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Preface

Medicine has for a long time been a major driver for the development of data
processing and visualization techniques. Many exciting and challenging visual-
ization problems are continually arising in medicine as a consequence of our
ability to generate increasingly large and complicated data (image data, simulated
data) that require us to devise effective tools for meaningful interpretation and
utilization in medical practice. The first VMLS workshop, which led to the book
entitled “Visualization in Medicine and Life Sciences (VMLS),” was driven by
the fact that emerging technologies in the life sciences had produced significant
data visualization challenges. One interesting question was: Can medical data
visualization approaches be devised and/or improved to meet these challenges with
the promise of ultimately being adopted by medical experts.

Life sciences are understood by us in a broad sense, including animal and human
biology, biochemistry, bioinformatics, biomathematics, food sciences, environmen-
tal sciences, and pharmacology. Different data acquisition technologies lead to
different types of data, including both spatial and non-spatial data. The aim of the
second international VMLS workshop was to document and discuss the progress
that had been made since the first workshop and to explore what novel solution
approaches for data processing and visualization had been developed and what new
challenges had come up.

Internationally leading experts from the visualization and driving medical
application areas came together for this second workshop held in Bremerhaven,
Germany, in July 2009. Research and survey papers were solicited and peer-
reviewed, ultimately leading to the collection of papers included in this book.

The research topics covered by the papers in this book deal with these themes:

• Feature Extraction
• Classification
• Volumes and Shapes
• Tensor Visualization
• Visualizing Genes, Proteins, and Molecules
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Discrete Distortion for 3D Data Analysis

Leila De Floriani, Federico Iuricich, Paola Magillo, Mohammed Mostefa
Mesmoudi, and Kenneth Weiss

Abstract We investigate a morphological approach to the analysis and understand-
ing of three-dimensional scalar fields, and we consider applications to 3D medical
and molecular images as examples. We consider a discrete model of the scalar field
obtained by discretizing its 3D domain into a tetrahedral mesh. In particular, our
meshes correspond to approximations at uniform or variable resolution extracted
from a multi-resolution model of the 3D scalar field, that we call a hierarchy
of diamonds. We analyze the images based on the concept of discrete distortion,
that we have introduced in [26], and on segmentations based on Morse theory.
Discrete distortion is defined by considering the graph of the discrete 3D field,
which is a tetrahedral hypersurface in R4, and measuring the distortion of the
transformation which maps the tetrahedral mesh discretizing the scalar field domain
into the mesh representing its graph in R4. We describe a segmentation algorithm
to produce Morse decompositions of a 3D scalar field which uses a watershed
approach and we apply it to 3D images by using as scalar field both intensity and
discrete distortion. We present experimental results by considering the influence of
resolution on distortion computation. In particular, we show that the salient features
of the distortion field appear prominently in lower resolution approximations to the
dataset.
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1 Introduction

We consider a three-dimensional scalar field which is defined by a collection of
function values, each given at a point in a 3D domain. Examples of 3D scalar fields
of interest in biomedical applications are 3D images, where the intensity at each
voxel defines the scalar field. A scalar field is known at a finite set of points in 3D
space, and a digital model of the field is constructed based on such points. Models
of 3D scalar fields are based on voxels, or on tetrahedral meshes with vertices at the
points in the 3D space at which the field is known. In both cases, such models tend
to be verbose and may not be immediately useful to understand the behavior of the
field.

Here, we consider tetrahedral meshes extracted from a multi-resolution represen-
tation of 3D images provided by a regular tetrahedral hierarchy. We have developed
an efficient representation of a regular tetrahedral hierarchy, called a hierarchy of
diamonds, as discussed in [43].

The aim of morphological analysis is to provide a tool for understanding the
structure of a scalar field through structural representations of the field so that its
basic features can be easily recognized. Here, we use the notion of discrete distortion
to support morphological analysis. In [26] we have introduced a discrete approach
to curvature for three-dimensional tetrahedralized shapes embedded in 4D space,
that we called discrete distortion. If we consider 3D scalar fields, we can view
the values of the field as constraints on the vertices of a tetrahedral mesh. From
this perspective, the values induce a distortion of the geometry of the mesh, seen
as a hypersurface representing the graph of the scalar field in R4. As for surface
curvature, discrete distortion highlights the local curvature of the constrained shape
(the graph of the 3D scalar field) which cannot be perceived in the three-dimensional
domain. As curvature gives interesting insights in terrain analysis, we show that
distortion provides additional information to analyze the behavior of the intensity
field. A null distortion value highlights a linear behavior of the intensity field, while
a constant distortion corresponds to a uniform non-linear behavior. We observe that
directions in which distortion changes indicate interesting directions in which the
intensity field varies its growth speed.

One way to perform morphological analysis is to automatically decompose the
domain of the field into meaningful parts in order to support understanding and
semantic annotation. Segmentation has been the basic tool to support reasoning on
terrains and 3D shapes. Here, we propose segmentations for a 3D image based the
intensity value or on discrete distortion, in a similar way as done for terrains where
segmentations are computed based on elevations and/or on curvature values.

The segmentation of a scalar field is performed based on its critical points, and
the steepest directions through which the scalar field increases or decreases. This
leads to two dual decompositions. The stable Morse decomposition associates a 3D
cell with each local minimum of the field, and two adjacent 3D cells touch at ridge
surfaces (i.e., surfaces where the field decreases on both sides). The unstable Morse
decomposition symmetrically associates a 3D cell to each local maximum, and the
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boundaries of the 3D cells are at valley surfaces. Here, we present an algorithm for
computing Morse decompositions based on a watershed approach and we compute
Morse decompositions based on the intensity field and on a new field induced by
discrete distortion. This approach reveals relevant features, different from those that
are generally extracted by studying the behavior of the gradient field (i.e., the critical
points of the intensity field). For example, the extrema of distortion correspond
to locations in which the intensity field has abrupt variations, which might not be
perceptible from the intensity values.

We apply our approach to the analysis of the morphology of scalar fields through
examples on synthetic, biological and medical datasets. We show color-coded
visualization of the fields based on the intensity field and of distortion. We study
the interaction between the resolution of the tetrahedral mesh approximating the
field and the distortion values, showing that we can reasonably approximate the 3D
image at fairly low resolutions. Finally, we show results on Morse segmentations
based on the intensity and on the distortion values and we compare them.

The remainder of this paper is organized as follows. In Sect. 2, we provide
background notions on concentrated curvature, and on Morse theory and Morse
complexes. In Sect. 3, we review some related work. In Sect. 4, we briefly describe
a mesh-based multi-resolution model that we use for representing the 3D image.
In Sect. 5, we discuss the notion of discrete distortion for a tetrahedralized shape
representing the graph of a 3D scalar field, and we present some of its properties.
In Sect. 6, we present an algorithm to segment tetrahedral meshes endowed with
discrete scalar fields, and produce Morse decompositions. In Sect. 7, we present
experimental results on medical data set and we discuss the results. Finally, in
Sect. 8, we draw some concluding remarks and discuss on-going and future work.

2 Background Notions

In this Section, we discuss first concentrated curvature, since the notion of discrete
distortion generalizes concentrated curvature to hypersurfaces in R4. Then, we
briefly review some notions from Morse theory which is the basis for defining
morphological segmentations for a scalar field.

2.1 Concentrated Curvature

Concentrated curvature is the discrete counterpart of Gaussian curvature for tri-
angulated surfaces [1, 25, 40], and was introduced by Aleksandrov for 2D scalar
fields represented as triangle meshes [1]. Given a triangulated surface in R3 and a
vertex p in the interior of the corresponding triangle mesh, the local neighborhood
of p is the union of the angular sectors of the triangles incident at p. The total
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Fig. 1 In (a), surface of a molecule with associated concentrated curvature represented in a
rainbow color scale (blue D low values, red D high values). In (b), Morse decomposition of the
surface based on concentrated curvature

angle �p at p is given by the sum of the angles at p of all the triangles incident
in p. The concentrated curvature at a vertex p is defined as K.p/ D 2� � �p ,
when p is an internal vertex [40]. If the sum of the angles of all these sectors is not
equal to 2� , p is called a singular conical point. When the surface is defined by
a scalar field, the concentrated curvature for boundary points can be defined as the
defect between the angle at the vertex on the surface and its corresponding angle on
the xy-projection domain.

Note that concentrated curvature involves only the sum of angles of the triangles
incident at a vertex and does not take into account their geometric position. Planar
points have null concentrated curvature. Saddle points have negative concentrated
curvature, while convex and concave points have positive concentrated curvature.
Figure 1a illustrates the behavior of concentrated curvature on the surface of a
molecule: red areas correspond to high curvature, and blue areas to low curvature.
The segmentation in Fig. 1b represents a Morse segmentation of the surface based
on concentrated curvature.

2.2 Morse Theory and Morse Complexes

Let f .x; y; z/ be a scalar field defined on a domain D of R3, and let function f be
continuous and smooth in D. A point p of D is a critical point of f if the gradient
of f at p is null. Points that are not critical are called regular points. A critical point
p is degenerate if the Hessian matrix of the second partial derivatives of f at p is
not singular. A scalar field f is a Morse function if and only if all its critical points
are not degenerate. Morse [27] showed that the critical points of a Morse function
are isolated. The number i of negative eigenvalues of the Hessian matrix is called
the index of critical point p, and p is called an i -saddle. A 0-saddle is a minimum
and a 3-saddle a maximum.

An integral line of f is a maximal path which is everywhere tangent to the
gradient of f . Each integral line connects two critical points of f , called its origin
and its destination. Integral lines that converge to a critical point p of index i form
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Fig. 2 Stable Morse complex
for a 2D scalar field. Arrows
denote the negative gradient
field. Only a window over the
domain of the field is shown;
the stable cells of the minima
are shown in different colors:
each stable cell is the region
covered by arrows converging
to the same minimum

minimum

maximum

saddle

an i -cell, called a stable cell of p. Dually, integral lines that originate at p form its
unstable .n � i/-cell. The stable and unstable cells decompose D into stable and
unstable Morse complexes. Figure 2 illustrates the above concepts for the domain
of a 2D scalar field.

A Morse function f is called a Morse-Smale function if each non-empty inter-
section of a stable and an unstable cell is transversal. The connected components of
the intersection of the stable and unstable cells define a Morse-Smale complex. Note
that the Morse-Smale complex for f can be obtained by the overlay of its stable and
unstable complexes.

3 Related Work

In this Section, we briefly review related work on discrete curvature estimators, on
multi-resolution modeling of 3D scalar fields, on algorithms for computing Morse
decompositions of 3D scalar fields, and on features of interest in medical imaging.

3.1 Discrete Curvature Estimators

Curvature is an important notion in mathematics that found a great interest in the
last century. Curvature is also used to study the local geometry and topology of
surfaces from the metric point of view. With the development of discrete geometry,
many authors tried to define a discrete counterpart of curvature based on the
properties observed in the continuum [12, 18, 37, 38]. There is a rich literature
dealing with the problem of defining and computing discrete curvature estimators
for triangle meshes, and more recently for tetrahedral meshes (see [12,18,37,38] for
a survey). Concentrated curvature [1, 40] is a simple and efficient method to define
a discrete curvature, as discussed in Sect. 2.1. Dyn et al. discuss how to optimize the
triangulation of the boundary of a 3D object based on discrete curvature [9].

In the 3D case, the Ricci tensor is used to define the curvature notion for three-
dimensional shapes [2], and, in the discrete case, the Laplace operator is generally
used to define a discrete approach to curvature [33].



8 L. De Floriani et al.

In the 4D case, curvature is one of the most important mathematical notions on
which general relativity is based. Curvature of the space-time gave an important
contribution to understand many phenomena in physics (black holes, gravitational
lenses, light trajectories, interaction between planets, ...). Based on Aleksandrov’s
concentrated curvature, Regge introduced a discrete version of curvature for the four
dimensional space-time [32].

3.2 Multi-Resolution Modeling

A very large class of multiresolution models of volumetric scalar fields is provided
by nested meshes, in which all elements are defined by the uniform subdivision of
a small set of primitive cells. Examples include octrees formed by cubes [36] and
tetrahedral meshes generated by the so-called Red/Green tetrahedron refinement [5].

Nested tetrahedral meshes based on the Longest Edge Bisection (LEB) operation
were originally introduced for domain decomposition in finite element analy-
sis [20, 23, 34], and have since then been applied in many different contexts,
including scientific computing [13, 14, 46], surface reconstruction [24] and volume
segmentation [21]. A recent survey on nested simplicial meshes based on bisection
can be found in [44].

The LEB operation is defined by bisecting a tetrahedron t along the plane defined
by the midpoint of its longest edge e and the two vertices of t not incident to e. The
containment relation among the tetrahedra generated by successive LEB operations
naturally defines a binary tree, where the two tetrahedra generated by bisecting a
parent tetrahedron t are the children of t . When a full binary tree is stored, this
representation can be efficiently encoded as a linear array, and the parent-child
relation can be implicitly determined from the array indices [13, 22, 46]. A forest
of six such tetrahedral binary trees, whose roots share a common cube diagonal can
thus decompose a cubic region of space.

We are often interested in generating crack-free, or conforming, tetrahedral
meshes, since cracks in the mesh correspond to discontinuities in scalar fields
discretized through it. Methods of ensuring continuity have been proposed based
on a hierarchical monotonic error metric [29], symbolic neighbor-finding opera-
tions [20, 22] or an implicit clustering of tetrahedra sharing a common bisection
edge into a diamond primitive [14, 42]. In this work, we utilize diamonds to extract
conforming tetrahedral meshes from the multi-resolution model.

3.3 Algorithms for Morse Decompositions in 3D

Most of the algorithms proposed in the literature for extracting an approximation
of the Morse complexes in the discrete case have been developed for terrains.
The majority of them use a boundary-based approach, since they extract the
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decomposition by computing the critical points and then tracing the integral lines,
or their approximations, starting from saddle points and converging to minima and
maxima. Other algorithms use a region-based approach, in the sense that they
compute an approximation of a Morse decomposition by growing a 2D region
defined and started by the minima and the maxima of a Morse function f . Curvature
has been applied to the segmentation of 3D shapes and terrains in combination
with Morse decompositions (see, for instance, [28]). A comprehensive analysis of
techniques for Morse decomposition can be found in [6].

Alternative region-based techniques for computing the stable and unstable Morse
decompositions are those based on the discrete watershed transform (see [35] for a
survey). For a C 2-differentiable function f , the watershed transform provides a
decomposition of the domain of f into regions of influence of the minima, called
catchment basins, which are bounded by watershed lines. If f is a Morse function,
it can be shown that the catchment basins of the minima of f and the watershed
lines correspond to the 2-cells and the 1-cells, respectively, in the stable Morse
decomposition of f [6].

Much less work has been done on computing Morse decompositions for 3D
scalar fields. In [10], an algorithm for extracting the Morse-Smale decomposition
(i.e. the intersection of the stable and unstable Morse decompositions) from a
tetrahedral mesh approximating a 3D scalar field is proposed. The algorithm
computes the Morse-Smale decomposition by extracting the critical points, then
the unstable Morse decomposition and finally the stable cells in pieces inside the
unstable cells. The algorithm, while interesting from a theoretical point of view,
has a large computation overhead, as discussed in [17]. In [17], a region growing
method is proposed to compute the Morse-Smale decomposition inspired by the
watershed approach. A procedural approach based on discrete Morse theory is
described in [15] which also computes the Morse-Smale complex.

A major issue when computing Morse decompositions for 2D and 3D scalar
fields is over-segmentation, which is due to the presence of noise in the data.
To this aim, generalization algorithms have been developed in order to eliminate
less significant features from a Morse or Morse-Smale decomposition, mainly
for 2D scalar fields. Generalization is achieved by applying an operation, called
cancellation of critical points. Cancellations of critical points for a 3D scalar field
consist of collapsing a maximum and a 2-saddle into a single maximum, a minimum
and 1-saddle into a single minimum, or a 1-saddle and a 2-saddle into either a
1-saddle or a 2-saddle [7, 16].

3.4 Features in Medical Images

Features of interest in medical images (also called landmarks) may correspond to
points, lines, surfaces or volumes. Many techniques for landmark extraction are
based on curvature. In [3, 31, 39] an algorithm that computes a polygonal approxi-
mation of the so-called Gaussian frontier is described. Points with large curvature
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values along a contour are selected following different scale-space Gaussian filters.
In [4], isolines of extremal values of mean curvature are selected to segment MRI
and CT-scans images. These isolines generally correspond to ravine and ridge lines
of the surface. Based on contour detection and curvature, an automatic landmark
extraction is proposed in [11]. Several techniques using first and second differentials
of 3D operators (that extend the 2D case) are compared on MRI and CT-scan
images in [19].

4 A Diamond-Based Multi-Resolution Model

In this Section, we describe a mesh-based multi-resolution model for 3D scalar
fields called a hierarchy of diamonds, which we use to generate approximate
representations of a scalar field at variable and uniform resolutions. We have studied
the theory and the properties of hierarchy of diamonds in arbitrary dimensions
in [42].

A multi-resolution model M of a shape ˙ is typically defined by three
components [8]: (a) A coarse base mesh �0 that approximates ˙ , (b) a set of
modifications U , each of which replaces a set of cells �1 with a new set of cells
�2 sharing the same combinatorial boundary and (c) a direct dependency relation R

on the modifications U , where a modification u2 depends on another modification
u1 if u2 replaces a cell that was introduced in u1.

As pointed out in Sect. 3.2, the LEB (longest edge bisection) operation is defined
by bisecting a tetrahedron t along the plane defined by the midpoint of its longest
edge e and the two vertices of t not incident to e.

A Hierarchy of Diamonds � is a multi-resolution representation of a regularly
sampled 3D scalar field covering a cubic base domain D and generated through
longest edge bisection. It is based on clusters of tetrahedra, called diamonds, sharing
the same bisection edge, that we call the spine of the diamond. The diamond whose
spine is a diagonal of D defines the base mesh �0 of the model. Each diamond
ı corresponds to a modification .�1; �2/ in the multi-resolution model, where �1

consists of the tetrahedra of ı, and �2 consists of the tetrahedra generated by
bisecting the tetrahedra in �1 along the spine of ı.

A diamond ıp is said to be a parent of another diamond ıc if one or more of the
tetrahedra in ıc is generated during the bisection of the tetrahedra in ıp . This parent-
child relation defines the direct dependency relation of the model, which can be
encoded as a Directed Acyclic Graph (DAG) (see Fig. 4(a) for an illustration in 2D).

An explicit encoding of the hierarchy as a directed acyclic graph would require
each modification to list the tetrahedra before and after bisection as well as the
dependencies among these modifications. However, due to the regularity of the
vertex distribution and the subdivision rule, this model generates only three classes
of diamonds composed of six, four and eight similar tetrahedra [23], respectively
(see Fig. 3). Furthermore, the diamond classes have three, two and four parents, and
six, four and eight children, respectively.
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Fig. 3 The three classes of three-dimensional diamonds. The spine (internal green edge) of a
diamond of class i is aligned with the diagonal of a (d � i )-cube. A diamond’s central vertex vc

(hollow red circle) coincides with the midpoint of its spine

Fig. 4 (a) A hierarchy of diamonds (shown in 2D) is a rooted DAG whose nodes are the diamonds
and whose arcs encode the dependency relation among the diamonds. (b) Example variable-
resolution tetrahedral mesh extracted from a hierarchy of diamonds. A tetrahedron’s color indicates
its level of resolution

Thus, diamond hierarchies admit extremely compact encodings of the underlying
multi-resolution model which exploit the implicit relationships among the modifi-
cations and their dependencies. Each diamond is completely defined by its spine,
and all its tetrahedra are split by the diamond’s central vertex, the unique midpoint
of its spine. Thus, diamonds are in one-to-one correspondence with their central
vertices, which, in turn, are in one-to-one correspondence with the samples of the
dataset. From the coordinates of the central vertex, we use bit manipulations to
extract the complete parent-child relations. A hierarchy of diamonds can therefore
be encoded as the collection of the central vertices of its diamonds [42], from which
all geometric and hierarchical relationships can be implicitly determined [14, 43].

A hierarchy of diamonds � is used to efficiently extract variable-resolution
tetrahedral meshes ˙ approximating a 3D image while satisfying an application-
dependent selection criterion. The selection criterion can be defined on properties
of the domain, such as proximity to a specified region of interest, or on properties of
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the range such as its degree of approximation to the underlying dataset. In contrast
to octree-based approaches, such tetrahedral meshes have a higher degree of
adaptability to the selection criterion [30], and are guaranteed to be free of cracks.
Figure 4(b) shows a variable-resolution tetrahedral mesh extracted from a hierarchy
of diamonds.

5 Discrete Distortion

In this Section, we briefly review the notion of distortion that we have introduced
in [26] and we describe some of its properties. Discrete distortion is a generalization
of concentrated curvature to tetrahedral meshes in 4D space [26]. In [25], we have
investigated discrete distortion for triangulated terrains, and we have shown that it
behaves as a discrete counterpart of mean curvature. Here, we discuss the notion of
distortion for tetrahedral meshes endowed with a scalar field.

The graphical representation of a scalar field f defined on a tetrahedral mesh
˙ is a hypersurface .˙ I f / in R4, namely, a tetrahedral mesh embedded in R4.
Hypersurface .˙ I f / is generally curved due to the effects of the scalar field values.
As for concentrated curvature, one may compare the defect solid angle at the vertices
of ˙ , when applying the scalar field.

The distortion at a vertex p of ˙ is defined as the quantity

D.p/ D 4� �
X

Ti 2T .p/

Si ; (1)

where Si is the solid angle, after applying the scalar field (i.e., within .˙ I f /),
at vertex p of tetrahedron Ti , and T .p/ is the set of all tetrahedra incident at p.
A similar formula holds for boundary vertices:

D.p/ D
X

ti 2t .p/

si �
X

Ti 2T .p/

Si ; (2)

where si is the solid angle, within ˙ , at vertex p of tetrahedron ti , and T .p/ is the
set of all tetrahedra incident at p.

Discrete distortion for 3D scalar fields has similar properties as concentrated
curvature for 2D fields. Concentrated curvature gives positive values to locally
convex, or concave, areas of the surface, negative values to saddles, and null values
to flat areas. Similarly, positive values of distortion correspond to locally convex,
or concave, portions of the hypersurface which is the graph of the field. Negative
values correspond to saddle and degenerate saddle configurations.

Constant scalar fields are distortion-free (i.e., their distortion is null). This can
easily be understood since, for a constant scalar field, mesh .˙ I f / is only a
translation, in the fourth dimension, of the mesh ˙ decomposing the domain of
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the field. Hence, the Euclidean geometric structure of the mesh is preserved. More
generally, affine scalar fields are distortion-free, since they combine rotations and
translations of the whole mesh. Hence, the geometrical structure is not subject to
any distortion.

As a consequence, piecewise linear scalar fields are distortion-free at the interior
vertices of regions where the field is linear, as they act affinely within such regions.
Another relevant property is that distortion is mesh-dependent. This means that the
distortion value at a vertex depends on the way in which the neighborhood of such
vertex is triangulated.

6 Computing Morse Complexes

We compute a discrete approximation of the unstable and the stable Morse
complexes for a 3D scalar field f defined at the vertices of a tetrahedral mesh ˙

by extending the watershed approach by simulated immersion developed for 2D
images in [41]. We describe only the algorithm for the stable complex since the
unstable complex can be built by considering field �f .

The watershed algorithm performs the following three steps:

1. Sort the vertices of the mesh by increasing values of field f .
2. Associate all mesh vertices with a local minimum. This is done starting from

minima and proceeding based on increasing field values and on increasing
distance from already discovered local minima.

3. Assign each tetrahedron to the stable 2-cell of a local minimum, based on the
assignments of its vertices.

In the second step we process the vertices of the mesh according to their field
values. Let h be the current field value (initially, h is the minimum field value over
the mesh). We consider the set H of all the vertices whose field value is equal
to h. A priority queue is used to ensure the processing vertices in H in increasing
distance from an already assigned vertex. We iteratively pick the first vertex v 2 H

from the priority queue, and we check if some of its neighboring vertices has already
been assigned to a local minimum. If they are all either unassigned, or assigned to
the same local minimum, then v is assigned to that local minimum. If two or more
neighboring vertices are assigned to different local minima, then v is marked as
a watershed vertex. After assigning v, the priorities of the unassigned neighbors
of v are updated in the priority queue. The above process is repeated until no more
assignments are possible (i.e., the priority queue is empty). Then, for each vertex
w 2 H that is still unassigned, w is marked as a new local minimum, and all vertices
with the same field values equal to h, which are connected to w, are assigned to w.
Now, all vertices in H have been assigned to some local minimum (possibly equal
to the vertex itself), and the algorithm proceeds with the next field value.

The third step examines each tetrahedron � and assigns it to a local minimum
based on its vertices. If all four vertices of � are marked as watershed, then � is



14 L. De Floriani et al.

marked as a watershed tetrahedron. Otherwise, among the local minima assigned to
the vertices of � , we choose the one having minimum field value and assign � to
such minimum.

The watershed algorithm described above often produces an over-segmentation
of the graph of the scalar field. To overcome this problem, we perform an iterative
merging process of the 3D cells of the stable (unstable) Morse complex, which
correspond to a topological generalization operator, namely, to the cancellation of a
maximum and a 2-saddle in the stable complex, or of a minimum and a 1-saddle in
the unstable complex. We consider pairs of adjacent 3D cells in the stable (unstable)
Morse complex. We associate with each cell �1 a saliency measure with respect to
any adjacent 3D cell �2, which takes into account: (i) the maximum field difference
between the local minimum [maximum] associated with cells �1 and �2 and the
largest [smallest] field value of a point on the common boundary 2-cell of �1 and �2;
(ii) the product of the sizes of �1 and �2; (iii) the extent of the common boundary of
�1 and �2.

Thus, priority is given to merging cells with small differences in field values,
with a small area and to cells with long common boundaries. The first measure is
the persistence value, as defined in [10, 16].

7 Experimental Results

In this Section, we present some experimental results which show the behavior of
discrete distortion as a tool for analysis of 3D images. Because of the large size of
current data sets, it is also important to perform accurate analysis on low-resolution
representations of the field. Here, we study the influence of mesh resolution
on distortion by considering variable-resolution conforming tetrahedral meshes
extracted from a hierarchy of diamonds according to a user-defined threshold on
the approximation error. In this case, resolution can be coarsened locally in less
interesting regions, without affecting the quality of the approximation. Finally,
we show and compare segmentations of the 3D images obtained through Morse
decompositions of the intensity and of the distortion fields. To this aim, we present
results on a synthetic data set in which the intensity field is defined by an analytic
function and on two real data sets.

7.1 3D Datasets and Distortion

Our first example is a synthetic dataset defined over a regularly sampled domain
of 653 vertices. The intensity field is obtained by sampling the analytic function
f .x; y; z/ D sin.x/ C sin.y/ C sin.z/. We show here the tetrahedral mesh at
full resolution extracted from a hierarchy of diamonds built on such data set. It is
composed of 275 K vertices and 1.57 million tetrahedra. The relationship between
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Fig. 5 Intensity field (left) and distortion field (right) for synthetic data set sampling function
f .x; y; z/ D sin.x/ C sin.y/ C sin.z/ over a 653 grid

the intensity field and the induced distortion field over this domain is illustrated
in Fig. 5 along the boundary of the cubic domain using a blue-red color scale to
indicate the low and high scalar and distortion values.

The second dataset, called Neghip, is a simulation of the spatial probability
distribution of electrons in a high potential protein molecule. The knowledge
of electron distribution within such molecules is important in pharmacology to
understand the interactions between molecules and an organism. The inhibition of
some protein molecules can reduce complications in diseases such as cataracts and
neuropathies for diabetic subjects. The understanding of the catalytic mechanism
and the electrostatic potential of the molecule plays a relevant role here. It may
help to study, at the atomic scale, the transfer of electrons and protons in complex
biological processes such as oxidation/reduction in relation to metallic ions by
considering the reaction between hemoglobin (containing iron ions) and the oxygen
molecule.

In Fig. 6, we show the intensity field and distortion field for the tetrahedral
mesh extracted from the Neghip hierarchy at variable resolution corresponding to
0% approximation error. The mesh has 129 K vertices and 728 K tetrahedra. The
range of colors used for visualization goes from blue for low values to red for high
values, with gray indicating mean values. Discrete distortion highlights the growth
behavior of the density scalar field, which is maximal around the atoms. We see
that the density field grows quickly around atoms within small regions and then
stabilizes its growth. Distortion becomes nearly constant in such case. We observe
also that, within regions where the electron density has low values, many small
regions have high distortion values. This indicates changes in the electron density
and may be due to the interference between adjacent atoms or to some artifacts in
the processing of the data. Regions in blue (for distortion) indicate that the scalar
field grows differently in different directions. This corresponds to saddle regions
where the convexity of the electron density field changes.

The third dataset, called CTA-Brain, is a CTA-scan of a human brain with an
aneurysm. Computed Tomographic Angiography (CTA) is a minimally invasive
technique that uses imaging technologies (e.g., X-rays) to explore the structure
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Fig. 6 Twelve equally spaced slices (along the z-axis) of the intensity field (left), and the
distortion field (right) of the Neghip dataset at 0% error. The colors of the distortion field are
scaled to highlight the extreme values

of vessels and tissues. A contrast agent is generally used to produce clear images.
The original dataset has 512 � 512 � 120 vertices and measure the intensity of the
contrast agent. To show the behavior of the intensity field and of distortion, we have
extracted a variable-resolution mesh from the diamond hierarchy, which has 1.74
million vertices and 9.52 million tetrahedra.

Figure 7 illustrates the dataset, where the scalar field corresponds to the intensity
of the contrast agent, and its distortion, through equally spaced horizontal slices.
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Fig. 7 Seven equally spaced slices (along the z-axis) of the CTA-brain dataset at 10% error
illustrating the scalar field (left), and the distortion field (right). The colors of the distortion field
are scaled to highlight the extreme values

The geometric structure of the scanned region is well represented by distortion.
We see that most regions have gray or light blue color, which indicates a uniform
distribution of the contrast agent within the brain. The regions with high distortion
correspond to changes in the intensity of the contrast product.

7.2 Distortion and Mesh Resolution

We now demonstrate the validity of distortion analysis on lower resolution approx-
imations by considering the distribution of distortion values over a set of extracted
meshes with increasingly fine resolution. For brevity, we show results only on the
two real data sets, Neghip and CT-Brain.

In the first case, we generate a diamond hierarchy �H based on the intensity
values of the 643 Neghip dataset, which contains 262 K vertices. The error of a
diamond ı is computed as the maximum difference between the intensity values
of all grid points within the domain of ı, and the value obtained by linear
interpolation over the vertices of ı’s tetrahedra. We extract a series of meshes
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Fig. 8 Cumulative distribution functions of distortion values (horizontal axis) over increasingly
fine meshes extracted from the Neghip dataset

˙�i of uniform approximation error �i from �H , using threshold values of �i 2
f30%; 10%; 5%; 2%; 1%; 0%g of the total error and then evaluate the distortion of
the vertices of these meshes.

Figure 8 shows the Cumulative Distribution Function (CDF) of the discrete
distortion (horizontal axis) of the vertices of each mesh. The sharp spike in the
CDF of all datasets around a null distortion value indicates that the vast majority of
vertices have (nearly) null distortion. As the resolution increases, this spike becomes
steeper, indicating that the increased resolution is distributed among regions with
nearly null distortion. Thus, the distortion is concentrated in relatively few vertices
within the mesh, and appears prominently in lower resolution approximations. For
example, when � D 0, more than 94% of the 129 K vertices in ˙0% have distortion
D.v/ � j1j, and for � D 2%, more than 83% of the 33 K vertices in ˙2% have
distortion D.v/ � j1j.

Similarly, Fig. 9 shows the CDF of meshes ˙�i using threshold values of �i 2
f99%; 75%; 50%; 30%; 10%; 5%g extracted from the CTA-Brain dataset. These
meshes illustrate the same general trend as the Neghip approximations, although
they are a bit noisier since they are scanned images.

We have obtained similar results for several other datasets in other application
domains [45]. These experiments indicate that we can obtain a fairly accurate
understanding of the image via its discrete distortion even at lower resolutions,
without the need to compute the distortion on the full image.

7.3 Morse Decompositions

In this Subsection, we show Morse decompositions of the synthetic and real data
sets computed using the intensity and the distortion fields.
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Fig. 9 Cumulative distribution functions of distortion values (horizontal axis) over increasingly
fine meshes extracted from the CTA Brain dataset

Let us consider the distribution of the intensity and distortion values for the
synthetic data set shown in Fig. 5. Figure 10 shows the stable and unstable Morse
decompositions computed based on the intensity and on the distortion fields. It is
clear how the distribution of the intensity and of the distortion values influences
the corresponding segmentations. Both stable and unstable Morse decompositions
obtained from the intensity field consists of 1,331 cells and have a regular structure.
The stable decomposition obtained from the distortion field consists of 12,972 cells,
while the unstable one consists of 3,738 cells. The decomposition pattern in the
stable and unstable distortion-based complex varies in different portions of the
mesh. This is due to the function sampling that is different from its period.

Figure 11 shows Morse decompositions built from the full-resolution tetrahedral
mesh discretizing the Neghip dataset. We thresholded the visualization along an
isovalue to better illustrate the structure of the molecules. The stable and unstable
Morse decompositions obtained from the intensity field consist of 104 cells and
of 41 cells, respectively. The stable and unstable Morse decompositions obtained
from the distortion field consist of 3,654 stable cells and 23,334 cells, respectively.
Some components of the unstable decomposition represent the location of atoms
(i.e. maxima of the density) and the proper space in which electrons revolve around.
Due to the interference of electron density of adjacent atoms, some components are
created and correspond to some maxima of the density field. These components do
not properly contain atoms.

Figure 12 illustrates the intensity field, the corresponding distortion values and
the segmentations obtained from a uniform resolution mesh ˙10% extracted from
the CTA-Brain dataset (see also a view as set of slices in Fig. 7). The decomposition
obtained from the intensity field consists of 37,631 stable cells and of 23,835
unstable cells, while the decomposition obtained from the distortion one consists
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Fig. 10 Morse decompositions for the synthetic data set defined by intensity function
f .x; y; z/ D sin.x/Csin.y/Csin.z/. Minima (stable) or maxima (unstable) vertices are colored
in red, vertices on the boundary of several regions in blue and vertices within a region in yellow

of 136,641 stable cells and 128,687 unstable cells. Figure 13 shows the largest
segments from the segmentations. Observe that, while the unstable regions are more
structured and follow the field values, the stable regions are much more influenced
by the boundary and by the less relevant regions of the original scalar field. The
former therefore seem to provide a more meaningful decomposition. The large
number of cells in the unstable decomposition computed on the basis of distortion is
due to the fact that there is a large number of small areas in which the concentration
of the contrast agent changes abruptly (i.e., distortion has a maximum).

8 Concluding Remarks

We have presented an innovative approach to the analysis of 3D images based on
the notion of discrete distortion, which generalizes discrete curvature to triangulated
hypersurfaces in 4D space, and on Morse decomposition.

We have proposed the use of a multi-resolution model based on clusters of
tetrahedra, called diamonds, which enables the analysis of a 3D image through
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Fig. 11 Original field and distortion field, and segmentations, for variable resolution Neghip
data set at 0% approximation error. Segmentations are shown with minima (stable) or maxima
(unstable) vertices in red, vertices on the boundary of more than one region in blue and vertices
within a region in yellow

crack-free approximations encoded as tetrahedral meshes. One important aspect of
using mesh-based multi-resolution models is that the image can be analyzed by
using much fewer samples than in the full image. This facilitates our analysis of
large 3D volume datasets by using significantly fewer resources. The other aspect
that we have shown through our experiments is the utility of discrete distortion in
analyzing approximated images, thus giving good insights about the field behavior
already at low resolutions.


