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Preface

We are used to thinking of the world in a centralized and hierarchical man-
ner. Governments and businesses rely on organizations with someone “at the
top” who collects information and issues orders that trickle down the hier-
archy until they reach the rest of us. Even portions of our economic system
work in this fashion. The reason organizations exist is because they work
well in many situations. But there is another view of the world that is en-
tirely different. This view starts at the “bottom,” and realizes that much
of the organization that we see does not stem from centralized control, but
emerges from the local interactions of a multitude of entities (as with in-
sects, people, vehicles, and the movement of money). These multitudes are
swarms. Standard approaches to understanding swarms rely on inspiration
from biology. These are called “biomimetic” approaches. In this book, we
focus on a different inspiration, namely, physics. We refer to physics-based
swarm approaches as “physicomimetics.” Both approaches are complemen-
tary, but physics-based approaches offer two unique advantages. The first is
that these approaches capture the notion that “nature is lazy.” This means
that physical systems always perform the minimal amount of work necessary.
This is very important for swarm robotics, because robots are always limited
by the amount of power they have at their disposal. The second advantage is
that physics is the most predictive science, and it can reduce complex systems
to amazingly simple concepts and equations. These concepts and equations
codify emergent behavior and can be used to help us design and understand
swarms.

This book represents the culmination of over 12 years of work by numerous
people in the field of swarm intelligence and swarm robotics. We include sup-
plemental material, such as simulation code, simulation videos, and videos
of real robots. The goal of this book is to provide an extensive overview of
our work with physics-based swarms. But we will not do this in the standard
fashion. Most books are geared toward a certain level of education (e.g., lay-
men, undergraduates, or researchers). This book is designed to “grow with
the reader.” We start with introductory chapters that use simple but powerful
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viii Preface

graphical simulations to teach elementary concepts in physics and swarms.
These are suitable for junior and senior high school students. Knowledge of
algebra and high school physics is all you need to understand this material.
However, if you are weak in physics, we provide a chapter, complete with sim-
ulations, to bring you back up to speed. In fact, even if you have had physics
already, we recommend that you read this chapter—because the simulations
provide insights into physics that are difficult to achieve using only equations
and standard high school physics textbooks.

All you need is a computer to run the simulations. They can be run directly
on your machine or through your web browser. You do not need to have had
any programming courses. But if you have had a programming course, you
will be ready to modify the simulations that come with this book. We provide
an introductory chapter to explain the simple simulation language that we use
throughout. Suggestions for modifications are included in the documentation
with the simulations.

The middle of the book is most appropriate for undergraduates who are
interested in majoring in computer science, electrical computer engineering,
or physics. Because we still use simulations, these chapters generally require
only algebra and an understanding of vectors. A couple of chapters also re-
quire basic calculus (especially the concepts of derivatives and integrals) and
elementary probability. If you don’t know anything about electrical computer
engineering, that is fine. You can merely skim over the hardware details of
how we built our robots and watch the videos that also come with this book.
But if you have had a course or two, much of this material will be quite
accessible.

The final sections contain more advanced topics suitable for graduate stu-
dents looking for advanced degree topics, and for researchers. These sections
focus on how to design swarms and predict performance, how swarms can
adapt to changing environments, and how physicomimetics can be used as
a function optimizer. However, even here most of the chapters require little
mathematics (e.g., only two require knowledge of linear algebra and calculus).

It is important to point out that this is a new and rapidly developing field.
Despite the fact that the authors share a surprisingly consistent vision, we
do not always view swarms in precisely the same way. This should not be
a cause for concern. Unlike Newtonian physics or mathematics, which have
been developed for hundreds of years, physicomimetics is relatively new and
does not yet have entirely consistent terminology and notation. But all this
means is that not everything is cast in stone—we are at the beginning of an
adventure. You are not learning old knowledge. Instead, you are seeing how
science progresses in the here and now. We hope you enjoy the journey.

Laramie, Wyoming William M. Spears
September 2011 Diana F. Spears
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Chapter 1
Nature Is Lazy

William M. Spears

“...sudden I wav'd My glitter falchion, from the sanguine pool
Driving th’ unbody’d host that round me swarm’d” (1810) [29]

“...Jince then it is called a fwarm of bees, not fo much from the
murmuring noife they make while flying, as the manner in
which they connecl, and join themfelves together at that
remarkable time of fwarming” (1783) [135]

1.1 What Are Swarms?

No one knows the exact origin of the word “swarm.” Most sources refer to
the Old English word “swearm.” Samuel Johnson’s 1804 dictionary defined a
swarm as “a great number of bees; a crowd” [108]. Similarly, in 1845 a swarm
was defined as a large number of persons or animals in motion [178]. This
agrees with the use of the word in the two quotations above. The first is from
a translation of Homer’s Odyssey [29]. The second is from a book on English
etymology [135].

The most frequent connotation of “swarm” is with respect to bees, animals
and people. And, not surprisingly, much of the swarm research is inspired
by biology. This research is referred to as “biomimetics” or “biomimicry.”
These words are from the Greek bios (Bioc), meaning “life,” and mimesis
(pipnots), which means “imitation.” Hence much of swarm research focuses
on the imitation of live organisms such as birds, fish, insects, and bacteria.

This book examines a different approach to swarms, namely a “physicomi-
metics” approach. This word is derived from physis (p0ocs), which is Greek
for “nature” or “the science of physics.” Physics involves “the study of matter
and its motion through spacetime, as well as all related concepts, including
energy and force” [265]. Hence we will focus on swarms of matter particles
that are subject to forces. Depending on the application the particles can act
as robots in an environment, agents solving a task, or even as points in a high
dimensional space. We will show how various forms of energy play a role in
how the particles move.
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