et al. 1992; Watt and

Wilke 2005). For instance, Kazemi-Pour et al. (2004) analyzing the secretome of

Erwinia chrysanthemi, a well-known plant pathogenic bacterium, found proteins

related to virulence, disease symptoms, and pathogenicity: Avr-like protein, elon-

gation factor EF-Tu, flagellin, pectate lyases, and metalloproteases. Furthermore,

E. chrysanthemi and E. carotovora secrete proteases, polygalacturonase, and

proteins that degrade plant cell walls, such as pectin lyase and cellulose (Collmer

and Keen 1986; Perombelon and Kelman 1980). Polyglacturonases are considered

to be key enzymes involved in pathogenesis (Palomski and Saarilahti 1997).

Another secretome study on Xanthomonas campestris revealed 97 proteins; some

of these are involved in element acquisition, protein maintenance and folding,

compound degradation, and proteins with unknown functions (Watt and Wilke

2005). It is worth noting that in both bacteria, E. chrysanthemi and X. campestris,
there are some shared secreted proteins that could be linked with pathogenicity.

E. chrysanthemi (Kazemi-Pour et al. 2004) secreted an elongation factor, a

chaperonin GroEL, flagellin, and celluloses that also were found in the secretome

of X. campestris (Watt and Wilke 2005). Furthermore, the secretion of these

proteins has found to increase in the presence of plants and plant compounds

(De-la-Peña et al. 2008; Kazemi-Pour et al. 2004).

As far as root–fungus interactions are concerned, several secretomes have been

annotated (Choi et al. 2010), being these from symbiotic to pathogenic, proteomics
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have been applied to complement the genomics analysis of the fungal secretome

(Phalip et al. 2005). Pathogenic fungus in comparison to symbiotic mycorrhizal

fungi represents serious damage and loss to agriculture. Furthermore, some fungi

such as Trichoderma spp. represent a group of fungi that have been used as plant

disease control against a wide diversity of phytopathogenic fungi and even they

have positive effect on plants as a plant growth enhancer (Harman and Bj€orkman

1998; Harman et al. 2004; Yedidia et al. 2003). This mycoparasitic activity has

been attributed to the secretion of complex mixture of hydrolytic enzymes such as

chitinases, glucanases, and proteases able to degrade different cell wall systems

(Benı́tez et al. 1978; Suárez et al. 2005; Szekeres et al. 2004). The secretome of

T. harzianum revealed to vary both qualitatively and quantitatively on different

ascomycetes, oomycetes, and basidiomycetes cell walls (Suárez et al. 2005).

In pathogenic fungi the most important molecules that promote the infection

process are the extracellular effectors that produce the elicitation of plant defense

responses (Birch et al. 2006; Colditz et al. 2004; Dean et al. 2005; Hahn 1996; Rose

et al. 2002). These effectors have been found in the secretome of different

oomycetes (Kamoun 2006). Among the secretomes studied on plant pathogenic

fungi are those from Fusarium graminearum, and Sclerotinia sclerotiorum (Phalip

et al. 2005; Yajima and Kav 2006). In F. graminearum secretome, in the presence

of Humulus lupulus L. cell wall, were identified 84 proteins (Phalip et al. 2005)

which 45% of them are actually involved in cell wall degradation and the most

abundant proteins were cellulases, endoglucanases, proteases, and chitinases. In S.
sclerotiorum were identified 18 secreted proteins from the liquid culture of this

fungus (Yajima and Kav 2006) where L-arabinofuranosidase was one of the most

abundant in the secretome but not in the mycelia. This protein is much known for its

function in the virulence process of this fungus. The study of secreted proteins not

only in pathogens alone, but also in the presence of the host, should be persuaded in

order to know the principal signals involved between fungal and roots interaction.

Some of these proteins could lead to the identification of new effector proteins

produced by fungi and defense-related proteins produced by roots specific-secreted

to a given fungus.

The way plants and pathogenic fungi cross talk is very dynamic and complex,

and it is not known which one of the organisms emits the first signal. Fungus as

much as plants turn on their genetic and biochemical systems to generate a series of

signals to invade or defend (N€urnberger and Brunner 2002). In the case of fungus,

once contact with the plant host root has been established, elicitors start to be

produced and secreted by the fungus (N€urnberger and Brunner 2002). These

elicitors are perceived by the plant and plant-specific proteins rapidly phos-

phorylated in response to fungus signals (Peck et al. 2001). Dietrich et al. (1990)

and after Felix et al. (1991) found that protein kinase-mediated phosphorylation

might be the first trigger immediately after the fungal is perceived by the plant cells.

Posttranslational modifications by phosphorylation/dephosphorylation in the signal

transduction cascade produced by pathogens have been studied in other plants as an

early plant defense response (Grant and Mansfield 1999; Stone and Walker 1995).

The possible existence of an extracellular phosphorylation network (Ndimba et al.
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2003) has opened the possibility to investigate the plant–microbe interaction

signaling in the rhizosphere mediated by kinases and phosphatases.

The principal way that roots combat the fungal invasion is through enzymes such as

PRP (Colditz et al. 2004; Fagoaga et al. 2001), which some have been seen to be

effective in repressing the growth of root pathogenic fungi (Nóbrega et al. 2005). For

instance, the root protein profile of M. truncatula infected with the pathogen

Aphanomyces euteiches (Colditz et al. 2004) showed an induction of proteins

belonged to the family of class 10 of PRP (PR10). Because the fungal cell walls are

build with chitin and b-glucans, proteins belonging to the family PR2 such as b-1,3-
endoglucanases and family PR-3, -4, -5, and -11 such as several types of endo-

chitinases are effective to inhibit the growth of fungi while depolymerizing poly-

saccharides of mycelia walls and disturbing intracellular targets (Abad et al. 1996;

Ferreira et al. 1984; Joosten andDeWit 1989; Li et al. 2000). PRPO have been studied

extensively and they are found in both pathogenic and nonpathogenic interactions.

This is the case of osmotin, a PR5 protein found in the root exudates of alfalfa

inoculated with Sinorhizobium meliloti (De-la-Peña et al. 2008), which also

participates in plasma membrane permeabilization, which is associated with patho-

genic fungal spore lysis (Abad et al. 1996). This specificity is very important for the

plant in order to avoid the killing of beneficial microbes or the free invasion of

pathogenic organisms. How the plants provoke such specificity is a research

that needs to be persuaded. Although mycorrhiza are beneficial fungi for plants,

the induction of plant-defense-related genes still takes place at early stages of the

interaction (Gianinazzi-Pearson et al. 1996; Harrison 1999, 2005). During the earlier

stages of the development of the VAM symbiosis association between Allium porrum
L. and Glomus versiforme, the root chitinase activity was almost twice as high as in

uninfected roots (Spanu et al. 1989). However, once the symbiosis was fully

established, the chitinase activity in mycorrhizal roots was even lower than in the

control roots. The possible explanation for this observation is that at the earliest stages

of the interaction with the fungus, roots respond with a defense response. However,

once the symbiotic interaction is established, the fungus is able to suppress the plant

stress reaction and grow inside the roots.

7 Methods for Studying Rhizosphere Interactions

The rhizosphere is complex; quantitatively a single gram of soil has over 10,000

distinct microbes (Kent and Triplett 2002). The traditional culture-based techniques

are inadequate to study the actual goings-on of the microbes of the interest because

most of the rhizosphere organisms are unculturable (Kent and Triplett 2002). Novel

approaches are needed to probe this complex environment and recently a broad

range of techniques and strategies have been used to study the rhizosphere

interactions. The increasing applications of molecular techniques will provide

a basis for studying rhizosphere interactions at broad-scale (community level) to
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fine-scale (species level) investigations. Previously, Biolog has been used to char-

acterize the differences in microbial communities between contrasting habitat and

soil types (Zak et al. 1994). The Biolog assay uses microtiter plates consisting of 96

wells containing separate sole carbon sources and a redox indicator dye, which

produce patterns of potential carbon utilization for microbial communities. How-

ever, this method is completely dependent on the growth of microbial population in

artificial media and also biased toward faster growing microbes (Paterson et al.

1997). To overcome this problem, phospholipid fatty acid analysis (PLFA) has been

used to analyze the microbial population at community level and this method is

totally culture-independent analyses and provides the broad number of bacterial

taxes present in the samples (Zelles 1997). The combination of Biolog and PLFA

techniques has shown differences in the microbial community composition of bulk

and rhizosphere soils (S€oderberg et al. 2004), but these two methods cannot identify

certain microbial species at community level. Later, polymerase chain reaction

(PCR) amplification of rDNA genes combined with fingerprinting techniques such

as denaturing gradient gel electrophoresis (DGGE), terminal restriction fragment

analyses (T-RFLP), and amplified rDNA restriction analysis (ARDRA) is proven to

study the species composition of whole communities in detail (Nicol et al. 2003;

Torsvik and Ovreás 2002). In addition, development of novel methods such as

fluorescence in situ hybridization (FISH) and microautoradiography allows to

determine the phylogenetic identification of uncultured bacteria in natural environ-

ments by using fluorescence-specific phylogenetic probes (targeting rRNA) and

fluorescence microscopy to detect and quantify the active population utilizing

a specific substrate (Gray et al. 2000). The recent development of metagenomics

coupled with bioinformatics will allow studying the genomics analyses of uncul-

tured microbes in the rhizosphere (Rondon et al. 2000), but it does not make any

sense to gather data on every microbe present in the rhizosphere instead of the

organisms of interest which are actively interacting in the rhizosphere. The discov-

ery of an elegant technique called stable isotope probing (SIP) allows studying the

organisms of interest which are actively interacting in the rhizosphere with the root

exudates. In this technique, plants are exposed to 13CO2, which has a heavier carbon

atom than regular CO2, metabolized by the plant, and deposited in the rhizosphere

through rhizodeposition and utilized by the microbes present in the rhizosphere.

The nucleic acids of the microbes utilizing the 13CO2 will be heavier than the

noninteracting microbes and analyzed using density gradient centrifugation (Kiely

et al. 2006) and also yield the entire genome of all the participating microbes in the

rhizosphere (Singh et al. 2004). In addition, the recent development of “omics”

technologies coupled with bioinformatics studies is appropriate to study the

rhizospheric soil microbe’s interactions at community levels to species level. The

“omics” techniques such as transcriptomics, proteomics, and metabolomics allow

studying the microbial interactions in a given environment as a part of functional

genomics. The recent development of next-generation sequencing methods will

complement these “omics” techniques to study the rhizospheric microbial

interactions in detail to detect and quantify the unculturable microbes that actively

participate in the rhizosphere. Finally, the rhizosphere is a complex system and no
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single method is sufficient to describe the complex nature of the rhizosphere.

Therefore, there exists a need to develop systems approach to describe the complex

nature of the rhizosphere. In addition, the multitude of interactions in the rhizo-

sphere requires high-throughput techniques in order that they can be elucidated in

a reasonable time frame.

8 Concluding Remarks and Future Perspectives

Competition between plants is high because plant growth in the natural environ-

ment frequently takes place in dense stands of established vegetation. The complex

interactions that take place in the rhizosphere between plants and microbes and

their regulation by soil faunal activity may be of fundamental importance for

individual plant success but also at community level.

Although there is a large body of literature available to prove the significance of

plant–microbes, plant–microfaunal, and microbial–microfaunal interactions to

enhance plant growth, but still there is a lacuna on the knowledge of multitropic

interactions occurring in the rhizosphere. In addition, most information about

important processes in the rhizosphere comes from studies in controlled environ-

ments where roots are grown in simple uniform media and organisms of interest are

applied. There is a need to understand these rhizospheric multitrophic interactions

in the realistic field conditions to improve the plant growth at species and commu-

nity level. In addition, studies should conduct in the field conditions to understand

the rhizospheric complex interactions in monocultures and polycultures. This will

help to understand the dynamics of interactions and their outcome in influencing the

plant’s success when they are in monocultures and in polycultures.

Obviously, studying these complex rhizospheric interactions by employing

single method is impossible. However, the combination of techniques and the

continuous development of new techniques in the field of rhizosphere biology

coupled with systems approach will allow us partly to elucidate these complex

interactions under field conditions. For many years, ecologists have viewed soil

organisms and plants as relatively independent from each other. But to unravel these

complex interactions, further research requires multidisciplinary system approach,

which includes involving and exchange of knowledge between plant physiologists,

soil scientists, microbiologists, and zoologists with the help of bioinformatics

specialists. In addition, the differences in plant growth and plant community com-

position can only be understood in relation to indirect microbial–faunal, plant–

microbial, faunal–plant, and microbial–microbial interactions in the rhizosphere.
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