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1.  Introduction 

The term ‘space weather’ came into being about 25−30 years ago to denote, by analogy 
with ‘meteorological weather’, a complex process of space phenomena and processes af-
fected by varying sun activity. In its broad sense, the term refers to entire an heliosphere 
whose limits are determined by expanding fluxes of solar plasma. In its narrow, usual 
sense, the term applies to the Earth environment and, to be more exact, to the space sub-
jected to geomagnetic field influence, i.e. to the Earth’s magnetosphere.

The concept of bad (disturbed) space weather covers a wide range of phenomena direct-
ly affecting human activity. They include satellite damage, radiation hazards for astronauts 
and airline passengers, telecommunication problems, outages of power and electronic sys-
tems, effects in the atmospheric processes, and even some evidence of impact on human 
health. These issues, as well as a description of some main physics processes that provide a 
basis of the above phenomena are well presented in the book Space Weather: Physics and 
Effects by Bothimer and Daglis (2007). Results highlighted in the book demonstrate the 
vital necessity of space weather forecasting and nowcasting. Prediction of space weather 
is based on continuous ground-based or space missions-based visual and instrumental ob-
servations of processes on the solar disc, primarily Coronal Mass Ejections (CME), that 
provide information on probable space weather disturbances 1−3 days in advance. Space 
weather nowcasting is based mainly on measurements of solar wind parameters − wind 
speed and IMF B

Z
 component being the most important of them − at the Lagrange point 

L1, that provide information on predictable space weather changes about one hour in ad-
vance. Unfortunately, specific features of solar wind impact on the Earths’s magnetosphere 
imperfectly and so never conform to solar wind features detected at point L1, except inter-
planetary shocks producing powerful magnetic disturbances. 

Taking into account extremely vague ideas on the physical mechanisms of the solar 
wind–magnetosphere coupling and a lack of regular information on the magnetopause pa-
rameters in their relation to the solar wind impact, it would be very important to derive an 
adequate indicator displaying the coupling efficiency, using regular observations within the 
magnetosphere. It is becoming obvious right away that satellites moving in space cannot 
provide timely data on plasma and magnetic fields at the required points of the magneto-
sphere; in addition, there is always a problem of separation of temporal and spatial varia-

O. Troshichev and A. Janzhura, Space Weather Monitoring by Ground-Based Means: PC index,  
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tions in spacecraft device readings. It implies that a ground network of observations must 
form the basis for a derivation of a coupling efficiency indicator with reference to satellite-
based measurements to testify and verify the indicator.

Indeed, ground-based indices such as Kp, AE and Dst (we shall not mention other less 
popular ones), are commonly considered as indicators displaying the power of disturbances 
in the magnetosphere and, therefore, the current state of space weather. However, all these 
indices characterize the energy realized in the form of magnetospheric disturbances but 
not the energy coming into the magnetosphere, or that stored in the magnetosphere, while 
coupling the solar wind with the magnetosphere. Indeed, the AE index, which is regarded 
as a characteristic of a magnetospheric substorm, is a measure of electrojet intensity in the 
auroral zone; the Dst index, regarded as a characteristic of global magnetospheric storms, 
is a measure of magnetic depression in the H component in the equatorial zone; and the 
physical meaning of the Kp index is not clear at all. So all these indices do not display a 
solar wind energy input into the magnetosphere, and therefore cannot be regarded as an in-
dicator of the efficiency of solar wind–magnetosphere coupling. Only coupling efficiency 
monitoring is important for reliable space weather nowcasting. 

This monograph is devoted to the PC index which was put into practice about 30 years 
ago as an index of polar cap magnetic activity. Some recent studies have showed that the 
implications of a PC index seem to be far more significant: the index can be considered 
as an adequate proxy of solar wind energy incoming into the magnetosphere, and a basic 
procedure for PC index calculation has been developed to provide uninterrupted on-line 
PC index derivation. These circumstances make it possible to examine the PC index as 
the most proper applicant to monitor the geoefficiency of the solar wind–magnetosphere 
coupling, and therefore to monitor (and nowcast) space weather changes.

The following issues are discussed in the book:

• PC index concept;

• PC index derivation procedure and its verification;

• PC index response to solar wind parameters changes;

• PC index relation to magnetospheric substorms and magnetic storms;

• PC index saturation and solar wind–magnetosphere coupling functions, physical sense 
of occasional discrepancies between summer and winter indices;

• PC index as an indicator of an auroral ionosphere state and anomalous atmospheric 
processes in Antarctica; and 

• physical meanings of some peculiarities in PC index behavior 

1.1  Reference

Bothimer V, Daglis IA (2007) Space weather: physics and effects. Chichester: Springer 
Praxis 
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2.  Physical background (historical outline)  

2.1  Polar geomagnetic disturbances influenced by solar wind 

The first examinations of the relations between solar wind variations and geomagnetic ac-
tivity, represented by the Kp index, displayed the dependence of the Kp value on the solar 
wind speed v and the interplanetary magnetic field (IMF) intensity B (Coleman et al., 1961; 
Snyder et al., 1963). Later, it was found that magnetic activity is much better determined by 
the IMF southward (B

ZS
) component (Fairfield and Cahill, 1966; Wilcox et al., 1967; Ros-

toker and Fälthammar, 1967), or by the IMF transverse fluctuations (δB
T
)2=(δB

Z
)2+(δB

Y
)2 

(Baliff et al., 1967). The dependence of the auroral AE index on southward IMF was shown 
by Pudovkin et al. (1970), Arnoldy (1971), Foster et al. (1971), Kokubun (1972) and Meng 
et al. (1973). It was found that magnetic activity in the auroral zone starts to increase about 
15−30 minutes after the IMF turns south, and the correlation between B

Z
 and AE variations 

is maximal for the delay time ~ 40 minutes. As analyzes (Kokubun, 1972; Kane, 1974) 
showed, geomagnetic storms are also affected by the IMF southward component, but they 
develop only if the magnetosphere is exposed to the southward IMF for some hours. Ac-
cording to Hirshberg and Colburn (1969) and Russel et al. (1974), Dst variation develops 
when the value of southward IMF exceeds the threshold level of −(3–5) nT. The correlation 
of the AE index with the solar wind fluctuations distinctly increases if the product of the so-
lar wind speed and southward IMF is taken into account (Rostoker and Fälthammar, 1967; 
Garrett et al., 1974; Murayama and Hakamada, 1975). The conclusion made by Rostoker 
and Fälthammar (1967) is that the interplanetary electric field E=[vB

ZS
] plays a crucial part 

in geomagnetic disturbances. 
The actual distribution of magnetic disturbances at ground level is commonly described 

by systems of equivalent currents being hypothetic currents, providing the observed mag-
netic effect on the ground surface. Nagata and Kokubun (1962) were the first to examine 
under the name of S

p
q a current system of high-latitude magnetic variations observed within 

the polar cap in periods free of magnetic disturbances. Next, Obayashi (1967) separated a 
special class of magnetic disturbances (DP2) from magnetic substorms (DP1): the DP2 cur-
rent system consists of two vortices without any peculiarities in the auroral zone and with 
currents flowing sunward in the near-pole region. DP2 variations were extensively studied 
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by Nishida, who revealed their close relation to southward IMF (Nishida, 1968a,b; Nishida 
and Maezawa, 1971). According to Nishida (1968a), a DP2 currents system is a global 
system expanding from pole to equator, with focuses located at the latitudes of Φ=72−74°. 
Further studies (Troshichev, 1975) showed that a two-vortices DP2 current system is termi-
nated by the latitudes of Φ=50–60°, the disturbances at the lower latitudes of Φ < 50° be-
ing produced by equivalent zonal currents of the extra-ionospheric origin. Current vortices 
focuses in system (Troshichev, 1975) turned out to be located at the morning and evening 
poleward boundaries of the auroral oval (Φ=76–78°). This peculiarity made it possible to 
further identify the current vortices focuses with disposition of the magnetospheric field-
aligned currents flowing in and out of the polar ionosphere. Kuznetsov and Troshichev 
(1977) also noted that variations similar to DP2 are observed in the absence of southward 
IMF. This fact has been attributed to the permanent availability of the geomagnetic varia-
tion of (S

p
q) type (Nagata and Kokubun, 1962). Similar permanent disturbances were also 

separated by Mishin et al. (1978) and Levitin et al. (1982). To explain generation of these 
weak disturbances, a mechanism of quasi-viscous interaction between the solar wind and 
the magnetosphere (Axford, 1964) was accepted.

Besides the DP2 currents affected by southward IMF, some other types of disturbances 
are also typical of the polar caps. An abnormal ‘near-pole DP variation’ with direction of 
currents opposite to that in DP2 was separated by Iwasaki (1971) in the dayside summer 
polar cap. It was shown by Maezawa (1976) and Kuznetsov and Troshichev (1977) that 
these disturbances (named as DP3 by Kuznetsov and Troshichev (1977)) are observed 
when northward IMF impacts on the magnetosphere, and their current system consists of 
two less-scale current cells centered at latitudes of φ ~82º with the current flow opposite 
to that in DP2. 

Disturbances related to azimuthal IMF component were first separated as an effect of 
the IMF sector structure (Svalgaard, 1968; Mansurov, 1969). Later, their dependence on 
azimuthal IMF component was demonstrated (Friis-Christensen et al., 1972; Sumaruk and 
Feldstein, 1973; Mishin et al., 1973). The current system of these disturbances, named as 
BY or as DP4 (Kuznetsov and Troshichev, 1977), includes currents flowing along geo-
magnetic latitudes with maximal intensity in the daytime cusp region (Φ ~ 80°), the cur-
rent direction being dependent on the sign of the IMF azimuthal component. The actual 
interplanetary magnetic field usually contains both vertical and azimuthal components, and 
the ground magnetic disturbances display the combined effect of DP2+DP4 or DP3+DP4 
current systems. In these conditions, the influence of the azimuthal IMF component reveals 
itself in the deformation of the DP2 (or DP3) current systems: in the northern polar cap, the 
evening DP2 current vortex expands into the dawn sector under conditions of B

Y 
> 0, and 

the morning vortex expands into the dusk sector under conditions of B
Y 
< 0 (Matsushita et 

al., 1973). 
The multi-functional analysis of relationships between the IMF and geomagnetic com-

ponents has been fulfilled by Troshichev and Tsyganenko (1979) to separate effects of the 
IMF B

X
, B

Y
, B

Z
 components in the case of their combined influence. Results of this analysis 

(presented in Figure 2.1) demonstrate, as in previous studies, availability of the DP2, DP3 
and DP4 current systems associated with the action of southward, northward and azimuthal 
IMF components respectively. DP2 currents are shown in Figure 2.1 for two different IMF 
B

ZS
 values: B

Z
=−1nT (left) and B

Z
=−0.25nT (right). DP4 currents are shown for B

Y 
> 0 in 
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the northern hemisphere. The current flow in DP4 system is quite opposite in the southern 
polar cap. 

In addition, the residual magnetic disturbance DP0 unrelated to the IMF has been sepa-
rated in line with the conclusion made by Kuznetsov and Troshichev (1977). The DP0 
current system shown in Figure 2.2 for conditions of (a) northward and (b) southward IMF 
component is similar to the DP2 system, but exists permanently irrespective of the IMF 
polarity. Therefore, under the influence of southward IMF, the DP2 currents can be consid-
ered as an enhancement of currents in the constantly existing DP0 system. Later, Sergeev 
and Kuznetsov (1981) showed that intensity of the DP0 currents well correlates with the 
solar wind velocity v in the second power and, therefore, can be associated with the solar 
wind dynamic pressure. 

Figure 2.1 Current systems of DP2, DP3 and DP4 disturbances generated by variations of IMF 
components: (a) southward B

ZS
=−1nT, (b) southward B

ZS
=−0.25nT, (c) northward B

ZN
, (d) azimuthal 

B
Y
 (Kuznetsov and Troshichev, 1977). Short arrows present distribution of the magnetic disturbance 

vectors on the ground surface.
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