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Foreword 

The research area of selenoproteins has seen considerable progress in recent years. 

The initial identification of selenium as an essential trace element was followed by 

the characterization of glutathione peroxidases as selenoproteins, which subsequnetly 

resulted in a wealth of information on various other selenoproteins. Early on, 

organic selenium compounds were identified as mimics of glutathione peroxidase 

activities. The current state of knowledge in these two research fields is brought 

together in this volume. 

Regarding selenoproteins, following their identification and the study of their 

structure and characterization of their function and regulating, there have been 

efforts to bring their role into perspective in terms of physiology and pathology. 

An early landmark was Keshan disease, and current aspects are presented here on 

various exciting topics. 

Selenoprotein mimics have been associated with the functioning of compounds 

capable of carrying out the reduction of hydroperoxides, a domain of glutathione 

peroxidases. The present volume contains valuable information on current knowledge 

in this field, addressing chemically new types of compounds and their potential in 

therapeutic applications. As not all functions of selenoproteins are uncovered yet, 

further types of selenoprotein mimics can be expected in the future. 

It is noteworthy that the editor, Professor Junqiu Liu, and his other colleagues 

from China have contributed to this research area with highly interesting work in 

recent years, so that one can truly formulate that there is a tradition in Chinese 

research in the field of selenium and selenoproteins, stemming from the initial 

observation of the role of the trace element in Keshan disease to the current 

research fronts in the 21st century. Congratulations to this and to a fine book 

which hopefully will lead to further projects and research excitement. 

 

 

Helmut Sies 

Professor of Biochemistry and Molecular Biology 

Heinrich-Heine-University Dusseldorf 

Germany 

sies@uni-duesseldorf.de 

 



 

 

Preface 

The element selenium was first discovered in 1817 by Berzelius and was 

recognized as an essential nutrient in the late 1950s. However, the biochemical 

role of selenium was not established until 1973 with the discovery of the 

selenoprotein, glutathione peroxidase (GPx). In 1973, selenium was indentified as 

an essential component of the active site of selenoenzyme GPx. From this year the 

biochemical and biological role of selenium began to be established. One important 

advance in this area is the investigation of selenoproteins. Selenoproteins exist in 

all major forms of life, eukaryote, bacteria and others. They are proteins which 

includes selenocysteine residues. Selenoproteins are important constituents of a 

number of enzymes with a range of functions including antioxidant function, thyroid 

hormone metabolism, male fertility and immune mechanisms. Selenium occurs in 

selenoproteins as specifically incorporated selenocysteine, and selenocysteine is 

recognized as the 21
st

 amino acid. There is a rather complicated pathway of 

selenocysteine biosynthesis and specific incorporation into selenoproteins. The 

biosynthesis of selenocysteine is regulated by four genes and begins with the 

aminoacylation of the amino acid serine by the enzyme serine synthetase to 

produce Ser-tRNASec. Research suggests that the mammalian genome encodes 25 

selenoprotein genes, while more than 40 selenoprotein genes may exist in different 

tissues. Thus, the number of selenoproteins indentified has grown substantially in 

recent years although the functions of only about half of these selenoproteins are 

understood. Conventionally, iodothyronine deiodinases, thioredoxin reductases, 

selenophosphate synthetase, selenoprotein P, selenoprotein W and the well-known 

glutathione peroxidases represent important classes of selenoproteins, and recent 

indentified selenoproteins includes selenoproteins Sel15, SelH, SelI, SelK, SelM, 

SelN, SelO, SelR, SelS, SelT, SelU, SelV, SelX, and SelZ. Their functions may be 

less understood or even unknown.  

It is well known that selenium associate with human health and disease. For 

selenium-related disease, typical example includes Keshan disease, a selenium 

deficiency disease, which was first described in the early 1930s in China. 

Observational studies show that selenium can be benefical for immune system, 

reducing the cardiovascular and cancer mortality. Recent studies indicate that 

selenium shows important influence on asthma, arthritis, male infertility and 

HIV/AIDS.  

To explore the functional importance of selenium in selenoproteins, significant 



Preface viii 

efforts have directed toward the development of biomimetic chemistry of selenoproteins. 

In this regard, the main progress focus on the simulation of the behaviors of selenium 

in selenoenzyme GPx. Up to now, a number of organoselenium/tellurium compounds 

and artificial selenoproteins were designed to mimic the natural GPx. A typical 

example is ebselen (2-phenyl-1,2-benzisoselenazol- 3[2H]-one), this “small molecular 

selenoenzyme” has been widely investigated as an artificial GPx from abundant 

experiments to clinic trials. Important progress has been made recently for the 

design of selenoantibody and seleno/telluro-glutathione tansferases, and these artificial 

selenoenzmes show amazed catalytic behaviors rivaling natural ones! 

In this book, we combine the introduction of the recent development of 

selenoproteins with the advance in their functional imitation. Thus the book 

associates crossed subjects including biology, chemistry and medical science. This 

book consists of two parts with 20 chapters. The first part which was titled 

“Selenoproteins” describes major aspects of the identified selenoproteins with 

identified functions, these selenoproteins include glutathione peroxidases, thyroid 

hormone deiodinase. Thioredoxin reductases, selenophosphate synthetase, selenoprotein 

P, selenoprotein W, deiodinase, thioredoxin and selenoprotein T. The biosynthesis 

mechanism of selenoproteins is also discussed in this Part. The introduction of the 

bioinformatics of selenoproteins will help us to obtain insights into selenium 

utilization, distribution and the discovery of new selenoproteins. The description 

of main diseases such as cancers, brain diseases and heart diseases, and the 

occurrence of different forms of selenium in foods will give us a rough picture of 

the relationship of selenoproteins with human health. The second part which was 

titled “Selenoprotein mimics” presents the recent progress of biomimetic 

chemistry of selenoprotein. This part provides an overview for the reasonable 

design and synthesis of artificial models with selenoenzyme activity. Thus, a 

series of ideas and approaches for the design of artificial selenoproteins including 

chemical and biological methods has been described.  

We hope that the biomimetic chemistry of selenoproteins will enrich both 

pharmaceutical and academic aspect of selenium and selenoproteins and also hope 

that the two part of this book will facilitate each other. The progress of selenoproteins 

would facilitate the design and preparation of artificial selenoproteins, and at the 

same time the functional imitation of selenoproteins would increase the understanding 

for the structures and functions of selenoproteins, and also for their further 

application in human health. This book provides a new review of selenoproteins, 

their mimetic chemistry and their varied aspects of health. Research in these 

directions is in progress although there are still many unanswered questions. It 

provides a platform for the scientists, researchers and students in the field of 

selenoproteins, their mimetic chemistry and others. This book should be suitable 

for wide readers in chemistry, biology and medical science. 

 

 

Junqiu Liu,  Guimin Luo 

Changchun, China 

May, 2011 
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The present state of knowledge on glutathione peroxidases (GPxs) is reviewed 

with particular emphasis on general catalytic principles and the biology of 

mammalian glutathione peroxidases. GPxs make up a ubiquitous family of 

proteins defined by sequence homology, the common functional denominator 

being their ability to reduce hydroperoxides by thiols. Catalysis is mediated by an 

active-site selenocysteine or cysteine. Eight distinct GPxs have been identified in 

mammals, five of them being selenoproteins in man. While glutathione specificity 

prevails in vertebrate GPxs, thioredoxins or related redoxins appear to be common 

substrates in plant, bacterial and protist GPxs. Specific reactions of GPxs with 

other protein thiols are also observed. The basic catalytic scheme allows the 

enzymes to adopt diversified biological roles ranging from defence against 

peroxide challenge, redox regulation of metabolic processes and transcription, 

apoptosis to cellular differentiation. The roles of the individual mammalian GPxs 

are discussed in the light of distinct substrate specificities, distribution, subcellular 

compartmentation, expression patterns and data from inverse genetics. It is 

outlined that the multiple coexisting GPxs and functionally related peroxiredoxins 

likely build up a system of enzymes that, with discrete functional overlap, 

complement each other in meeting specific biological tasks far beyond fighting 

oxidative stress.  

1.1� Introduction 

In 1973, glutathione peroxidase (GPx) was identified as a selenoprotein, in fact the 
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first one to be discovered in higher organisms 
[1, 2]

. The enzyme, which is now 

known as GPx1 catalyzed the reduction of H
2
O

2
 and organic hydroperoxides by 

glutathione. Its selenoprotein nature finally explained why traces of selenium are 

essential for defense against an oxidative challenge in the vertebrate organism. 

The fact that the first mammalian selenoprotein was a peroxidase, however, also 

led to the misconception that the essential trace element selenium is simply a 

“biological antioxidant”. The early history of glutathione peroxidase and selenium 

biochemistry with all its interdependencies, serendipities and surprises were the 

subject of a recent essay 
[3]

 and shall not be repeated here in detail. It may suffice 

to say that research on GPxs was pivotal to our present understanding of 

selenium’s role in biology, its function as a catalytic entity in enzymes, as well as 

providing an understanding of a most complex mechanism in its co-translational 

incorporation into selenoproteins 
[4-8]

.  

Over the past three decades, GPxs, defined as proteins with high sequence 

similarity, have been detected in almost every domain of life. The majority of 

these proteins, however, are neither selenoproteins nor glutathione peroxidases, if 

this term is to characterize their catalytic role. The selenium-containing 

glutathione peroxidases prevail in vertebrates and have only been sporadically 

detected in lower organisms such as platyhelminths (e.g. Schistosoma mansoni, S. 

japonicum and Echinococcus granulosus) 
[9, 10]

, Cnidaria (Hydra vulgaris) and 

protists 
[11]

, and exceptionally in insects (in the tick Boophilus microplus) 
[12]

 and 

bacteria 
[13]

. In most of the invertebrate species, all yeasts and higher plants, the 

active site selenocysteine of the glutathione peroxidases is replaced by cysteine. 

Interestingly, this change in the redox-active moiety is often associated with a 

switch in substrate specificity: most of the non-Se glutathione peroxidases appear 

to hardly react with glutathione (GSH). Instead, these GPx homologues, like most 

of the peroxiredoxins, are preferentially or exclusively reduced by “redoxin”-type 

proteins such as thioredoxin 
[14]

 or tryparedoxin 
[15]

. A yeast GPx homologue has 

also been described to specifically react with a particular SH group of a 

transcription factor and to thereby initiate the expression of protective enzymes 
[16]

. 

However, the selenium-containing GPxs are not always specific for GSH either. In 

fact, a strict specificity for GSH has only been documented for the prototype 

which gave the name to the entire family, i.e. GPx1 
[17]

, whereas e.g. GPx4 has 

been reported to react with a variety of protein thiols 
[18-20]

 including SH groups of 

GPx4 itself 
[21, 22]

.   

The ramification that the GPx family experienced during evolution 
[11, 23]

 

renders it obsolete to talk about “glutathione peroxidase” as a functionally well-

defined enzymatic entity. Many of the family members might not at all share the 

basic biological role of GPx1, which is to reduce H
2
O

2
 or other hydroperoxides at 

the expense of GSH to cope with oxidative challenge. Moreover, the term 

“glutathione peroxidase” has been used to describe enzymes that may similarly 

catalyze the reduction of hydroperoxides by GSH, but are neither structurally nor 

phylogenetically related to the family, such as GSH-S-transferases 
[24]

, selenoprotein 

P 
[25]

 or human peroxiredoxin VI 
[26]

.  

The growing complexity of thiol-dependent hydroperoxide metabolism has 
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been discussed in many topical reviews, each one focusing on particular aspects 

such as evolution 
[11, 23]

, specificities 
[20]

, kinetics 
[27, 28]

, catalytic mechanism 
[20, 27]

, 

regulation of enzyme expression 
[29, 30]

 and its involvement in redox regulation 
[30-32]

, 

male fertility 
[33, 34]

, apoptosis 
[35, 36]

, viral infections 
[37]

, thyroid 
[38]

 or brain function 
[39]

. 

And the overlap between the glutathione- and thioredoxin-dependent hydroperoxide 

metabolizing systems may be distilled from respective monographs 
[40, 41]

. By the 

end of June 2009, a PubMed search for the key word “glutathione peroxidase” 

yielded 10,928 entries, which reveals the impossibility of covering the entire field 

in this review with an allotted maximum length of 20 pages. This article will 

therefore be essentially confined to general aspects of GPx catalysis and the 

peculiarities of the mammalian selenium-containing peroxidases. 

1.2� Glutathione Peroxidase Reaction   

The GPx that gave its name to the entire family 
[3]

 catalyzes the reduction of H
2
O

2
 

and soluble organic hydroperoxides at the expense of GSH. This first glutathione 

peroxidase, now called GPx1, is a tetrameric enzyme consisting of four identical 

subunits (Fig. 1.1). Having remained the only known GPx for more than two 

decades, it also served as a prototype for working out the kinetic mechanism, 

sequence and structure, specificity and the catalytic principle which involves 

oxidation of the active site selenium and step-wise reduction by GSH. The present 

mechanistic understanding of this enzyme, which is widely relevant to other types 

of GPx, is critically reviewed in the paragraphs below.  

 

Fig. 1.1.� Structure of GPx1. The representation shows the homo-tetrameric enzyme with its four 

selenium atoms as orange balls. Reproduced from the data set of Epp et al. 
[52]

 by K. D. Aumann, 

Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany 
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1.2.1� Basic Catalytic Principle 

Typically, glutathione peroxidases catalyze the reduction of H
2
O

2
 by GSH 

according to Eq.(1.1). 

H
2
O

2
 + 2 GSH → GSSG + 2 H

2
O    (1.1) 

Depending on the particular enzyme, a more or less broad scope of 

hydroperoxides may be reduced (Eq.(1.2)) , 

ROOH + 2 GSH → GSSG + ROH + H
2
O   (1.2) 

and the reductant GSH may be partially or fully replaced by other thiols (Eq.(1.3)), 

H
2
O

2
 + GSH + RSH → GSSR + 2 H

2
O    (1.3) 

or 

H
2
O

2
 + 2 RSH → RSSR + 2 H

2
O    (1.4) 

All these reactions seem to be chemically trivial and indeed proceed 

spontaneously, provided the thiol groups are dissociated. In reality, however, these 

reactions (Eqs.(1.1) – (1.4)), each one involving three molecules, proceed according 

to a lower order of kinetics than anticipated, since they do not require any ternary 

collision of the three molecules but result from a sequence of two binary collisions 

(Eqs.(1.5) and (1.6)). The first thiol, which has to be present in its thiolate form, 

reacts with the hydroperoxide, whereby a sulfenic acid is formed.  

RS
−

 + H
2
O

2
→ RSOH + OH

−

     (1.5) 

The latter then dissociates and reacts with the second thiol to form the disulfide. 

RSO
− 

+ H
+

 +RSH → RSSR + H
2
O                  (1.6) 

The enzymatic catalysis of hydroperoxide reduction by thiols mimics much of 

this simple chemistry but speeds up the reaction rate by orders of magnitude 

(Eqs.(1.7) and (1.8)). The enzymatic trick is that the hydroperoxide has not to 

directly attack a poorly reactive, since hardly dissociated, thiol such as GSH. 

Instead, a highly-reactive thiol or selenol within the enzyme, which is the 

“peroxidatic cysteine” (C
P
) or “peroxidatic selenocysteine” (U

P
), reduces the 

hydroperoxide.  

E-S
−

 + H
2
O

2
 → E-SOH + OH

−

     (1.7) 

E-Se
−

 + H
2
O

2
 → E-SeOH + OH

−

    (1.8) 

The sulfenic or selenenic acid residue of the enzyme, in analogy to Eq.(1.6), 

readily reacts with the substrate thiol to form a mixed (selena) disulfide which, by 

thiol-disulfide exchange, is reduced by the second thiol (Eqs.(1.9) and (1.10)). 

E-S(Se)O
−

 + H
+

 + RSH → E-S(Se)SR + H
2
O   (1.9) 
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E-S(Se)SR + RSH → E-S(Se)
−

 + H
+

 + RSSR   (1.10) 

In essence this basic scheme is valid for the “real” glutathione peroxidases and, 

with some modifications, also for the GPx-type 
[14]

 and peroxiredoxin-type 

thioredoxin peroxidases 
[41]

. In the latter two cases, the first reducing thiol is a 

cysteine residue of the enzyme itself (called the “resolving” cysteine, C
R
), and the 

resulting disulfide form of the enzyme is then reduced by the CXXC motif of a 

redoxin-type protein. 

1.2.2� Kinetics 

The catalytic principle outlined above is best described by the German term 

“Zwischenstoffkatalyse” (catalysis by intermediate formation), as it was developed 

by the German chemist Wilhelm Ostwald in the beginning of the last century 
[42]

. 

It means that the catalysis is achieved by a sequence of partial reactions of the 

reactants with the catalyst and modifications thereof, each being faster than the 

non-catalyzed overall reaction. In our example, the catalyst is oxidized by H
2
O

2
 

(Eq.(1.8)), and the intermediate E-SeOH (Zwischenstoff) thus formed is stepwise 

reduced by GSH (Eqs.(1.9) and (1.10)). The correlation in enzymological terms is 

the “enzyme substitution mechanism”, as defined by Dalziel in 1957 
[43]

. This 

catalytic principle, which is by no means uncommon for oxidoreductases, differs 

substantially from “central complex mechanisms”, where two or more reactants 

are assembled at the enzyme’s active site in a productive way to facilitate their 

interaction. This difference between mechanisms has to be stressed, because it has 

a major impact on kinetics and, in consequence, on the enzyme’s function in a 

biological context. While enzymes with central complex mechanisms are best 

characterized by Michaelis constants and maximum velocities, these classical 

parameters adopt a completely different physical meaning in enzyme substitution 

mechanisms or, as in the case of the selenoperoxidases, may not be applicable at 

all: The K
m
 and V

max 
values of GPx1 

[44]

 and all other selenium-containing GPxs 

investigated so far are infinite 
[27]

. This seemingly odd behavior does not reflect a 

low affinity of substrates to GPx, but simply reveals a high reactivity of the 

substrates with the enzyme or its derivates, respectively. In contrast to the 

Michaelis-Menten theorem, it is not a reaction of substrates within an enzyme / 

substrate complex that is rate-limiting in the GPx reaction, but the speed of 

productive collisions of the ground-state enzyme with a hydroperoxide (Eq.(1.8)) 

or the formation of binary complexes between GSH and one of the oxidized 

enzyme forms (Eqs.(1.9) and (1.10)). Although the formation of such complexes 

(omitted in Eqs.(1.9) and (1.10)) is not evidenced by steady-state kinetics, they 

have to be inferred for GPx1 at least from its pronounced donor substrate 

specificity. In line with this interpretation, saturation kinetics are sometimes 

observed with GPx homologues working with the less reactive C
P
 
[27]

 or with other 

thiol peroxidases relying on sulphur catalysis 
[28]

. 
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With the above consideration, the initial rate equation for GPx1 
[44]

 and 

identically for GPx3 
[45]

 and GPx4 
[45, 46]

 becomes surprisingly simple (Eq.(1.11)):  

[E
0
] / v

0
 = 1 / k

+́1
·[ROOH] + 1 / k

+́2
 ·[GSH]  (1.11) 

Therein k
+́1

 is the apparent net forward rate constant for partial reaction (Eq.(1.8)) 

and, in view of the irreversibility of this step and lacking evidence for a specific 

enzyme/hydroperoxide complex, may be regarded as the bimolecular rate constant 

k
+1

 that characterizes the oxidation of the ground state enzyme with the 

hydroperoxide. k
+́2

 is less well defined. It is the net forward rate constant for the 

reductive part of the catalytic cycle and physically means the net forward rate 

constant for the association of GSH with the oxidized (Eq.(1.12)) or partially 

reduced enzyme (Eq.(1.13)), whichever is smaller, or a hybrid constant, if they are 

similar.  

E-SeOH + GSH → [E-SeOH·GSH]      (1.12) 

E-SeSG + GSH → [E-SeSG·GSH]       (1.13) 

The complexes, however, never accumulate and therefore remain kinetically 

silent, since the reactions according to Eq.(1.9) and Eq.(1.10) proceed within these 

complexes with a non-rate-limiting, i.e. higher velocity. Despite its poorly-defined 

physical meaning, k
+́2

 is a useful constant to predict turnover rates under varying 

physiological conditions. 

1.2.3� Physiological Consequences of Kinetic Mechanism 

For all mammalian selenium-containing GPxs so far analyzed, a k
+1

 > 10
7

 L/(mol·s) 

(for H
2
O

2
 ) was determined, whereas the k

+́2
 is two to three orders of magnitude 

smaller. As the oxidative step is so much faster than the reductive ones, the 

enzyme is almost 100% oxidized if its velocity is measured at similar substrate 

concentrations, as commonly done in vitro. Under such conditions the rate 

equation (Eq.(1.11)) simplifies to Eq.(1.14): 

v
0 
= k

+́2 
· [GSH] · [E

0
]    (1.14) 

which means that the turnover depends on the concentration of GSH and over a 

wide range is independent of the H
2
O

2 
concentrations. In fact, the enzyme seems 

always “saturated” with H
2
O

2
 and an apparent K

M 
is hard to measure. This 

observation has frequently led to the misconception that the enzymes similarly 

respond to variations in substrate concentrations in vivo. The opposite is correct: 

the general rate equation (Eq.(1.12)) yields that, at physiological substrate 

concentrations of 1 – 10 mmol/L GSH and an estimated maximum of 1 μmol/L 

H
2
O

2
 or other hydroperoxides, the enzyme is largely reduced, even if k

+1
 is two 

orders of magnitude larger than k
+́2

. With [E
0
] = [E

red
], however, the rate equation 

simplifies to Eq.(1.15). 



1.2� Glutathione Peroxidase Reaction 

 

7 

v
0
 =  k

+́1 
· [ROOH] [E

0
]    (1.15) 

This implies that in vivo the GPx turnover in most cells is independent of the 

concentration of GSH, unless it drops to less than 10
−4

 mol/L. This straightforward 

consequence of the kinetic parameters of the enzymes seemingly conflicts with 

observations relating impaired antioxidant defense to moderately-lowered GSH 

content in tissues. The solution of the enigma is provided by uneven GSH 

concentrations in cells and cellular compartments. A drop in GSH by, e.g. 20%, 

likely means that GSH is practically zero in 20% of the cells. Such GSH depletion 

is not reached before the rate of H
2
O

2
 production exceeds the rate of GSH 

regeneration by glutathione reductase or the NADPH supply systems, respectively. 

Exceptionally, this happens physiologically in special cells but commonly marks a 

transition point from physiology to pathophysiology.  

1.2.4� Facts, Unknowns and Guesswork 

While the basic principles of the glutathione peroxidase reaction, according to 

Eqs.(1.7) – (1.13), are generally accepted, many details still remain enigmatic.  

1.2.4.1� Catalytic Relevance of U
P
 or C

P
 Dissociation 

From alkylation studies and general chemical considerations, it appears obvious 

that the ground state enzyme presents its active site selenocysteine as a selenolate, 

and the extreme efficiency of the selenoperoxidases is usually explained by the 

comparatively low pK
a
 of selenocysteine (pK

a 
= 5.2) versus cysteine (pK

a
 = 8.3). 

Unfortunately, this reasoning, although repeated even in most recent publications 
[47]

, 

does not really lead to any satisfactory interpretation of experimental data:  

i) Fully-dissociated low molecular weight thiols do not react with H
2
O

2 
faster 

than with bimolecular rate constants near 50 L/(mol·s) 
[48]

, while corresponding 

rate constants for cysteine residues in GPx- or Prx-type peroxidases ranging 

around 10
6

 L/(mol·s) are by no means exceptional 
[27, 28]

. 

ii) Within the architecture of the GPx active site C
P
 or U

P
 appear to be similarly 

dissociated, as has been suggested by pK
a
 calculations 

[20]

 and demonstrated by 

velocities of alkylation 
[49, 50]

, which equally requires the thiolate or selenolate 

form, respectively. The efficiencies of recombinant cysteine homologues of Se-

GPxs, however, are typically three orders of magnitude smaller 
[49-51]

 and k
+1

 values 

near 10
8 

L/(mol·s), as determined for natural GPx1 
[44]

, have never been observed 

with any of the thiol peroxidases working with sulphur catalysis 
[27, 28]

. 

iii) The electro-negativity of sulphur and selenium does not differ significantly 

enough to account for the substantial difference in catalytic efficiency either. Thus, 

in short, the dissociation of C
P
 or U

P
, respectively, although being a prerequisite 
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for the enzyme’s reaction with ROOH, neither explains the catalytic efficiency of 

GPxs in general nor the superiority of the selenium-containing ones. 

1.2.4.2� Mechanism of U
P
 Activation 

An activation of the U
P
 by neighboring residues had already been deduced from 

the first X-ray structure of a GPx, that of GPx1 
[52]

. Although the U
P
 in this 

structure was over-oxidized to a seleninic acid, it seemed plausible that in the 

ground state enzyme the selenium atom might be hydrogen-bonded to the amide 

nitrogen of a glutamine and the imino nitrogen of a tryptophan, whereby a 

catalytic triad consisting of Sec (or Cys), Gln and Trp is formed, which over the 

years became a characteristic signature of the entire family. In this triad the 

selenol function should be forced into dissociation and further polarized for a 

nucleophilic attack on the peroxy bond of the substrate. The catalytic relevance of 

these conserved residues could indeed be verified by site-directed mutagenesis of 

GPx4 
[49]

 and others 
[15, 50]

. More recently, the triad concept had to be amended, 

since a strictly conserved Asn that contacts the U
P
 or C

P
 from the core of the 

protein proved to have an even higher impact on activity  than Gln and Trp so far 

implicated, whereby the catalytic triad grew up to a tetrad 
[20]

. The residues were 

shown to facilitate dissociation of C
P
 (a U

P
 would be dissociated anyway) 

[20, 49, 50]

 

and S-alkylation 
[49, 50]

 and thus contribute to the nucleophilicity of the active site 

chalcogen, which is a necessary, though not sufficient, condition for catalytic 

efficiency (see subsection 3.4.1). Recent re-calculations based on all known GPx 

structures, however, revealed that these residues are in an ideal position to form a 

stable hydrogen bond between each other but not so with the active site S or Se. It 

therefore might not be a direct hydrogen bonding but the generally high density of 

labile protons in the surrounding of U
P
 or C

P
, respectively, that enforces its 

dissociation 
[27]

. It is further tempting to speculate that the surface-exposed 

residues Gln and Trp are more important for the polarization of the peroxy bond 

than for the activation of C
P
 or U

P
. Finally, a few exceptions from the canonical 

triad / tetrad concept have been reported: The canonical Gln is replaced by Glu in 

poplar GPx 
[53]

 and by Ser in human GPx8 
[23]

 and could be replaced by Gly 

without loss of activity in the GPx of Chinese cabbage 
[54]

, which reveals a certain 

plasticity of the otherwise strictly conserved active site. Collectively, structural, 

genetic and functional investigations have unraveled some important features of 

(seleno) cysteine activation in GPx catalysis, but we are still far from a conclusive 

concept. The extreme efficiencies of the magic sulphur and/or selenium atoms still 

remain enigmatic. 

1.2.4.3� Chemical Nature of Oxidized GPx 

Another puzzle in GPx catalysis is the precise chemical nature of the oxidized 
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enzyme. In Eqs.(1.7) – (1.9) and (1.12), it is boldly shown as a sulfenic or 

selenenic acid derivative of C
P
 or U

P
, respectively. In fact, this assumption is little 

else but a postulate based on the stoichiometry of the reaction of one (seleno) 

cysteine residue with one hydroperoxide molecule. Admittedly, the oxidation of 

cysteine residues to sulfenic acids in proteins is not uncommon and has been 

amply demonstrated to occur in the analogous peroxiredoxin catalysis 
[55]

. With 

the selenoperoxidases, however, the situation is less clear. The postulated 

selenenic acid form has so far never been demonstrated experimentally. In X-ray 

crystallography the selenium of GPx1 was seen as seleninic acid 
[52]

. Instead, by 

mass spectrometry oxidized GPx4 
[20]

 and GPx1 
[56]

 consistently showed a 

molecular mass that was lower than that of the reduced enzyme by two mass units. 

This finding would be compatible with elimination of H
2
O from the postulated 

selenenic acid form and, in analogy to the catalysis of atypical 2-cysteine 

peroxiredoxins, might be interpreted as indicating the formation of an 

intramolecular selenyl-sulfide bond. There is, however, no cysteine residue in 

GPx1 or GPx4 that could serve as such C
R
. Alternatively, an initially-formed 

selenenic acid could react with a nearby amino, imino or amido group in analogy 

to the redox cycle of the GPx mimic ebselen (2-phenyl-1,2-benzisoselenazol-

3(2H)-one) 
[57]

. An analogous sulfenamide bond has been identified in oxidized 

protein tyrosine phosphatases such as PTP1B 
[58, 59]

 and PTPα 
[60]

 by X-ray 

crystallography. Like the selenyl-amide bond on oxidized ebselen, the 

sulfenamide in the PTPs is readily reduced by GSH 
[58-60]

, and it is therefore 

tempting to speculate that the first intermediate of the GPx cycle is indeed a 

selenyl-amide formed between the active site selenium and one of the triad/tetrad 

components. However, none of the suspected Se-N bonds could so far be detected 

by systematic mass spectrometry investigations, nor were they revealed by X-ray 

studies. It therefore appears wise to address oxidized GPx as a “selenenic acid 

equivalent” until its chemical nature has been clarified. 

1.2.4.4� Structures and Substrate Specificities 

As mentioned above, GPx1 is highly specific to GSH. Its GSH specificity has 

been attributed to a lysine residue (K91´) and 4 arginine residues (R57, R103, 

R184 and R185 in bovine GPx1) which surround the active site selenium and 

serve to successively direct the two GSH molecules into an orientation that allows 

reaction of the GSH sulphur with the selenium 
[61]

. This view has been corroborated 

by modeling and molecular dynamics calculations 
[62]

 but has so far not been 

verified by mutagenesis studies (Fig. 1.2). Therefore, the relative importance of 

the five basic residues must still be rated as uncertain. A contribution of these 

residues to GSH binding is, however, also supported by the circumstantial 

evidence that their deletion or replacement by non-equivalent residues, as is 

observed in members of GPx subfamilies other than GPx1, leads to gradual or 

complete loss of GSH specificity. The GPx2 subfamily has three of these residues 


