Frank G. Holz Daniel Pauleikhoff Richard F. Spaide Alan C. Bird Editors

Age-related Macular Degeneration

Second Edition

Age-related Macular Degeneration

Frank G. Holz • Daniel Pauleikhoff Richard F. Spaide • Alan C. Bird Editors

Age-related Macular Degeneration

Second Edition

Editors
Prof. Dr. Frank G. Holz
Department of Ophthalmology
Universität Bonn
Bonn

Germany

Prof. Dr. Daniel Pauleikhoff Department of Ophthalmology St.-Franziskus Hospital Münster Germany Prof. Dr. Richard F. Spaide Vitreous-Retina-Macula Consultants of New York Manhattan Eye, Ear, and Throat Hospital New York NY USA

Prof. Dr. Alan C. Bird Department of Ophthalmology Moorfields Eye Hospital London UK

ISBN 978-3-642-22106-4 ISBN 978-3-642-22107-1 (eBook) DOI 10.1007/978-3-642-22107-1 Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012938196

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface to the Second Edition

The diagnosis of age-related macular degeneration (AMD), particularly the exudative form, was dreaded by patients and doctors alike. This nearly always meant blindness for the patient as the doctor was helpless to intervene. Laser photocoagulation was an important development in therapy, but that treatment helped only a small minority of affected patients. Fortunately recent landmark developments in several interrelated fields have changed the outlook for patients with exudative AMD. Many patients now have visual acuity improvement or stabilization. There are still daunting tasks ahead however. Demographic trends and higher life expectancy mean the condition will become more prevalent in years to come. There are other aspects of AMD that threaten visual function and these are the subject of intensive research.

Knowledge of the subject has increased considerably since the first edition of this book. This has been primarily due to the intensification of broad-based, multidisciplinary research. Not only new methodological tools from areas such as molecular and cell biology, biochemistry, and molecular genetics have contributed to this status, but also further developments in the area of imaging and pharmacology. We are therefore optimistic that therapies for an ever increasing number of AMD patients will become available as a result of current and future developments in treatment.

The chapters in the 2nd edition have been fundamentally revised and relevant new developments and findings considered. In the field of pathogenetic factors a chapter has now been devoted to the role of the complement system in multifactorial, complex AMD. Furthermore, the role of imaging procedures including spectral-domain optical coherence tomography and fundus autofluorescence is addressed in detail. New therapeutic approaches based on deep insights into the underlying molecular mechanisms are examined both with respect to neovascular and progressive dry AMD.

A main objective of the book is to summarize clearly and understandably the current level of knowledge of pathogenesis, diagnostics and therapy of AMD and to point to the possibilities and limits presented by the therapeutic approaches. The bibliography is necessarily a selection from the considerably large number of publications of recent years.

We would like to thank the outstanding scientists and clinicians who have contributed their expertise to the various chapters. Our thanks also extend to our mentors, colleagues, patients and students for their diverse scientific and clinical suggestions. We thank the staff at the publishing company Springer for their professional and punctual realization of the book in the fast moving and expanding field of AMD.

Bonn, 2012 Münster, 2012 New York, 2012 London, 2012 Frank G. Holz Daniel Pauleikhoff Richard F. Spaide Alan C. Bird

Contents

Part I Pathophysiology

1	Epid	emiolo	gy of AMD	3
	L. Ho	o, R. va	n Leeuwen, P.T.V.M. de Jong, J.R. Vingerling,	
	and C	C.C.W.	Klaver	
	1.1	Introd	luction	4
	1.2	Classi	fication	4
	1.3	Frequ	ency	4
		1.3.1	Prevalence	4
		1.3.2	Incidence	6
	1.4	Natura	al Course	7
	1.5	Genet	ic Factors	7
		1.5.1	The Complement Pathway Genes	7
		1.5.2	The ARMS2 (10q26) Locus	12
		1.5.3	The Lipid-Related Genes	13
		1.5.4	Candidate Gene Association Studies	17
	1.6	Enviro	onmental Factors	18
		1.6.1	Smoking	18
		1.6.2	Antioxidants	18
		1.6.3	Body Mass Index (BMI)	19
		1.6.4	Hypertension	19
		1.6.5	Cataract Surgery	19
	1.7	Intera	ction Between Risk Determinants	20
		1.7.1	Combined Effects of CFH Y402H and Other	
			Genetic and/or Environmental Factors	20
		1.7.2	Combined Effects of 10q26 SNPs and Other	
			Genetic and/or Environmental Factors	20
		1.7.3	Risk of AMD due to the Combined Effect	
			of CFH and ARMS2/HTRA1 SNPs	21
		1.7.4	Combined Effects of the APOE Gene and Other	
			Genetic and/or Environmental Factors	21
	Refer	rences.		22
2	Gene	etics		33
	L.G.	Fritsch	e, U. Friedrich, and B.H.F. Weber	
	2.1	Introd	luction	33
	2.2	Identi	fying Risk Factors of a Common Disease	34
	2.3	Early	Findings	35

viii Contents

		2.3.1 The ABCA4 Gene	35
		2.3.2 The APOE Gene	
	2.4	CFH: The First Major AMD Susceptibility Locus	
		2.4.1 Functional Implications	
		2.4.2 Further AMD-Associated Genes	
		of the Complement Cascade	37
	2.5	ARMS2/HTRA1: The Second Major	
		AMD Susceptibility Locus	38
		2.5.1 Functional Implications	
	2.6	Latest Findings from Genome-Wide	
	2.0	Association Studies (GWAS)	39
	2.7	Prospects of Genetics in AMD	37
	2.7	Therapy and Prevention	40
	Refer	ences	
	110101		10
3		g of the Retina and Retinal Pigment Epithelium	45
		Boulton	
	3.1	Introduction	
	3.2	Cause and Consequences of Ageing	
	3.3	Clinical Changes Associated with Retinal Ageing	
	3.4	Ageing of the Neural Retina	
	3.5	Ageing of the RPE	
		3.5.1 Changes in RPE Cell Density	
		3.5.2 Subcellular Changes in the RPE	
		3.5.3 Accumulation of Lipofuscin	
		3.5.4 Melanosomes and Pigment Complexes	
		3.5.5 Mitochondrial Changes in the Aged-RPE	
		3.5.6 The Lysosomal-Autophagy Axis	
		3.5.7 Antioxidant Capacity of the RPE	
	3.6	Ageing of Bruch's Membrane	
	3.7	The Association Between Ageing and AMD	
	Refer	nces	59
4	The	Complement System in AMD	65
-		rbel Issa, N.V. Chong, and H.P.N. Scholl	-
	4.1	Introduction	66
	4.2	The Complement System	66
	4.3	Evidence for Involvement of the Complement System	
		in AMD Pathogenesis	66
	4.4	Clinical Relevance of Variations	00
		of Complement Genes	68
		4.4.1 Systemic Complement Activation in AMD Patients	
		4.4.2 Complement Gene Variants and AMD Subtypes	
		4.4.3 Complement Gene Variants 4.4.3 Complement Gene Variants	0)
		and Progression of AMD	70
		4.4.4 Gene–Environment Interaction: Nutrition,	70
		Supplementation, and Smoking	70
		4.4.5 Variations of Complement Genes and Response	70
		to Treatment: Pharmacogenetics	71
		to meannent. I narmacogenetics	/ 1

Contents ix

	4.5	Emerging Pharmacological Intervention Targeting	
		Complement Dysregulation	72
	Refe	rences	73
5	Hist	opathology	77
		ommatzsch, S. Wasmuth, D. Pauleikhoff,	
	F.G.	Holz, and A.C. Bird	
	5.1	Retinal Pigment Epithelium	77
		5.1.1 Structure and Function of the Retinal Pigment Epithelium	77
		5.1.2 Age-Related Changes of the Retinal Pigment Epithelium	77
		5.1.3 Deposits of the Retinal Pigment Epithelium	79
	5.2	Bruch's Membrane	79
		5.2.1 Structure of Bruch's Membrane	79
		5.2.2 Age-Related Changes of Bruch's Membrane	79
		5.2.3 Deposits of Bruch's Membrane, Drusen	83
	5.3	Choroidal Neovascularization	87
	5.4	Detachment of the Retinal Pigment Epithelium	91
	5.5	Geographic Atrophy of the Retinal Pigment Epithelium	94
		rences	95
	11010		, ,
Dor	t II	Clinical Manifestations	
1 ai	ι 11	Chineal Maintestations	
6	Earl	y AMD	101
Ů		Dietzel, D. Pauleikhoff, F.G. Holz, and A.C. Bird	101
	6.1	Introduction	101
	6.2	Drusen.	102
	0.2	6.2.1 Classification of Drusen	103
		6.2.2 Possible Spontaneous Modifications of Drusen	103
		6.2.3 Fluorescence Angiography and	103
		Optical Coherence Tomography	106
	6.3	Focal Hypopigmentation and Hyperpigmentation	100
	0.5	of the Retinal Pigment Epithelium	107
	6.4	Abnormal Choroidal Perfusion.	107
		rences	107
	Kere	rences	100
7	Clin	ical Manifestations of Choroidal	
,		vascularization in AMD	111
		Spaide	111
	7.1	Introduction	111
	7.1		111
	1.2	Symptoms Secondary to Choroidal Neovascularization	
		7.2.1 Decreased Visual Acuity	111
		7.2.2 Visual Distortion	112
		7.2.3 Visual Field Defects	112
	7.2	7.2.4 Miscellaneous Symptoms	113
	7.3	Signs of Choroidal Neovascularization	113
		7.3.1 Hemorrhage	113
		7.3.2 Macular Edema and Subretinal Fluid	113
		7.3.3 Retinal Pigment Epithelial Detachment	114
		7.3.4 Miscellaneous Signs	116
	7.4	Common Testing Modalities to Diagnose	
		Choroidal Neovascularization	117

x Contents

		7.4.1	Fluorescein Angiography	117			
		7.4.2	Indocyanine Green Angiography	117			
		7.4.3	Autofluorescent Imaging	118			
		7.4.4 Optical Coherence Tomography					
	Refer	ences		118			
8	Geog	graphic	Atrophy	121			
	M. F	leckenst	ein, S. Schmitz-Valckenberg,				
	J.S. 5	Sunness,	and F.G. Holz				
	8.1	Introdu	uction	121			
	8.2		al Characteristics and Spread of Atrophy	122			
	8.3	Histolo	ogy and Pathogenesis of Geographic Atrophy	123			
	8.4		s Autofluorescence Imaging in Geographic Atrophy	123			
	8.5		al Domain Optical Coherence				
		Tomog	graphy in Geographic Atrophy	125			
	8.6	_	ification of Atrophy Progression	125			
	8.7	_	actors	127			
		8.7.1	Genetic Factors	127			
		8.7.2	Systemic Risk Factors	128			
		8.7.3	Ocular Risk Factors	129			
	8.8	Develo	opment of CNV in Eyes with GA	129			
	8.9	Visual	Function in GA Patients	130			
		8.9.1	Measurement of Visual Acuity	130			
		8.9.2	Contrast Sensitivity	131			
		8.9.3	Reading Speed	131			
		8.9.4	Fundus Perimetry	132			
	8.10	Perspe	ectives for Therapeutic Interventions	132			
		8.10.1	Anti-Inflammatory Substances	132			
		8.10.2	Complement Inhibition	133			
		8.10.3	Neuroprotection	133			
		8.10.4	Alleviation of Oxidative Stress	133			
			Serotonin-1A-Agonist	133			
		8.10.6	Perspective	133			
	Refer	ences		134			
Day	t III	Diagno	ooting				
1 ai	ι 111	Diagilo	istics				
9	Func	luc Ima	ging of AMD	141			
		Spaide	ging of military	1.11			
	9.1		uction	142			
	9.2		Photography	142			
	9.3		chromatic Photography	142			
	9.4		uorescence Imaging	142			
	9.5		Il Coherence Tomography	144			
	ر. ر	9.5.1	The Wave-Like Nature of Light	144			
		9.5.2	Coherence Length	144			
		9.5.2	Time Domain Optical Coherence Tomography	144			
		9.5.4	Frequency Domain Optical Coherence Tomography	145			
		9.5.5	Increasing Depth of Imaging	145			
		9.5.6	General Optical Coherence Tomographic	1 13			
		7.5.0	Imaging Characteristics of the Macular Region	145			
			-6 -0 or wie little min Helion				

Contents

	9.6	Fundus Angiography	146
		9.6.1 Fluorescein Dye Characteristics	146
		9.6.2 Indocyanine Green Dye Characteristics	146
		9.6.3 Cameras Used in Fluorescence Angiography	147
		9.6.4 Patient Consent and Instruction	147
			148
		3	
		9.6.6 Fluorescein Technique	148
		9.6.7 Indocyanine Green Technique	149
	9.7	Fluorescein Angiographic Interpretation	149
		9.7.1 Filling Sequence	149
		9.7.2 The Macula	149
	9.8	Deviations from Normal Angiographic Appearance	149
	9.9	Indocyanine Green Angiographic Interpretation	150
	9.10	Non-Neovascular AMD	150
		9.10.1 Drusen	150
	9.11	Pigmentary Abnormalities Including Geographic Atrophy	151
	9.12	Neovascular AMD	152
	9.13	Retinal Pigment Epithelial Detachments	155
	9.14	Retinal Vascular Contribution to the Exudative Process	158
	9.15	Follow-up	159
	9.13	9.15.1 Thermal Laser	159
		9.15.2 Photodynamic Therapy	159
	D 6	9.15.3 Anti-VEGF Therapy	159
	Keler	rences	161
10	_	cal Coherence Tomography	163
	S. Wo		
	10.1	Introduction	163
	10.2	Technique of SD-OCT	163
	10.3	OCT in Age-Related Maculopathy	165
	10.4	OCT in Geographic Atrophy	167
	10.5	OCT in Exudative AMD	167
	10.6	OCT for Follow-up After Treatment for Exudative AMD	167
	Refer	rences	171
	3.51		450
11		operimetry	173
	E. M:	idena and E. Pilotto	
	11.1	Introduction	173
	11.2	Microperimetry: The Technologic Evolution	174
		11.2.1 From Manual to Automatic Microperimetry	174
		11.2.2 Automatic Microperimetry	174
		11.2.3 Microperimetry: The Examination	175
		11.2.4 Microperimetry: Test Evaluation	176
		11.2.5 Other Microperimeter	178
	11.3	Microperimetry in AMD	178
	11.3		
		11.3.1 Early AMD	178
		11.5.2 Geographic Atrophy	179
			101
		11.3.3 Neovascular AMD	181
	.		181 183 186

xii Contents

Part IV Prophylaxis and Therapy

12	Nutri	itional Supplementation in AMD	191
	A.D.	Meleth, V.R. Raiji, N. Krishnadev,	
	and E	.Y. Chew	
	12.1	Introduction	191
	12.2	Antioxidants and Zinc	192
	12.3	Beta-Carotene	193
	12.4	Macular Xanthophylls	194
	12.5	Omega-3 Long Chain Polyunsaturated Fatty Acids	195
	12.6	Vitamin E	196
	12.7	Vitamin C	196
	12.8	Zinc.	197
	12.9	Folate and B-Vitamins	197
		AREDS2	198
		ences	199
13	Laser	Photocoagulation and Photodynamic Therapy	
		ubrane	
	13.1	Introduction	203
	13.2	Basic Principles	203
		13.2.1 Clinical Background	203
		13.2.2 Laser Photocoagulation	205
		13.2.3 Photodynamic Therapy	206
	13.3	Treatment Procedures	207
		13.3.1 Laser Photocoagulation	207
		13.3.2 Photodynamic Therapy	209
	13.4	Study Results	210
		13.4.1 Laser Photocoagulation	210
		13.4.2 Photodynamic Therapy	213
	13.5	Safety and Adverse Events	216
		13.5.1 Laser Photocoagulation	216
		13.5.2 Photodynamic Therapy	216
	13.6	Variations	218
		13.6.1 Laser Photocoagulation: Different Wavelengths	218
		13.6.2 Photodynamic Therapy	218
		13.6.3 Combination Treatments	219
	13.7	Present Guidelines	220
		13.7.1 Laser Photocoagulation	220
		13.7.2 Photodynamic Therapy	220
	13.8	Perspectives	221
	Refere	ences	222
14		VEGF Therapy: Basics and Substances	225
		isanti, J. Lüke, and S. Peters	
	14.1	Introduction	225
	14.2	Vascular Endothelial Growth Factor (VEGF)	225
	14.3	Targets Within the VEGF Pathway	227

Contents xiii

		14.3.1 Sequestration of Released VEGF14.3.2 Inhibition of VEGF and VEGF Receptor	227
		Synthesis by Small Interfering RNA (siRNA)	228
		14.3.3 Inhibition of the Intracellular Signal Cascade	229
		14.3.4 Natural VEGF Inhibitors	229
	14.4	New Methods of Drug Delivery	230
	14.5	Combined Strategies	230
	Refer	ences	231
15	Anti-	VEGF Therapy for AMD: Results and Guidelines	233
	P. Mi	tchell and S. Foran	
	15.1	Introduction	233
		15.1.1 Anti-VEGF Therapies for NV-AMD	234
		15.1.2 Evidence-Based Guidelines for Managing Diseases	235
		15.1.3 Existing Guidelines for Managing	
		NV-AMD with Anti-VEGF Agents	235
	15.2	Five Key Questions Addressed in NV-AMD Guidelines	236
		15.2.1 How Should Neovascular NV-AMD be Diagnosed?	236
		15.2.2 Which NV-AMD Lesions Should be Considered	
		for Anti-VEGF Treatment?	237
		15.2.3 What Parameters Define Whether NV-AMD	
		Is Active and Would Likely Benefit from Anti-VEGF	
		Therapy, and Which Features Suggest that	
		Treatment Would be Futile?	238
		15.2.4 Do Flexible Therapy Regimens Provide	
		as Satisfactory Visual Outcomes as Monthly Therapy?	
		How Should Treatment be Started? What Flexible	
		Approaches Are Reported?	238
		15.2.5 What Are the Long-Term Considerations	
		in Anti-VEGF Therapy of NV-AMD?	242
	Refer	ences	243
16	Com	bination Therapies for the Treatment of AMD	247
	M. B	arakat, N. Steinle, and P.K. Kaiser	
	16.1	Introduction	247
	16.2	Overview of Currently Available Therapies	248
	16.3	Current Limitation of Therapy	
		in the Treatment of Exudative AMD	249
	16.4	Rationale for Combination Therapy	
		in the Treatment of Exudative AMD	249
	16.5	Clinical Data Examining Combination	
		Therapy for Exudative AMD	250
		16.5.1 Verteporfin PDT Therapy in Combination	
		with Triamcinolone	250
		16.5.2 Verteporfin PDT Therapy in Combination	
		with Anti-VEGF Agents	251
		16.5.3 Triple Therapy for Exudative AMD	254
		16.5.4 Combination Therapy with Radiation	255
	Refer	rences	256

xiv Contents

17		tment Approaches for Dry AMD	263
		choshua and P.J. Rosenfeld	262
	17.1	Introduction	263
	17.2	Current Treatment Options for Dry AMD	263
	17.3	Targeting the Cause of AMD	264
	17.4	Preclinical and Phase 1 Drugs in Development for Dry AMD	264
		17.4.1 Clinical Trial Endpoints in Dry AMD	264
		17.4.2 Drugs to Promote Survival of Photoreceptors and the RPE	265
		17.4.3 Drugs to Prevent Injury from Oxidative Stress	
		and Micronutrient Depletion	268
		17.4.4 Drugs to Suppress Inflammation	269
	17.5	Summary	273
		rences	273
	Refer	checs	213
18	Surg	ical Therapy	275
	B. K	irchhof	
	18.1	Maculoplasty	275
	18.2	Macular Translocation	276
	18.3	Single Cell Suspensions	277
	18.4	Pigment Epithelium-Choroid Translocation (Patch)	277
		Indications for Surgery	
	18.5	e .	278
		18.5.1 Non-responder.	278
		18.5.2 Pigment Epithelium Rupture	278
		18.5.3 Massive Submacular Bleeding	279
		18.5.4 Dry AMD	280
		18.5.5 Macula Dystrophies	282
	Refer	rences	282
Par	t V	Rehabilitation	
19	Read	ling with AMD	287
	S. Tr	auzettel-Klosinski	
	19.1	Introduction	287
	19.2	Physiological Principles	287
	19.3	Reading with a Central Scotoma	288
	17.5	19.3.1 The Reading Visual Field Related to Other Parameters	288
		19.3.2 The Significance of Fixation Behaviour	290
		19.3.3 Examination of Fixation Behaviour	
			291
	10.1	19.3.4 Motor Aspects.	291
	19.4	Methods to Examine Reading Ability	291
	19.5	Rehabilitation Approaches to Improve Reading Ability	292
	Refer	rences	294
20		Vision Aids in AMD	295
		s Rohrschneider	
	20.1	Definition of Visual Impairment.	295
	20.2	Effects of Visual Impairment in AMD	296
	20.3	Choosing the Required Magnification	296

Contents xv

	20.4	Methods of Magnification	297
	20.5		297
		20.5.1 Aids for Watching Television	298
	20.6	Optical Magnifiers for Short Distance	298
	20.7	Electronic Magnifiers for Low Distance Tasks	303
	20.8	Electronic Reading Instruments	305
	20.9	Additional Aids	305
	20.10	Noteworthy Details for the Provision of Low Vision Aids	306
	20.11	Basic Information on Prescription	306
	Refere	ences	307
Ind	ev		300

List of Abbreviations

ABCA1 ATP-binding cassette, subfamily A

AD Alzheimer's disease

AGE Advanced glycation end products

ALA Alpha linoleic acid

AMD Age-related macular degeneration APC Alternative pathway of complement

APOE Apolipoprotein E

ARM Age-related maculopathy

ARMS2 Age-related maculopathy susceptibility 2 BCEA Bivariate contour ellipse calculated area

BCVA Best corrected visual acuity
BLD Basal laminar deposits
BM Bruch's membrane
BMI Body mass index
CC Choriocapillaris

CCD Charge-coupled device

CCTV Closed circuit television system
CDCV Common disease – common variant
CDRV Common disease – rare variant

CEP Carboxyethylpyrrole

CETP Cholesteryl ester transfer protein

CFB Complement factor B CFH Complement factor H CFI Complement factor I CI Confidence interval **CME** Cystoid macular edema **CNP** Copy number polymorphism **CNTF** Ciliary neutrophic factor **CNV** Choroidal neovascularization CR1 Complement receptor 1 **CRP** C-reactive protein **CRT** Central retinal thickness

CSC Central serous chorioretionopathy

cSLO Confocal scanning laser ophthalmoscope

DA Disc area

DAF Decay-accelerating factor
DHA Docosahexaenoic acid
ECM Extracellular matrix

xviii List of Abbreviations

EDI-OCT Enhanced depth imaging spectral-domain optical coherence

tomography

EOG Electro-oculogram
EPA Eicosapentanoic acid

ESR Erythrocyte sedimentation rate

F1 Factor 1

FAF Fundus autofluorescence FAZ Foveolar avascular zone FDA Food and Drug Administration

FP Fundus perimetry

FVPED Fibrovascular pigment epithelial detachment

GA Geographic atrophy
GCL Ganglion cell layer

GWAS Genome-wide association study
HDL-c High-density lipoprotein cholesterol
HTRA1 High temperature requirement factor A1

ICG Indocyanine green

ICAM Intracellular adhesion molecules

IL6 Interleukin 6IOP Intraocular pressureIPE Iris pigment epithelium

IR Infrared

IV Inverse variance

IVB Intravitreal bevacizumab
IVR Intravitreal ranibizumab
IVTA Intravitreal triamcinolone

LCPUFA Long-chain polyunsaturated fatty acids

LDC Linkage disequilibrium LDL Low density lipoprotein

LF Lipofuscin LIPC Lipase C

LLUS Late leakage of undetermined source

logMAR Logarithm of the minimum angle of resolution

LPL Lipoprotein lipase
LSC Long spaced collagen
LVA Low vision aid

MAC Membrane attack complex
MAF Minor allele frequency
MBL Mannose-binding lectin
MCP Membrane cofactor protein
MHC Major histocompatibility complex

MMP Matrix metalloproteinase

MPGN Membranoproliferative glomerulonephritis

MPOD Macular pigment optical density

NV-AMD Neovascular age-related macular degeneration

OCT Optical coherence tomography

OR Odds ratio

ORCA Occult retinal choroidal anastomosis

List of Abbreviations xix

PAMP Pathogen-associated molecular pattern

PAR Population attributable risk

PATCH Pigment epithelium-choroid-translocation

PCV Polypoid choroidal vasculopathy

PD Pupillary distance

PDGF Platelet-derived growth factor

PDT Photodynamic therapy PE Pigment epithelium

PED Pigment epithelium detachment PEDF Pigment epithelium derived factor

PFCL Perfluorocarbon liquid

PHP Preferential hyperacuity perimeter

PLGF Placental growth factor

PLEKHA1 Pleckstrin homology domain-containing

protein family A member 1

PNH Paroxysmal nocturnal hemoglobinuria

PON1 Paraoxonase 1 gene

POS Photoreceptor outer segment PRL Preferred retinal locus

PRN Pro re nata

PRR Pattern recognition receptor

PSDDS Posterior segment drug delivery system

PVR Proliferative vitreoretinopathy
RAP Retinal angiomatous proliferation

RBP Retinol-binding protein

RCA Regulators of complement activation RCOphth Royal College of Ophthalmologists

RCT Randomized controlled trial
RF Reduced fluence rate
RNFL Retinal nerve fiber layer
ROS Reactive oxygen species
RPE Retinal pigment epithelium

RR Relative risk

RTK Receptor tyrosine kinases

rTPA Recombinant tissue plasminogen activator RVAC Retinal vascular anomalous complexes

SD-OCT Spectral domain optical coherence tomography

SF Standard fluence rate
SLD Superluminescent diodes
SLO Scanning laser ophthalmoscope
SNP Single nucleotide polymorphism

SOD2 Superoxide Dismutase 2

Sr-90 Strontium-90

SS-OCT Swept source optical coherence tomography
TD-OCT Time domain optical coherence tomography
TIMP Tissue inhibitor of metalloproteinases

TLR Toll-like receptor

TP-H TEMPOL-H

xx List of Abbreviations

UTR Untranslated region VA Visual acuity

VCM Visual cycle modulators

VEGF Vascular endothelial growth factor VPDT Verteporfin photodynamic therapy

WWC White cell count

Part I

Pathophysiology

Chapter 1	Epidemiology of AMD	3
Chapter 2	Genetics	31
Chapter 3	Ageing of the Retina and Retinal Pigment Epithelium	45
Chapter 4	The Complement System in AMD	65
Chapter 5	Histopathology	77

Epidemiology of AMD

L. Ho, R. van Leeuwen, P.T.V.M. de Jong, J.R. Vingerling, and C.C.W. Klaver

Core Messages

> Tremendous progress has been made in the identification of associated genes. The major susceptibility genes are *CFH* and *ARMS2/HTRA1*, which are involved in over 60% of severely affected cases. This underscores the pivotal role of the inflammation and oxidative stress pathways in the pathogenesis of AMD. Established genetic risk markers with smaller effect are the *C3*, *C2/FB*, *CFI*, and *APOE* genes. Genome-wide association studies reported associations with *TIMP3*, *LIPC*, *CETP*, *LPL*, and *ABCA1*, suggesting that lipid metabolism plays a role in AMD pathogenesis.

L. Ho • J.R. Vingerling • C.C.W. Klaver (⋈)
Department of Ophthalmology, and Department
of Epidemiology, Erasmus Medical Center,
Rotterdam, The Netherlands
e-mail: l.ho@lumc.nl; j.vingerling@erasmusmc.nl;
c.c.w.klaver@erasmusmc.nl

R. van Leeuwen Department of Ophthalmology, University Medical Center Utrecht, Utrecht, The Netherlands e-mail: r.vanleeuwen@erasmusmc.nl

P.T.V.M. de Jong Netherlands Institute for Neuroscience, Amsterdam, The Netherlands e-mail: p.dejong@nin.knaw.nl

- All ethnicities showed a strong increase in AMD frequency with age. The frequency of late AMD was highest in Caucasians, followed by Asians and Hispanics, and lowest in Africans. Africans also had the lowest frequency of early AMD.
- Soft drusen and pigmentary abnormalities are the most significant fundus features which increase the risk of AMD. After one eye develops late AMD, the 5-year risk estimates of second eye involvement were between 30% and 40%.
- > Smoking is the most consistent and most important environmental risk factor. Prominent protective factors are antioxidants, zinc, and omega-3 fatty acids. Less conclusive but suggestive risk factors are BMI, cataract surgery, and systemic hypertension.
- Interactions between genes and environmental factors are likely. Reports suggest that the *CFH* gene may interact with smoking; CRP level; erythrocyte sedimentation rate; BMI; and intake of antioxidants, zinc, and omega-3 fatty acids. *LOC387715* appears to interact with smoking, CRP, IL-6, sICAM-1, and PAI-1. The *APOE* genotypes may modify the smoking-associated risk of AMD.

1.1 Introduction

This chapter will provide an update on the epidemiology of age-related macular degeneration (AMD) as it has developed during the past few years, since the last

Table 1.1 Classification of age-related macular degeneration in epidemiologic studies

Detection	Grading of color fundus transparencies using a macular grid centered on the fovea with a diameter of $6,\!000~\mu m$
Overall term	Age-related macular degeneration
Exclusion	Other diseases must be excluded; e.g. ocular trauma, retinal detachment, high myopia, chorioretinal inflammation or infection
Early age-related macular degeneration	Soft indistinct or reticular drusen; any soft drusen type with RPE depigmentation or with increased retinal pigment
Late age-related macular degeneration	Atrophic or neovascular macular degeneration
- Atrophic AMD=geographic atrophy	Any sharply delineated lesion >175 μm in diameter with apparent absence of the RPE in which choroidal vessels are more visible than in the surrounding areas.
- Neovascular AMD = exudative AMD	RPE detachment associated with other signs of AMD; subretinal or sub-RPE neovascular membranes; scar, glial or fibrin-like deposits, subretinal hemorrhages, or hard exudates not related to other diseases.

edition in 2003. We shall review the current epidemiological literature, and discuss diagnosis, frequency, genetic and environmental factors, and the possible interaction between them.

1.2 Classification

In 1995, investigators of various epidemiologic studies agreed on a uniform classification of age-related maculopathy on color photographs of the macula lutea without implication of visual acuity [1]. The classification of this international agreement is summarized in Table 1.1. For the purpose of this review, we will maintain the terminology of this international system.

1.3 Frequency

1.3.1 Prevalence

Population-based studies on the prevalence of early and late AMD have been conducted in various parts of the world as shown in Fig. 1.1. Herein we included only those population-based studies that used the standardized grading systems [1, 2]. Estimates for both early and late AMD show a strong increase with advancing age in all studies, although there was marked variation in the reported prevalence estimates. Population estimates varied more for early AMD than for late AMD. This variation may be genuine to some extent, but differences in classification of drusen size and type will account for some of the dissimilarities. By contrast, there is close agreement on grading of geographic atrophy and subretinal neovascularization; therefore, the differences among studies are more likely to be genuine.

Figure 1.2 shows a comparison of prevalence data for early and late AMD for persons from African, Asian, Caucasian, or Hispanic descent based on data reported in the population-based studies. Prevalence rates for early AMD were positively correlated with age across all races/ethnicities. This was most pronounced for Caucasians and Hispanics and to a somewhat lesser extent for Asians and Africans. For persons under 75 years of age, Hispanics appeared to have higher frequencies of early AMD compared with the other races/ ethnicities. Over the age of 75 years, the frequency of early AMD for Caucasians exceeded that of the other races/ethnicities. Across all age strata, Africans had the lowest frequency of early AMD, followed by Asians. A reasonable overall prevalence for early AMD among Caucasians, Hispanics, Asians, and Africans aged under 55 years was 4%, 6%, 3%, and 3%, respectively. These prevalences increased to 24%, 22%, 13%, and 11% for persons aged 75 years and older. With respect to the frequencies of late AMD, there was an exponential age-related increase in Caucasians, a strong increase in Asians, a moderate increase in Hispanics, and a slight increase in Africans.

A reasonable overall prevalence for late AMD for persons aged under 55 years ranged between 0.0% and 0.2% across all races/ethnicities; this frequency increased to 6.5%, 2.4%, 1.3%, and 0.6% among persons aged 75 years and older for Caucasians, Asians, Hispanics, and Africans, respectively. Thus, although early AMD was fairly common for Hispanics and Africans, the more advanced form of disease was much less so. Late AMD in Asians was less frequent than in Caucasians, but more common than in Africans and Hispanics. This relatively high prevalence may partly be explained by the higher incidence of polypoidal choroidal vasculopathy in Asians, which is often not

1 Epidemiology of AMD

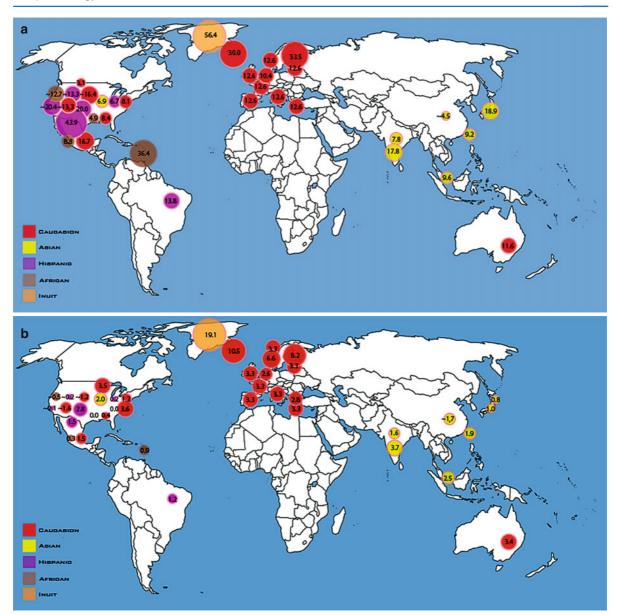
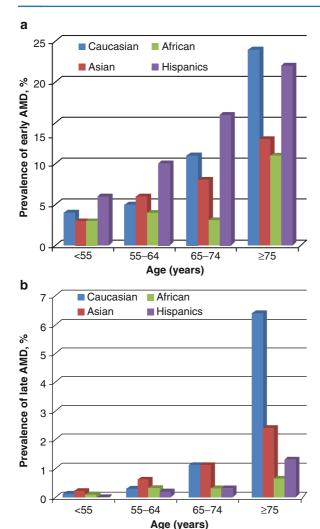



Fig. 1.1 Prevalence of (a) early and (b) late age-related macular degeneration in persons aged ≥65 years around the world

distinguished from classic neovascular AMD [3–5]. Several studies have reported that polypoidal choroidal vasculopathy accounts for 22.3–24.5% of neovascular AMD in Asian populations [6–8]. An alternative explanation is the rapid economic development and industrialization of certain Asian populations in and outside of Asia, as seen in China and India. This trend may be reflected in a westernization of dietary and other lifestyle habits, e.g., in Taiwan, the average daily calories and fat intake in the past three decades had increased [9–12].

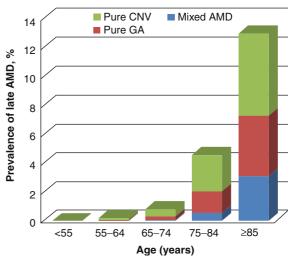
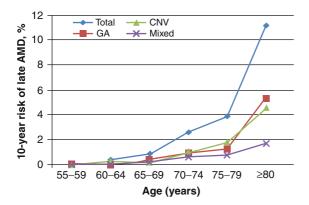

The progression to more advanced AMD in Africans and Hispanics is limited compared with that in Caucasians, despite the relative frequent occurrence of early AMD. The reason for this paradox remains unclear. There could be systematic differences in grading, in sampling techniques, or in age distribution. There may be bias because of higher rate of survival, participation, or gradable photographs for Caucasians compared with Africans and Hispanics. However, it is possible that Africans and Hispanics with their more pigmented choroid and retinal pigment epithelium are

Fig. 1.2 Prevalence of **(a)** early and **(b)** late age-related macular degeneration in various racial/ethnic groups

at lower risk of late AMD because of the protective effects of melanin against oxidative damage [13, 14]. Another likely explanation for the apparent contradiction is that risk factors may vary in frequency across the races, in particular the genetic variants.

How do the subtypes of AMD relate to age? Three studies with very similar diagnostic criteria, i.e., the Beaver Dam Eye Study (BDES), the Rotterdam Study (RS), and the Blue Mountains Eye Study (BMES), pooled their data to address this issue [15]. The investigators performed consensus grading on all subjects with late AMD, and calculated the individual frequencies of pure geographic atrophy, pure neovascular macular


Fig. 1.3 Prevalence of geographic atrophy and neovascular AMD in the three continent study (USA, Europe, and Australia)

degeneration, and mixed types of macular degeneration. The rise in prevalence of neovascular macular degeneration appears to occur at a slightly earlier age than pure geographic atrophy, followed by mixed forms of macular degeneration (Fig. 1.3).

1.3.2 Incidence

In the last two decades, many incidence studies reported their data, most of which were based on Caucasians [16–28]. Caution is warranted when comparing age-specific incidence rates because a small number of persons or a different distribution of factors such as gender and age within the age strata can affect the precision of estimation. Another limitation is that follow-up times varied widely across the studies.

Given these drawbacks, we extrapolated the data of each study to 10-year incidence rates. The overall 10-year risk estimates were 11.1% in the Hisayama Study, 12.1% in the Beaver Dam Eye Study, 13.9% in the Barbados Eye Study, 14.1% in the Blue Mountains Eye Study, 16.7% in the Rotterdam Study, 17.7% in the Los Angeles Latino Eye Study, and 23.7% in the Copenhagen City Eye Study. The differences in incidence rates between studies may reflect variation in study design, temporal effects, but also real effects due to variation in risk factors. There was no difference in incidence rate between males and females. Stratifying

Fig. 1.4 Incidence rates and 10-year risks of the subtypes of late age-related macular degeneration as a function of age in the Rotterdam Study

for subtype in the Rotterdam Study (Fig. 1.4) revealed that the incidence of both pure neovascular AMD and pure geographic atrophy rose steeply after the age of 75 years at similar rates. The incidence of mixed AMD rose later, at the age of 80 years.

1.4 Natural Course

There are several studies that provide data on the natural course of early and late features. All acknowledge that soft drusen and pigmentary abnormalities are the most significant fundus features that increase the risk to develop a late form of AMD. Subjects with these abnormalities have an estimated risk of late AMD between 1.3% and 6.0% per year [16, 17, 19–21, 24–27, 29–38]. In contrast, subjects with only hard drusen <63 µm had no risk of late AMD within a 5-year period [25, 26]. The Rotterdam Study, the Beaver Dam Eye Study, and the Blue Mountains Eye Study, all reported that a large area of any type of drusen in combination with pigment changes carries the highest risk of late AMD [19, 20, 25, 26].

What is the course of the second eye when the first eye has developed late AMD? Several studies have attempted to quantify the risk of late AMD for this eye, and estimates of the 5-year risk of second eye involvement were 30–40% [17, 19–21, 25–27, 33, 39, 40]. The risk of AMD in the fellow eye appears to depend on the profile of features in that eye, similar to development of AMD in the first eye: large areas of drusen, confluence, and pigment changes [19, 25, 26, 41].

Data from the Beaver Dam Study suggests that those with geographic atrophy in the first eye, but not those with neovascular AMD, had a more increased risk of late AMD in the second eye opposed to those who had bilateral early ARM. The type of AMD of the second eye more often appears to match the type of AMD of the first eye, although development of the other type is not uncommon [19, 25, 26, 29, 33, 39] In addition, development of geographic atrophy in eyes with initial neovascularization or vice versa is rather frequent [19, 27, 29, 39, 42–44]. Both these findings suggest that risk factors for these two late-stage disease phenotypes may overlap considerably.

1.5 Genetic Factors

Rapid advances have been made over the past few years in the identification of causative and protective genetic variants associated with AMD. The major breakthroughs have been the discoveries of the complement factor H (*CFH*) gene and the chromosomal 10q26 locus, which contains the *LOC387715* and *HTRA1* genes [45]. These major susceptibility genes are involved in more than 60% of severely affected cases [46], which underscores the pivotal role of the inflammation and oxidative stress pathways in the etiology of AMD. Although they confer a smaller effect, other established genetic risk markers are *C3*, *C2/FB*, *CFI*, and *APOE* [47–49]. Emerging research is focusing on the role of lipid metabolism in AMD.

1.5.1 The Complement Pathway Genes

1.5.1.1 Complement Factor H (CFH)

Genome-wide linkage analyses identified a susceptibility locus on chromosome 1q25-q31 [50–56]. In 2005, the first reports of an association between a genetic variant in the complement pathway and AMD appeared when three groups linked the Y402H allele of the complement factor H (*CFH*) gene on chromosome 1q32 with an increased risk of AMD [57–59]. This finding has since been replicated by numerous studies in different populations (Fig. 1.5) [46, 60–93].

CFH is a key regulator of the complement pathway. Activation of this pathway initiates a proteolytic cascade that releases pro-inflammatory anaphylatoxins 8 L. Ho et al.

а

	Late AMD		No AMD			Odds Ratio	Odds	Odds Ratio		
Study or Subgroup	n	N	n	N	Weight	IV, Random, 95% CI Ye	ear IV, Rando	om, 95% CI		
Souied et al.	159	282	55	182	3.3%	2.98 [2.01, 4.43] 20	05			
Zareparsi et al.	749	1233	186	551	6.3%	3.04 [2.46, 3.75] 20	05			
Conley et al.	211	336	68	216	3.7%	3.67 [2.56, 5.28] 20	05	-		
Magnusson et al.	1488	2660	977	2530	8.5%	2.02 [1.81, 2.25] 20	05	-		
Rivera et al.	1404	2332	707	1892	8.2%	2.54 [2.24, 2.87] 20	05			
Klein et al.	123	190	37	96	2.3%	2.93 [1.76, 4.86] 20	05	-		
Edwards et al.	434	790	135	380	5.4%	2.21 [1.72, 2.85] 20	05			
Hageman et al.	1066	1904	275	806	7.2%	2.46 [2.07, 2.92] 20	05	-		
Despriet et al.	203	342	1599	4784	6.0%	2.91 [2.33, 3.64] 20	06			
Sepp et al.	538	886	190	524	6.0%	2.72 [2.17, 3.40] 20	06			
Fisher et al.	145	310	107	300	4.2%	1.59 [1.15, 2.19] 20	06			
Baird et al.	157	238	107	288	3.7%	3.28 [2.29, 4.70] 20	06			
Seitsonen et al.	435	670	312	700	6.1%	2.30 [1.85, 2.86] 20	06			
Schaumberg et al.	50	111	136	401	3.0%	1.60 [1.04, 2.45] 20	06			
Conley et al., CHS	125	252	689	2102	5.2%	2.02 [1.55, 2.63] 20	06			
Conley et al., AREDS	859	1402	125	350	5.6%	2.85 [2.23, 3.63] 20	06			
Brantley et al.	207	376	129	378	4.7%	2.36 [1.76, 3.17] 20	07			
Seddon et al.	361	562	1083	2370	6.7%	2.13 [1.76, 2.58] 20	07			
Mori et al.	33	376	15	278	1.6%	1.69 [0.90, 3.17] 20	07			
Losonczy et al.	68	114	46	96	2.1%	1.61 [0.93, 2.78] 20	09	<u> </u>		
Total (95% CI)		15366		19224	100.0%	2.41 [2.21, 2.64]		♦		
Total events 8815 6978										
Heterogeneity: Tau ² =	0.02; C	$hi^2 = 47.$	44, df =	19 (P =	= 0.0003);	$I^2 = 60\%$	+ + + + + + + + + + + + + + + + + + + +	 		
Test for overall effect: $Z = 19.55 (P < 0.00001)$							0.2 0.5 1	2 5		

b

	Early A	MD	No A	No AMD		Odds Ratio			Odds Ratio		
Study or Subgroup	n	N	n	N	Weight	IV, Random, 95% CI Yea	ır	IV, Rande	om, 95% C	i	
Despriet et al.	415	856	2478	7238	28.9%	1.81 [1.57, 2.08] 200	6		-		
Tedeschi-Blok et al.	117	570	193	1140	22.5%	1.27 [0.98, 1.64] 200	7		-		
Ziskind et al.	17	32	82	196	6.5%	1.58 [0.74, 3.34] 200	8	_	•	-	
Lin et al.	35	266	16	360	8.8%	3.26 [1.76, 6.02] 200	8			-	
Droz et al.	177	312	35	100	12.8%	2.43 [1.52, 3.89] 200	8			_	
Losonczy et al.	46	96	63	190	11.7%	1.85 [1.12, 3.06] 200	9		-		
Gao et al.	39	416	15	280	8.8%	1.83 [0.99, 3.38] 201	0		•	-	
Total (95% CI)		2548		9504	100.0%	1.82 [1.47, 2.25]			•		
Total events	846		2882	2							
Heterogeneity: Tau ² =	: 0.04; Ch	$ni^2 = 12$	2.31, df =	= 6 (P =	= 0.06); I ²	² = 51%		0.5	1 0	5	
Test for overall effect:	Z = 5.50	(P < 0.	.00001)	•	,		0.2	0.5	1 2	5	
	-			- (-			0.2	0.5	1 2		

Fig. 1.5 Allele-based meta-analysis of association studies investigating *Complement Factor H* Y402H and risk of (a) late AMD and (b) early AMD, age-related macular degeneration; AREDS, Age-related Eye Disease Study; CHS, Cardiovascular Health Study; CI, confidence interval; IV, inverse variance; n, number of risk alleles; N, total number of alleles; Random,

random effects model Conley, Edwards, Hadley, Hageman, Magnusson, Rivera, and Zareparsi et al. included (signs of) early and late AMD in their outcomes. CHS reported data on one eye per person. ORs and 95% CIs were calculated using the random effects model of the DerSimoninian and Laird method to accommodate heterogeneity across studies

and stimulates formation of membrane attack complexes leading to cell lysis. CFH inhibits the activation of complement component C3 to C3b and degrades

C3b, which limits the amplification phase of the alternative complement cascade [94]. *CFH* Y402H impairs this regulatory function of *CFH* [95–97], leading to

complement overactivation, and thereby increasing the risk of AMD [57–59, 64, 66]. CFH is expressed in the retinal pigment epithelium and the Y402H variant is evidently associated with the presence of complement proteins in drusen [64, 98].

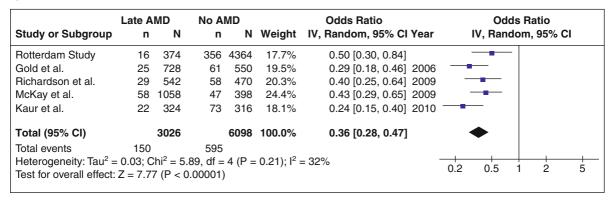
The population attributable risk of Y402H for late AMD is estimated to be between 25% and 70% in Caucasians [46, 58, 59, 61, 66, 68, 71, 83, 91, 99–102], and approximately up to 3.3% in Asians [82, 84]. This implies that the Y402H variant is involved in the vast majority of all cases of AMD in Caucasians, whereas it is involved in a much smaller proportion of cases in Asians and probably other races/ethnicities. As mentioned earlier, the prevalence of Y402H varies greatly among racial/ethnic groups and so does the frequency of AMD. The Y402H variant is much less common in Asians (~10–15%) and Hispanics (~17%), whereas it is equally common in Caucasians and Africans (~36%) [103]. Therefore, additional genetic and/or environmental factors are likely to contribute to the pathogenesis of AMD which might act independently or jointly.

Further dissection of the broader genomic region of *CFH* identified additional susceptibility alleles in strong association with AMD [104–106]. The strong linkage disequilibrium hampered evaluation of single SNP effects, but some differences were observed. Caucasian case-control studies found an association between a noncoding variant (rs1410996) at *CFH* and disease susceptibility that was stronger than for Y402H [104, 105]. In Japanese and Asians populations, the Y402H variant was not significantly associated with AMD, whereas other variants in *CFH* including rs1410996 moderately increased disease risk [72, 89].

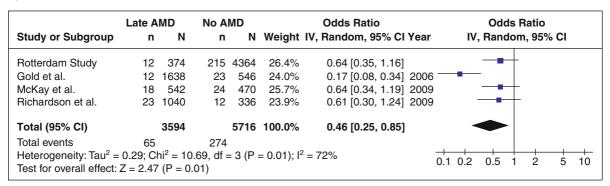
CFH and the closely related genes CFHR1-5 are part of a gene cluster involved in the regulation of complement activation on chromosome 1q32. Because CFHR1 and CFHR3 contain a C3-binding site, they may act as competitive inhibitors with CFH and dysregulate complement activation. A haplotype carrying a deletion of CFHR1 and CFHR3 (delCFHR1/3) had a protective effect against AMD, which was present in 20% of chromosomes of controls and 8% of chromosome of cases [106, 107]. The proteins encoded by these genes are absent in serum homozygotes for delCFHR1/3 [106]. Removal of CFHR1 and CFHR3 may reduce competition for the binding of CFH to C3b, enhance inhibitory activity by CFH, and reduce overall activation of the alternative complement cascade. Deletion homozygotes are most frequent in African Americans (16%), less common in Hispanics (6.8%), and least common in European Americans (4.7%) [108]. The high frequency of the *delCFHR1* allele may be one of the explanations for the low prevalence of late AMD in Africans compared with Caucasians. The delCFHR1/3 was not polymorphic (0.01%) in the Chinese population and was not associated with wet AMD or drusen [86].

Figure 1.5a presents a meta-analysis of all studies with data on Y402H, incorporating 7683 late AMD cases and 9,612 controls. Per allele, the OR of late AMD was 2.41 (95% CI, 2.21–2.64). For GA, the overall pooled OR in Caucasians was 2.82 (95% CI, 2.24–3.56). For CNV, the overall OR was 2.47 (95% CI, 2.22–2.74). For early AMD, the OR was 1.82 (95% CI, 1.47–2.25; Fig. 1.5b).

1.5.1.2 Complement Factor B (CFB)/ Complement Component 2 (C2)


Complement factor B (CFB) and complement component 2 (C2) are activators of the alternative and classical pathways, respectively. Four variants in the CFB and C2 gene located in the major histocompatibility complex III on chromosome 6p21 have been inversely associated with AMD: CFB R32Q which is in nearly complete linkage disequilibrium with C2 IVS10, and CFB L9H which is in nearly complete linkage disequilibrium with C2 E318D [49, 105, 109–114]. Further analyses identified two statistically significant protective haplotypes: the first tagged by the R32Q/IVS10 pair ($P=2.1\times10^{-7}$), and the second by the L9H/E318D pair ($P=3.4\times10^{-6}$). The common haplotype containing the major alleles at these four loci conferred a significant risk for AMD (OR 1.32; P=0.0013). These variants were inversely related to early AMD as well as to both subtypes of late AMD, and also appeared to reduce the rate of progression to more advanced stages of AMD [49, 110].

Genetic and functional data suggest that the *CFB* variants rather than the *C2* variants are likely to cause the observed relation to AMD. The *C2* E318D and IVS10 variants are respectively a conservative change, and a noncoding variant, whereas the *CFB* L9H variant is non-conservative, and *CFB* R32Q results in inferior C3b binding affinity, lower potential to amplify complement activation, and reduced hemolytic activity of the CFB protein [115, 116]. Moreover, the majority of proteins of the alternative pathway (e.g., CFH, CFB) are present in drusen, whereas proteins from the classical pathway (e.g., C2) are not [117, 118]. In addition, after controlling for age, smoking, *CFH* Y402H, and


L. Ho et al.

a

10

b

Fig. 1.6 (a) Allele-based meta-analysis of association studies investigating *Complement Factor B* R32Q and risk of late AMD. (b) Allele-based meta-analysis of all currently available association studies investigating *Complement Factor B* L9H and risk of late AMD age-related macular degeneration; CI,

confidence interval; IV, inverse variance; n, number of risk alleles; N, total number of alleles; Random, random effects model. ORs and 95% CIs were calculated using the random effects model of the DerSimoninian and Laird method

LOC387715 A69S, the association with C2 R32Q proved to be robust (OR, 0.21; 95% CI, 0.11–0.39) while the association with C2 E318D became insignificant (OR, 0.60; 95% CI, 0.25–1.47) [111]. Stepwise logistic regression also excluded the C2 IVS10 in favor of CFB R32Q [105]. These data suggest that the C2 variants show residual association with AMD originating from their high linkage disequilibrium with CFB. Because the major histocompatibility complex III region consists of many genes involved in inflammation, it is possible that the reported findings are due to high linkage disequilibrium with adjacent loci (e.g., R151Q in the SKIV2L gene) [113].

Figure 1.6 presents meta-analyses of all presently available studies for R32Q and L9H. The meta-analysis resulted in a significant OR of 0.36 (95% CI, 0.28–0.47) for the R32Q variant. In the Caucasian studies,

the frequencies of the R32Q varied between 4.0% and 5.5% in cases, and between 10.0% and 12.0% in controls. In the Indian study population, the R32Q variant was more common in both cases (7.7%) and controls (23.2%) compared to the Caucasian samples. The meta-analysis also resulted in a significant OR of 0.46 (95% CI, 0.25–0.85) for the L9H variant. In the Indian study, the frequencies of L9H were not significantly different in cases (4.0%) and controls (6.3%; OR 0.61, 95% CI, 0.31–1.22), and the allelic distribution of L9H was not reported. The L9H frequencies in the Caucasian populations varied between 4.0% and 5.5% in cases, and between 10.0% and 12.0% in controls.

Based on the pooled estimates from the metaanalyses, the R32Q appears to have a greater and more consistent protective effect than L9H. Furthermore, a direct functional basis of protection for R32Q has been