

���������	
��
��
��

Hujun Bao
Wei Hua

Real-Time Graphics
Rendering Engine

With 66 figures, 11 of them in color

ADVANCED TOPICS
IN SCIENCE AND TECHNOLOGY IN CHINA

ADVANCED TOPICS
IN SCIENCE AND TECHNOLOGY IN CHINA

Zhejiang University is one of the leading universities in China. In Advanced
Topics in Science and Technology in China, Zhejiang University Press and
Springer jointly publish monographs by Chinese scholars and professors, as well
as invited authors and editors from abroad who are outstanding experts and
scholars in their fields. This series will be of interest to researchers, lecturers, and
graduate students alike.

Advanced Topics in Science and Technology in China aims to present the latest
and most cutting-edge theories, techniques, and methodologies in various research
areas in China. It covers all disciplines in the fields of natural science and
technology, including but not limited to, computer science, materials science, life
sciences, engineering, environmental sciences, mathematics, and physics.

Hujun Bao
Wei Hua

Real-Time Graphics
Rendering Engine

With 66 figures, 11 of them in color

Authors
Prof. Hujun Bao
State key Lab of Computer
Aided Design and Computer
Graphics at Zhejiang University,
Hangzhou 310058, China
E-mail: bao@cad.zju.edu.cn

Dr. Wei Hua
State key Lab of Computer
Aided Design and Computer
Graphics at Zhejiang University,
Hangzhou 310058, China
E-mail: huawei@cad.zju.edu.cn

ISSN 1995-6819 e-ISSN 1995-6827
Advanced Topics in Science and Technology in China

ISBN 978-7-308-08133-7
Zhejiang University Press, Hangzhou

ISBN 978-3-642-18341-6 e-ISBN 978-3-642-18342-3
Springer Heidelberg Dordrecht London New York

© Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

A real-time graphics rendering engine is a middleware, and plays a fundamental
role in various real-time or interactive graphics applications, such as video games,
scientific computation visualization systems, CAD systems, flight simulation, etc.
There are various rendering engines, but in this book we focus on a 3D real-time
photorealistic graphics rendering engine, which takes 3D graphics primitives as
the input and generates photorealistic images as the output. Here, the phrase
“real-time” indicates that the image is generated online and the rate of generation
is fast enough for the image sequence to be looked like a smooth animation. For
conciseness, we use the rendering engine to represent a 3D real-time photorealistic
graphics rendering engine throughout this book.

As a rendering engine is a middleware, users are mainly application developers.
For application developers, a rendering engine is a software development kit.
More precisely, a rendering engine consists of a set of reusable modules such as
static or dynamic link libraries. By using these libraries, developers can concentrate
on the application’s business logic, not diverting attention to rather complicated
graphics rendering issues, like how to handle textures or how to calculate the
shadings of objects. In most cases, a professional rendering engine usually does
rendering tasks better than the programs written by application developers who are
not computer graphics professionals. Meanwhile, adopting a good rendering
engine in application development projects can reduce the development period,
since lots of complex work is done by the rendering engine and, consequently,
development costs and risks are alleviated.

In this book we are going to reveal the modern rendering engine’s architecture
and the main techniques used in rendering engines. We hope this book can be
good guidance for developers who are interested in building their own rendering
engines.

The chapters are arranged in the following way. In Chapter 1, we introduce the
main parts of a rendering engine and briefly their functionality. In Chapter 2, basic
knowledge related to developing real-time rendering is introduced. This covers the
rendering pipeline, the visual appearance and shading and lighting models.
Chapter 3 is the main part of this book. It unveils the architecture of the rendering
engine through analyzing the Visionix system, the rendering engine developed by

Prefacevi

the authors’ team. Lots of details about implementation are also presented in
Chapter 3. In Chapter 4, a distributed parallel rendering system for a multi-screen
display, which is based on Visionix, is introduced.

In Chapters 5 and 6, two particular techniques for real-time rendering that
could be integrated into rendering engines are presented. Chapter 5 presents an
overview of real-time rendering approaches for a large-scale terrain, and a new
approach based on the asymptotic fractional Brownian motion. Chapter 6 presents
a variation approach to a computer oriented bounding box tree for solid objects,
which is helpful in visibility culling and collision detection.

This book is supported by the National Basic Research Program of China, also
called “973” program (Grant Nos. 2002CB312100 and 2009CB320800) and the
National Natural Science Foundation of China (Grant No. 60773184). Additionally,
several contributors have helped the authors to create this book.

Dr. Hongxin Zhang and Dr. Rui Wang from CAD&CG State Key Lab, Zhejiang
University, China, have made key contributions to Chapter 2 “Basics of Real-time
Rendering”. Ying Tang from Zhejiang Technology University, China, has done
lots of work on tailoring contents, translating and polishing this book.

Special thanks to Chongshan Sheng from Ranovae Technologies, Hangzhou,
China, as one of the main designers, for providing a lot of design documents and
implementation details of the Visionix system, which is a collaboration between
Ranovae Technologies and the CAD&CG State Key Lab.

Many people who work, or have ever studied, at the CAD&CG State Key Lab,
Zhejiang University, provided help and support for this book: Rui Wang, Huaisheng
Zhang, Feng Liu, Ruijian Yang, Guang Hu, Fengming He, Wei Zhang, Gaofeng
Xu, Ze Liang, Yifei Zhu, Yaqian Wei, En Li, and Zhi He.

Hujun Bao
Wei Hua

Hangzhou, China
October, 2010

Contents

1 Introduction.. 1

1.1 Scene Graph Management.. 2
1.2 Scene Graph Traverse... 4
1.3 Rendering Queue .. 5
1.4 Rending Modle ... 5

2 Basics of Real-Time Rendering ... 7

2.1 Rendering Pipeline ... 7
2.1.1 Conceptual Rendering Phases .. 9
2.1.2 Programmable Rendering Pipeline ... 10
2.1.3 Geometry Transforms... 11

2.2 Shading... 12
2.2.1 Rendering Equation .. 12
2.2.2 Lighting .. 14
2.2.3 BRDF ... 15
2.2.4 Light Transport ... 17

2.3 Summary... 19
References.. 19

3 Architecture of Real-Time Rendering Engine ... 21

3.1 Overview .. 21
3.2 Basic Data Type .. 22

3.2.1 Single-Field Data Type... 22
3.2.2 Multiple-Field Data Type ... 25
3.2.3 Persistent Pointer: TAddress<> .. 26

3.3 Basics of Scene Model ... 26
3.4 Entity .. 28
3.5 Feature .. 29

3.5.1 IAttributedObject and IFeature... 29
3.5.2 IBoundedObject.. 31

Contents viii

3.5.3 IChildFeature.. 31
3.5.4 Subclasses of IGroupingFeature ... 32
3.5.5 Subclasses of IShapeFeature .. 33
3.5.6 IAnimatedFeature ... 38
3.5.7 Subclasses of ILightFeature.. 40
3.5.8 Subclasses of IBindableFeature.. 40
3.5.9 IGeometryFeature... 42
3.5.10 IAppearanceFeature and Related Features 55

3.6 Scene Graph.. 73
3.7 Spatial Index... 75

3.7.1 Relation Schema A ... 77
3.7.2 Relation Schema B ... 79

3.8 Scene Model Schema.. 79
3.9 Scene Model Interface and Implementation ... 82

3.9.1 Scope of Name and ID ... 82
3.9.2 Transaction ... 82
3.9.3 Scene Storage ... 82
3.9.4 Reference and Garbage Collection ... 83
3.9.5 Data Visit and Cache .. 84
3.9.6 Out-of-Core Entity.. 85
3.9.7 ISceneModel... 86
3.9.8 ISceneStorage ... 89
3.9.9 Implementation of ISceneModel and ISceneStorage................ 91

3.10 Scene Manipulator.. 93
3.10.1 Manipulator Functions.. 94
3.10.2 Usage of Scene Model Manipulator ... 97

3.11 Traversing Scene Model ... 98
3.11.1 Traverse via Iterator.. 98
3.11.2 Traverse via Visitor... 107

3.12 Rendering Engine ... 115
3.12.1 CRenderingEngine ... 115
3.12.2 The Composition of the CRenderingEngine........................... 119

3.13 Render Queue and Its Manager .. 122
3.14 Camera Manager... 123
3.15 GPU Resources and Its Manipulator .. 124

3.15.1 Texture Resource .. 125
3.15.2 Buffer Resource .. 126
3.15.3 Shader Program .. 128
3.15.4 GPU Resource Manipulator.. 128

3.16 Render Target and Its Manager... 131
3.17 Render Control Unit ... 134
3.18 Pre-render and Its Manager .. 137

Contents ix

3.18.1 IPreRender.. 137
3.18.2 CPreRenderManager .. 140

3.19 Render Pipelines and Its Manager .. 142
3.19.1 IRenderPipeLine... 142
3.19.2 Modular Render Pipeline.. 147
3.19.3 Render Module ... 157
3.19.4 CRenderPipelineManager... 160

3.20 Examples of Pre-render .. 161
3.20.1 CVFCullingPreRender ... 161
3.20.2 CMirrorPreRender.. 163
3.20.3 COoCEntityLoader... 165
3.20.4 CFeatureTypeClassifier .. 169
3.20.5 CRenderQueueElementProcessor... 171
3.20.6 CLightCullingPreRender .. 173

3.21 Examples of Modular Render Pipeline and Render Module 174
3.21.1 CShapeRenderPipeline ... 175
3.21.2 CShapeRenderModule.. 176

3.22 Implementation Details of CRenderingEngine................................... 186
3.22.1 Configure.. 186
3.22.2 Initialize.. 189
3.22.3 DoRendering .. 190
3.22.4 OpenSceneModel ... 190

3.23 Conclusion.. 191
References.. 192

4 Rendering System for Multichannel Display ... 193

4.1 The Overview of Parallel Rendering .. 193
4.1.1 Client-Server .. 195
4.1.2 Master-Slave... 196

4.2 The Architecture of a Cluster-Based Rendering System..................... 196
4.3 Rendering System Interface.. 197

4.3.1 vxIRenderingSystem .. 199
4.3.2 vxIModel .. 201
4.3.3 vxIUI .. 218
4.3.4 The Basic Example... 231

4.4 Server Manager... 233
4.4.1 Functionality... 233
4.4.2 Structure ... 233
4.4.3 CServerManager... 236
4.4.4 CServiceRequestManager .. 236
4.4.5 CServiceRequestTranslator .. 238
4.4.6 CServiceRequestSender ... 238

Contents x

4.4.7 CSystemStateManager, CScreenState and CRenderServerState
 .. 240
4.4.8 CServiceRequestSRThreadPool ... 242
4.4.9 IServiceRequest and Subclasses ... 243

4.5 Implementation of Rendering System Interface 245
4.5.1 Implementation Principles.. 245
4.5.2 Example 1: Startup System... 246
4.5.3 Example 2: Open Scene Model .. 247
4.5.4 Example 3: Do Rendering and Swap Buffer 248

4.6 Render Server and Server Interface .. 250
4.7 Application: the Immersive Presentation System for Urban Planning

.. 251
4.7.1 System Deployment.. 253
4.7.2 Functionality... 254

References.. 256

5 Optimal Representation and Rendering for Large-Scale Terrain......... 257

5.1 Overview .. 258
5.1.1 LOD Model of Terrain.. 258
5.1.2 Out-of-Core Techniques ... 262

5.2 Procedural Terrain Rendering... 263
5.2.1 An Overview of Asymptotic Fractional Brownian Motion Tree
 .. 265
5.2.2 afBm-Tree Construction ... 268
5.2.3 Procedural Terrain Rendering... 270
5.2.4 Application ... 275

5.3 Conclusion.. 277
References.. 277

6 Variational OBB-Tree Approximation for Solid Objects....................... 281

6.1 Related Work .. 282
6.2 The Approximation Problem of an OBB Tree 283
6.3 Solver for OBB Tree... 285

6.3.1 Computation of Outside Volume for Single Bounding Box ... 285
6.3.2 Solver for OBB Tree... 287

6.4 Experiments and Results .. 290
6.5 Conclusion.. 291
References.. 292

Index.. 295

1

Introduction

In this chapter, we are going to introduce the main parts of most rendering engines
and, briefly, their functionality. Fig. 1.1 shows a classical structure of a rendering
engine. In this graph, the rendering engine is composed of offline toolkits and a
runtime support environment. The offline toolkit mainly comprises the tools that
export data from the third party modeling software and the tools which perform
some pre-operations to the Scene Model. These pre-operations include simplification,
visibility pre-computation, lighting pre-computing and data compression. Besides
these tools, the more advanced rendering engine includes some special effects
generators. The main parts supported in Runtime are Scene Model, Scene Model
Management, Scene Graph Traversal and Render. The applications call Scene
Model Management and Scene Graph Traversal to run the rendering engine. In the
following paragraphs, we will give a brief description of the core parts of the
runtime support environment.

Fig. 1.1 The classical structure of a rendering engine

1 Introduction 2

1.1 Scene Graph Management

Inside a rendering engine, the scene model is the digital depiction of the virtual
world in cyberspace. For most rendering engines, the scene model adopts graph
data structures, which is called the scene graph. The scene graph is a directed
acyclic graph, where nodes represent the entities of the virtual world and arcs
represent relations between these entities.

In a scene graph, different kinds of nodes represent different classes of entities.
The two most fundamental nodes are renderable objects and light sources. The
renderable objects represent the objects that can be displayed on the images
produced by rendering engines. The light sources stand for the sources of light,
which describe light intensity, emission fashion, position, direction, etc. Given a
scene graph, the prime function of rendering engines is to use the light sources to
illuminate the renderable objects, and render the renderable objects according to
certain viewing parameters.

Undoubtedly, renderable objects are the most important class of entities. In
object-oriented architecture, the renderable object is a subclass of the base class
entity. To represent various perceptible entities in a virtual world optimally, there
is a variety of subclasses of renderable objects. Although these subclasses of
renderable objects may look quite different, most of them have two parts in
common, geometry and appearance. The geometric part describes the outline,
contour, surface or volume of a renderable object. The number of geometric types
that can be supported is regarded as an index to measure the performance of a
rendering engine. The polygonal mesh or, more precisely, the triangular mesh is
the most widely supported geometric representation for all rendering engines with
a simple structure. The polygonal mesh can be used to represent most geometric
entities and can be easily mapped to graphics hardware. Some more advanced
rendering engines adopt a spline surface as the geometric representation to
describe finer surfaces. The rendering engine aiming at scientific visualization
would support a volumetric dataset. The appearance part describes the optical
characteristics of material that constitutes the surface or volume of a renderable
object. Many visual effects of renderable objects are dependent on it. Since
textures are well supported, on all modern 3D graphics cards the appearance part
often uses multiple textures to record various optical properties on surfaces.

The arcs in a scene graph represent the relations between renderable objects.
Most rendering engines implement the scene graph by tree structures. In a tree,
different types of nodes represent different node relations. The most common
relationship is a grouping relationship and the corresponding node is a group node.
A group node represents a group of entities and the entities inside the group
become the child node of this group node. A grouping relationship is very useful,
for it is used to model the hierarchy of the virtual world. In some rendering
engines, a group node has a transformation field, which depicts a coordinate
transformation for all children in the group’s coordinate frame.

Besides a grouping relationship, there is another kind of important relationship

1.1 Scene Graph Management 3

between nodes—reference. The reference here is similar to the reference in C++.
The goal of adopting a reference here is to improve the reuse efficiency and
decrease the storage size. For example, in order to represent a district with 100
similar houses, a straightforward method is that we first build one mesh to
represent one house and then build the other 99 houses by replicating the mesh
99 times with spatial transformations. This method is very simple. However, it
consumes a great amount of memory by replicating the mesh multiple times. To
solve this problem, most rendering engines adopt a reference, where we first build
a mesh for a house, then build 100 nodes. Each node includes a reference to the
mesh and the related spatial transformation. In this way, we only need to store one
mesh and use references to realize reuse of the meshes multiple times. The
references in different engines are realized in different ways, which can be
achieved by ID, address or handles.

In order to build the spatial relations of the nodes in a scene graph, we need to
build the spatial index to a scene graph. The most often used spatial indices are
BSP tree, quad tree, octree and kd tree. With a spatial index we can quickly
determine the spatial relations between entity and ray / line, entity and entity,
entity and view frustum, including intersection, disjoint or enclosed. With such
accelerations, we can obviously improve the time efficiency of scene graph
operations, such as object selection and collision detection.

Most rendering engines provide one module, a scene graph manager (different
rendering engines may have different names), to help manipulate scene graphs, so
as to create, modify, reference, duplicate, rename, search, delete scene graph
nodes. The functions of a scene graph manager can be roughly classified into the
following categories:

(1) Node lifetime management. This is mainly for creating, duplicating and
deleting nodes.

(2) Node field management. This is to provide get / set functions of nodes’
fields. Furthermore, it provides more complex field updating functions, such as
changing the node’s name, which requires solving the name conflicts problems.
Applying a transformation such as translation, rotation, scale, or their combinations
to nodes is the basic but important function in this category. For some powerful
rendering engines, adding and deleting user-defined fields are supported.

(3) Node relation management. This is mainly for grouping / ungrouping nodes,
referencing / dereferencing nodes, etc., and collapsing nodes.

(4) Spatial index management. This is to construct and update the spatial index
of a scene. Since there are several kinds of spatial index, such as binary partition
tree, kd tree and octree, one rendering engine usually implements one spatial index.
A local update of the spatial index for dynamic scenes is very crucial for a large
scene, for it will save much computational expense.

(5) Query utility. This is for finding nodes by name, type, bounding volume,
intersecting ray or other information.

(6) Loader and serializer. Almost every rendering engine has one module to
load the scene graph from files. It checks the syntax of the contents of files (some
even check the semantics), creates nodes and assembles them to form a scene

1 Introduction 4

graph in the host memory. Most rendering engines tend to define one intrinsic file
format, and provide a plug-in of third-part modeling software, such as 3D Studio
MAX, Maya, to export their own file. Some of them provide tools to convert other
formats into it. Corresponding to the parser module, a rendering engine has a
serialize module, which serializes the whole or part of the scene graph into a
stream.

1.2 Scene Graph Traverse

The rendering engine works in a cycling manner. For each cycle the rendering
engine sets the camera parameters and traverses the scene graph once, during
which time it finishes the rendering for one frame. So we only need to set the
camera parameters according to the walkthrough path to realize the walkthrough
of a scene.

There is one specific module, which we call a traversal manipulator, responsible
for scene graph traversal. The traversal manipulator traverses the scene graph node
by node. Among the operations done to the nodes, the animation controllers are
the most important. They update the states of animated nodes according to the
time.

To represent dynamic objects in a virtual world, such as moving vehicles, light
flicker, a running athlete and so on, some rendering engines provide various
animation controllers, such as a keyframe animation controller, skeletal animation
controller, particles controller, etc. Each animated node could have one or several
controllers attached. In the traverse of a scene graph, the attached controllers are
visited and have the opportunity to execute some codes to make the state of the
object up-to-date.

After the operations on the nodes have been done, the traversal manipulator
determines which nodes need to be rendered and puts these nodes in a rendering
queue. The two most important decisions to made are as follows:

(1) Visibility Culling. By using visibility culling, potentially visible objects are
selected and sent to the primitive render, so as to avoid those definitely invisible
objects consuming rendering resources. Therefore, visibility culling is an important
rendering acceleration technique and is very effective for in-door scenes.

(2) Level-of-detail selection. Level-of-detail technique uses a basic idea to
reduce the rendering computation, so that the objects close to the viewpoint are
rendered finely and the objects far away from the viewpoint are rendered coarsely.
Powered by level-of-detail techniques, one renderable object usually has many
versions, each of which has a different level of detail. During the traverse, for each
renderable object with LOD, an object version with a proper level of detail is
carefully selected according to the distance and viewing direction from the
viewpoint to the object, so that the rendering results of the selected object version
look almost the same as that of the original object.

1.3 Rendering Queue 5

1.3 Rendering Queue

Through the traversal manipulator, the to-be-rendered scene graph nodes are
stored in the rendering queue and delivered to the render module. The render
arranges the nodes in the rendering queue in a proper order, which may be spatial
relations from front to back or from back to front, or material types. Most
rendering engines regard the underline graphic rendering pipeline as a finite state
machine. They arrange the rendering order according to the goal to reduce the
switch times of state machines, which improves the rendering speed with the
precondition of rendering accuracy.

1.4 Rending Modle

After rearranging the order, the render calls a proper rendering process according
to the node types. Generally speaking, there is at least one rendering process for
each renderable object, such as triangle meshes, billboards, curves, indexed face
sets, NURBS and text. The rendering engine uses one module to manage these
rendering processes, which is called a render. The so-called rendering process is
actually a set of algorithms, which break down the rendering for a renderable
object to a series of rendering statements supported by a bottom graphics library
(like OpenGL or Direct3D). A render is not just a simple combination of a set of
rendering processes. It has a basic framework to coordinate, arrange and manage
the rendering queue and rendering processes. In addition, it includes a series of
public rendering utilities, to reduce the difficulty of developing rendering processes
for different nodes. The core parts of the render are:

(1) Texture mapping module. This handles a variety of texture mappings, such
as multi-texturing, mipmapping, bump mapping, displacement mapping, volumetric
texture mapping, procedural texture mapping, etc. Some of the rendering engines
also provide texture compression / decompression, texture packing, texture synthesis
and other advanced texture related functions.

(2) Shading module. This calculates reflected or refracted light on the object
surface covered by a certain material and lit by various light sources, such as
point-like omni-light sources, line-like light sources, spotlight sources, directional
light sources, surface-like light sources, environmental light sources, etc. The
module supports several kinds of illumination models, such as the Phong model,
the Blinn model, the Cook and Torrance model, and so on. Adopting a different
illumination model usually requires a different appearance model. At the runtime
stage, rendering engines only support local illumination, for global illumination
is computationally very expensive to achieve in real-time. To simulate global
illumination, lightmapping is used by many rendering engines. However,
lightmapping is limited to showing diffuse components in static lighting scenarios.
Nowadays, precomputed radiosity transfer techniques provide a new way to show

1 Introduction 6

objects with a complex appearance model in dynamic lighting conditions.
(3) Shadows module. As a shadow is a phenomenon of lighting, shadow

computation rigorously should be a feature of a lighting and shading module.
Nevertheless, if we consider the light source as a viewpoint, the shaded places can
be considered as the places invisible to the light source. Therefore, shadow
computation by nature is a visibility determination problem, which is a global
problem depending on the spatial relations of the entire scene, including
object-object and light-object relations. Due to the complexity of this problem, it
becomes a separate module in most rendering engines.

Besides the above important modules, some rendering engines provide a series
of assistance modules, such as:

(1) Observer controller: To control the observer’s position, direction, field of
view, motion speed / angular speed, motion path and the characteristics of image
sensors.

(2) Special visual effects: To simulate the effects of ground / water explosion,
explosion fragments, flashes from weapon firing, traces of flying missiles, rotation
of airscrew, airflows of rotating wings, smoke and flames, etc.

(3) Display environment configuration: To support the display devices of
CAVE, Powerwall etc. Users can configure the number of displays, their
arrangement styles and the stereo eyes’ distance. This also supports non-linear
distortion correction, cylinder and planar projection display and the edge blending
of multi-displays.

2

Basics of Real-Time Rendering

This chapter is concerned with the basics of real-time rendering, namely the
graphics rendering pipeline, graphics representation and illumination model. The
terms graphics pipeline or rendering pipeline mostly refer to state-of-the-art
methods of rasterization-based rendering, supported by commodity graphics
hardware. Its main function is to synthesize or to render 2D raster images with
given 3D scene information including scene geometry, virtual camera, lights,
material as well as different types of texture, etc.

As depicted in Figs. 2.1 – 2.3, different application systems have different graphics
hardware architecture. For example, inside a modern personal computer, a typical
graphics system includes a CPU, an advanced graphics card with multiple-core
GPU and data communication lines between them. The CPU performs pre-processing
for graphics data and is responsible for user interaction. Then the processed
graphics data are transferred to the main memory and later transferred to the video
memory of the graphics card through the PCI-E Bus. After that, the rendering data
are efficiently processed by the GPU through the pipeline stages. Finally, the
results are outputted from the graphics card and displayed on the user’s screen,
while inside a modern game console including SONY Play Station 3 and Microsoft
XBOX 360, the Power CPU can directly communicate with the GPU without an
additional data bus. Thus the GPU is needed for whatever rendering platform and
the graphics pipeline is adopted by the GPU for rendering.

2.1 Rendering Pipeline

Rendering, described as a pipeline, consists of several consequential stages. This
implies that the speed of the pipeline is determined by its slowest pipeline stage,
no matter how fast the other stages may be. Therefore, it is worth analyzing
typical rendering pipelines to know their performance features.

2 Basics of Real-Time Rendering8

Fig. 2.1 Typical graphics application systems: Modern PC

Fig. 2.2 Typical graphics application systems: SONY Play Station 3

Fig. 2.3 Typical graphics application systems: XBOX 360

2.1 Rendering Pipeline 9

When people discuss a rendering pipeline, they may talk about it on two
different levels. One is on the software API level. For example, OpenGL API and
Direct3D API are two graphics pipeline models accepted as widespread industry
standards. Both APIs only provide logical frameworks of how the 3D scene is to
be rendered. The other level is the real hardware implementation level, i.e., the
actual rendering instructions running on the CPUs and graphics cards. The API
level, which defines simple but clear standard rendering models, is easy to understand
for the end user. However, as real-time rendering is always a time critical task, a
different hardware vendor may provide different solutions and strategies to fully
use the horsepower of electronic computing units. This leads to the fact that on
the hardware level, the details of a rendering pipeline are always different from
what was explained on the API level. Due to this phenomenon, in the following
discussions we focus on the logical framework of a rendering pipeline.

2.1.1 Conceptual Rendering Phases

From the viewpoint of graphics architecture, a typical rendering pipeline is divided
into three conceptual phases, which are user input, geometry processing and scan
conversion phases, and which are presented by Akenine-Möller T et al. (Akenine-
Möller et al., 2008). Moreover, each of these phases consists of several sub-stages.
This structure is the core architecture of a real-time rendering engine. Note that,
according to the above discussion, in real applications it is unnecessary to have
one-to-one correspondence between conceptual rendering stages and functional
implementation steps. A typical OpenGL rendering pipeline and corresponding
phases are illustrated in Fig. 2.4.

Fig. 2.4 Typical OpenGL rendering pipeline

In the user input phase, the developers are allowed to fully control what the
software executes. During this phase, the geometry primitives to be rendered, i.e.,

2 Basics of Real-Time Rendering10

points, lines and triangles, are fed to the next phase in the rendering pipeline. This
is the central task of this phase. The developer can process the data to be fed into
the pipeline to improve the rendering performance, like simplifying data or
building the hierarchical scene structure. This phase is application-based, where
the developer needs to write specific codes to determine the operation while, in the
other two phases, the graphic operations are directly implemented on the graphics
hardware. With a fixed rendering pipeline, the user cannot control the rendering
process in these two stages, providing rendering parameters instead. With a
programmable rendering pipeline supported by an advanced GPU, users have
more and more flexibility to control the operations inside these two stages, so as to
compute the desired effects.

In the geometry processing phase, per-primitive operations, mainly coordinate
transformations and per-vertex shading, are performed to map 3D information into
2D screen-based representation. It is worth noting that the geometry phase is a
stage with dense computing. With merely a single light source, each vertex may
require approximately 100 single float point operations.

In the scan conversion phase, correct color values are computed for each pixel
in the raster image with the input of transformed and projected vertices, colors and
texture coordinates from the previous phase. During this phase, 2D vertices, lines
and polygons are scanned line by line in the screen space with associated
depth-values, colors and texture coordinates, and are converted into pixels on the
screen. Unlike the previous phase, which handles per-primitive operations, the
scan conversion phase handles per-pixel operations. The information for each
pixel is stored in the frame buffer, which is a rectangular array of colors (with four
components including red, green, blue and alpha). Hence, this process is also
known as rasterization. For high-performance graphics, it is critical for the
rasterization stage to be implemented in the hardware.

2.1.2 Programmable Rendering Pipeline

Modern graphics hardware provides developers an additional ability to control
the rendering pipeline using the power of the graphics processing unit (GPU).
Namely, the aforementioned three rendering phases can be customized by the
programmable features of a GPU. It is clear that the user input phase is already
fully programmable even in a conventional graphics system. Therefore, what
GPU techniques tend to do is to provide customizable per-primitive and per-pixel
operations in the latter two phases, respectively. This reflects the techniques of
vertex shader and fragment (also called pixel) shader.

A vertex shader is a graphics processing function used to customize special
effects in a 3D virtual scene by performing mathematical operations on the vertex
data of those 3D objects. Each vertex maintains a variety of geometrical and
shading information. For example, a vertex is always defined by its location in 3D

2.1 Rendering Pipeline 11

coordinates, and may also be defined by colors, surface orientations, textures
coordinates and lighting characteristics. Vertex shaders cannot actually change the
type of data; they simply change the values of the data, so that a vertex emerges
with a different color, different textures, or a different position in space.

Pixel shaders give developers the ability to calculate effects on a per-pixel
basis. We can use fragment shaders to create materials and surfaces with high
reality. With pixel shaders, the artificial, computerized look of conventional
hardware accelerated rendering is replaced by highly realistic surfaces.

To provide more flexible rendering pipelines, geometry shaders are introduced
with Shader Model 4.0 of DirectX 10. A geometry shader is a shader program
model that can generate new graphics primitives, such as points, lines and
triangles, from those primitives sent to the beginning of the rendering pipeline.
Now this feature is supported in DirectX 10 and in OpenGL through an extension.
Recently, main-stream graphics hardware from nVidia, AMD(ATI) and Intel,
such as nVidia GTX 285 and AMD/ATI HD 4870, provides hardware support for
geometry shaders.

Geometry shader programs are executed after vertex shaders. They take as
input the primitives as a whole, possibly with adjacency information. For example,
when operating on triangles, the three vertices are the geometry shader’s input.
The shader produces zero or more primitives, which are rasterized to fragments.
The fragments are ultimately passed to a pixel shader. Typical uses of geometry
shaders include point sprite generation, geometry tessellation, shadow volume
extrusion and single pass rendering to a cube map.

2.1.3 Geometry Transforms

A geometry transform is a basic tool for manipulating geometry, and plays an
important role in real-time rendering. In a virtual world, 3D objects or models are
rendered on a 2D screen to be observed by users with a virtual camera. Originally,
a model is represented in its own model space. The related coordinates of an
object are called model coordinates. This means that the model has not been
transformed at all. To be displayed on the screen, a model with its vertices and
normals needs to be transformed into a unique global coordinates system or a
global space. This space is also called a world space. As there are at least two
different types of coordinate systems of one model, model transforms are
introduced to unify the representation. After the models have been transformed
with their respective model transforms, all models are transformed from the model
space to the unique global space. Therefore, all models are represented in the same
coordinate system after model transforms.

Virtual cameras are deposited in global space with specific viewing directions.
To facilitate projection and clipping, a virtual camera and all the models are
transformed with the view transform. In general, after the view transform, the

2 Basics of Real-Time Rendering12

virtual camera is placed at the origin and aimed at the negative z-axis, with the
y-axis pointing upwards and the x-axis pointing to the right. But it is worth noting
that a different Application Program Interface (API) may provide different results
for the actual position and orientation after the view transform.

The model transform and the view transform are both implemented as 4×4
matrices. And a homogeneous coordinate is used to denote points and vectors for
representation consistency and convenience. According to such notation, a vector
is represented as v = (vx, vy, vz, 0)T and a point as p = (px, py, pz, 1)T. Therefore,
performing a general 3D geometrical transform M on a point p under homogeneous
representation can be computed by linear operation as p = Mv.

For generating complex space transformations, a general solution is to
combine several elementary transformations by multiplying the corresponding
matrices together. Therefore, in most cases, only several basic transforms need to
be considered in a rendering system, which are translation, rotation, scaling,
reflection and shearing. The choice of representations is dependent on API support.
Moreover, it is worth noting that it is not necessary to represent the transform in
matrix form. In fact, rotation matrices can be converted into quaternion representation,
which is a powerful tool of rotation representation.

Geometrical transforms require a lot of computation in a graphics pipeline.
Therefore, in modern graphics pipelines, most geometric transforms are implemented
in graphics hardware.

2.2 Shading

The goal of rendering is to create images that accurately represent the shape and
appearance of objects in scenes. Once the geometry and visual information are
given, shading is performed for the rendering purpose. Shading is the process of
performing lighting computations and determining colors for each pixel. In this
section, we present the concepts and definitions required to formulate the problem
that the shading algorithm must solve.

2.2.1 Rendering Equation

The distribution of light energy in a scene can be mathematically formulated as the
rendering equation. For simplicity, and not involving too many details, we assume
that light propagates in the scene instantaneously and there is no participating
media, subscattering surface and reradiation material in the scene, hence the
exitant light of surface point x is from, and only from, the one shooting at it.

The radiance transported from a surface point x comes from two kinds of
sources. One is the radiance emitted by the surface point x and the other is the

2.2 Shading 13

radiance that is reflected by the surface at x. Let us use the most commonly used
formulation of a rendering equation, hemispherical formulation, to explain how
light is transported in the scene. Let us assume that Le(x, ωo) represents the
radiance emitted in the outgoing direction ωo, and Lr(x, ωo) represents the reflected
radiance in that direction ωo. The reflected radiance Lr(x, ωo) is determined by
three factors, the incident radiance, the material property of the surface and the
normal of point x, and expressed as

iixioixor
x

LfL ωωNωωωxωx d),cos()(),,(),(
∫ Ω

= (2.1)

where fx(x, ωi, ωo) is the BRDF function and L(ωi) is the incident light along the
direction ωi and cos(Nx, ωi) is the cosine term of incident light and the normal of
point x.

The total outgoing radiance at surface point x, viewed from a certain outgoing
direction, is the integration of the emitted radiance and the radiance reflected at
that point in that direction. The outgoing radiance Lo(x, ωo) can be represented as
follows:

),(),(),(oroeoo LLL ωxωxωx += (2.2)

Combining these equations we have

iixioixoeoo
x

NLfLL ωωωωωxωxωx d),cos()(),,(),(),(
∫ Ω

+= (2.3)

Furthermore, we can separate out the direct and indirect illumination terms
from the rendering equation. Direct illumination is the illumination directly from
the light sources; indirect illumination is the light after bouncing, among in the
scene. Hence, the rendering equation is then formulated as:

indirectdirectd),cos()(),,(),(LLLfL iixioixor
x

+==
∫ Ω

ωωNωωωxωx (2.4)

iixiioix
x

VLfL ωωNωωωωx d),cos()()(),,(direct ∫ Ω
= (2.5)

iixioix
x

LfL ωωNωωωx d),cos()(),,(indirect ∫ Ω
= (2.6)

where V(ωi) is the visibility function specifying the visibility along direction ωi
and is defined as follows:

⎩

⎨

⎧

=
 visible.NOTisif0

 visible,isif1
)(

i

i
iV

ω

ω

ω (2.7)

2 Basics of Real-Time Rendering14

Thus, the direct illumination is contributed to by all the emitted radiance visible to
the point x along direction ωi. The indirect illumination is the reflected radiance
from all visible points over the hemisphere at point x.

2.2.2 Lighting

Light is the product that comes from sources that allow us to see things. In physics,
light is electromagnetic radiation but, formally, only visible electromagnetic
radiation (wavelength band between 380 nm and 780 nm) is considered as light.
Light is variously modeled as quantum, wave or geometric optics. In computer
graphics, the most commonly used model of light is the geometric optics model.
In this model, the wavelength of light is assumed to be much smaller than the
scale of the objects lightened up and the light is treated as traveling along straight
paths and traversing instantaneously in the scene.

Besides physical translation, the amount of illumination the light emits,
reflects and refracts also needs to be specified. Scientists use radiometry to
measure the light. The fundamental radiometric quantity is radiant power, also
called flux, and denoted as Ф in watts (W). Such a quantity expresses how much
total energy flows from/to/through a surface per unit time. Several concepts are
widely used in rendering. Irradiance (E) is the incident radiant power on a surface,
per unit surface area (W/m2). Radiant Exitance or Radiosity is the exitant radiant
power per unit surface area and is also expressed in W/m2. Radiance is flux per
unit projected area per unit solid angle, which expresses how much power arrives
at (or leaves from) a certain point on a surface, per unit solid angle and per unit
projected area.

Our eyes are sensitive to light in the 380 nm and 780 nm wavelength band.
However, wavelengths in this visible range are not equally sensed by our eyes.
Several scientific underpinnings have been developed to understand the light and
the percepived color. Radiometry deals with physical quantities, Photometry
explores the sensitivity of human eyes to light and Colorimetry weighs the
variations in the spectral distribution of light. The sensitivity of human eyes is
given by the so-called luminous efficiency function, which is a bell-shaped
function peaking at 550 nm. The convolution of the luminous efficiency function
with light is defined as luminance. Luminance is a measure of the light energy, but
the eyes are not linearly sensitive to luminance. The perceptional response of a
human to light is called brightness. The brightness function of luminance can be
roughly depicted by a log or cube root function. Our perception of colors is not
equal to all variations in the spectral distribution of light. A commonly used model
of our visual system is with three sensors: one signal deals with the quantity of
light at shorter wavelengths, one in the mid-range and one at the longer
wavelengths. This means that all the colors we perceive can be represented by a
vector of three values. It is main because there are three cones in our eyes. The
International Commission on Illumination (CIE) developed a set of standard

2.2 Shading 15

experiments to measure the three basis functions of light, which are referred to as
X, Y and Z. These basis functions are not the sensitivities of the eyes, but any two
spectra that map to the same values of X, Y and Z will be sensed as the same color
by our eyes. Though the CIE XYS system is useful for a précis description of light,
there are limitations in rendering systems, as the X, Y and Z functions are not
non-negative. Current color displays, such as color monitors, color projectors etc.,
work by emitting light from red, green and blue elements. To display a color, the
relative intensities of the red, blue and green elements are adjusted so that their
sum matches the color to be displayed. The conversion from XYZ to RGB light
space is linear and can be done with a linear transform. In the rendering system,
the RGB light space is the most widely used light system.

The computation of a rendering system requires the specification of three
distributions for each light source: spatial, directional and spectral intensity
distribution. Directional light is an ideal light source to be positioned infinitely far
away from the objects that are being lit. For example, such light can be used to
simulate the sun. In contrast, point lights are defined by their position and intensity.
According to different values of intensity depending on the directions, point lights
are usually categorized as omni-lights that have a constant intensity value or
spotlights that have a directional variance of intensity. More realistically, light can
be modeled as area lights that are emitted not only from a point but from a region.
Recently, the lights captured from the real world are incorporated more and more
in the rendering. The environment lighting/map/image is an omnidirectional, high
dynamic range image that records the incident illumination conditions at a
particular point in space. Such images were used to illuminate synthetic objects
with measurements of real light, and later to illuminate real-world people and
objects. For more details on capture, evaluation and applications of environment
lighting, please refer to (Debevec, 2008). The environment images have since
become a widely used tool for realistic lighting in rendering systems.

2.2.3 BRDF

When the three-dimensional models are to be rendered, the models should not
only have proper geometrical shapes, but also have desired shading colors. Object
materials interact with light in different ways and determines how the incident
light is redirected from object’s surface. The interaction of light and surfaces is
quite complex. People use the bidirectional surface reflectance distribution
function (BRDF) (Nicodemus et al., 1992) to define the relation between incident
and reflected radiance at the same point. The BRDF at a point x is defined as the
ratio of the differential outgoing radiance and differential irradiance:

iixi

o

i

o
oix L

L
E
Lf

ωωNω

ω

ω

ω

ωωx
d),cos()(

)(d
)(d
)(d),,(== (2.8)

2 Basics of Real-Time Rendering16

where the terminology is consistent with Eq. (2.1).
Over the past thirty years, many empirical and analytical BRDF models

have been developed. Empirical models do not attempt to simulate reflection or
scattering in detail from the basic laws of physics. They use a set of mathematical
functions that are manipulated by some parameters. Analytical models derive
functions with a detailed level of modeling of the surface and physics of light
transport rather than try to capture the behavior of a surface as a black box. Here
we briefly introduce some BRDF models.

Lambertian Reflectance, or “ideal diffuse”, means that an object is totally
matte without any shininess and is in a sense the opposite of specular reflection.
The diffuse reflectance coefficient is determined by the cosine of the angle
between the surface normal and the light direction vector.

Phong Reflectance is presented in a classic paper (Phong, 1975). The model is
given in terms of the angle θs between the view direction ωo and the direction of
mirror reflection ωi' (ωi' is the mirror direction of ωi with the normal). It is
typically expressed as

s
p

s
d

oi kkf θcos
π

),,(Phong +=ωωx (2.9)

where kd is the diffuse coefficient and ks is the specular coefficient.
Ward Reflectance (Ward, 1992) is similar to the Phong model, except that it

uses a power exponential function intead of the cosine term. The exponential
term is parameterized by an average slope of the microfacet roughness. It is given
by

2

/tan

Ward
π4

e
coscos

1
π

),,(
22

αθθ

αθh

oi
s

d
oi kkf

−
+=ωωx (2.10)

where α denotes the standard deviation of the slope, θr is the angle between the
incident light and the normal and θh is the half angle of view direction ωo and
incident light direction ωi. A normalized form is further developed by Duer (Duer,
2005) by replacing oi θθ coscos by oi θθ coscos .

Lafortune Reflectance (Lafortune et al., 1997) is an another generalization of
the Phong model that rather than depicting peaks of reflection around the specular
direction, it defines lobes around any axis. It can be expressed as

n
zxy

p
zzzyyxxxys

d
oi

CC
nCCk

k
f

)],π[max(2
2])([

π

),,(Lafortune
+⋅+++= vuvuvuωωx (2.11)

where u and v are vectors of the incident light ωi' and reflect light ωi' represented
in the local coordinate where the surface normal is as the z axis, Cxy and Cz are
coefficients determining the direction and proportions of the lobe, p depicts the

2.2 Shading 17

sharpness of the lobes and the last term is added to provide an approximate
normalization.

Ashikhmin-Shirley Reflectance (Ashikhmin and Shirley, 2000) extends the
Phong model from isotropic to anisotropic and adds an explicit term for Fresnel
reflectance that is computed with Schlick’s approximation. The model is

),,(),,(),,(Shirley-Ashikhmin oidoisoi fff ωωxωωxωωx += (2.12)

)(cos
)cos,max(coscos

)(cos
π8

)1()1(
),,(

22 sincos

h
oih

pp
hvu

ois F
pp

f
hvhu

θ
θθθ

θ φφ ++++
=ωωx (2.13)

))
2

cos1(1)()
2

cos1(1)(1(
π23

28),,(55 ii
s

d
oid RRf θθ −−−−−=ωωx (2.14)

5)cos1)(1()(cos hssh RRF θθ −−+= (2.15)

where pu and pv are two coefficients to depict the shape of the lobe in the
directions of two tangent vectors on the surface that are perpendicular to the
surface normal. Rs and Rd are parameters to specify the fractions of incident light
reflected specularly and diffusely.

Cook-Torrance Reflectance (Cook and Torrance, 1982) is a BRDF model
based on microfacet assumption and geometric optics derivation. The model is
given as

oi

oihh
oi

GDFf
θθ
θθθθ

coscosπ

),()()(),,(Torrance-Cook =ωωx (2.16)

αθ

θα
θ /tan

42

2
e

cos
1)(h

h
hD −= (2.17)

)
cos

coscos2
,

cos
coscos2

,1min(),(
oh

ih

oh

oh
oiG

θ
θθ

θ
θθθθ = (2.18)

where F is the Fresnel function, D is the facet distribution model and G is the
shadow function, θoh is the angle between the halfway direction and the direction
of the viewer.

2.2.4 Light Transport

Based on the rendering equation, when dealing with simple lighting, such as point
light and directional light, the integration can be evaluated efficiently, since only a
single direction needs to be sampled. As the lighting becomes more complex,
on-the-fly integration becomes intractable. On the other hand, complex lighting
such as large area light sources are very important for realistic image synthesis,

2 Basics of Real-Time Rendering18

because they can produce more natural shadows and shadings than the ideal point
or directional light source.

For complex lighting, such as environment lighting, new techniques based on
the linearity of the light transport have been developed to accelerate the computation
of the rendering equation. The linearity of the light transport says that the output
radiance is a linear transformation of the input radiance. More precisely, if we
represent the input radiance, or the light source, with a vector a, each component
encodes the exit radiance in a given position in the scene, targeting a given
direction. And similarly, we use a vector L to represent the output radiance, which
is the result we are seeking. Then we have:

MaL = (2.19)

where M is a matrix that transfers the input radiance to the output radiance. The
equation can be directly derived from the rendering equation, and M is determined
by the geometry and reflectance properties of the objects in the scene. Note that
the relationship still holds, even if a more complex type of light transport, such as
interaction with participating media, exists in the scene.

Based on the BRDF representation, the radiance transfer M is usually
computed into diffuse radiance transfer and glossy radiance transfer separately. If
the surface is diffuse, then the exit radiance of x can be represented by a scalar,
(Lo)x. A transfer vector Mx can be used to encapsulate the linear transformation on
the incident lighting vector, producing the scalar exit radiance via

LML xxo =)((2.20)

Mx is the row of the transfer matrix M that corresponds to x, with its component
representing the linear influence that a lighting basis function yi (ω) has on shading
at p. Glossy transfer can be defined in a similar way to diffuse transfer. First of all,
we need a model for the glossy reflection. The simplest one is a Phong-like model,
which models the reflection by a view dependent kernel G(ω,R,r). The distribution
of the reflected radiance is assumed to be symmetric about the reflection direction,
and the parameter r defines the “glossiness” of the specular response. It is more
convenient to think of the final shading as a convolution of the transferred incident
radiance L' and the kernel G(ω,(0,0,1),r), evaluated at R. Note that L' is the
projection of the basis function instead of a single scalar in the diffuse case, and
the transfer becomes

LML xp' = (2.21)

)())),1,0,0(,(()(RyLsL ⋅⊗= xxo 'rG (2.22)

Mx is the transfer matrix that transfers the global incident radiance to the local
coordinate frame defined at x, with its component (Mx)ij representing the linear
influence that a lighting basis function yj(ω) has on the i-th coefficient of the exit

