SPACE WEATHER MONITORING BY GROUND-BASED MEANS PC index

Oleg Troshichev & Alexander Janzhura

Space Weather Monitoring by Ground-Based Means PC index

Space Weather Monitoring by Ground-Based Means

PC index

Published in association with Praxis Publishing Chichester, UK

Professor Oleg Troshichev Arctic and Antarctic Research Institute St. Petersburg Russia Dr Alexander Janzhura Arctic and Antarctic Research Institute St. Petersburg Russia

SPRINGER-PRAXIS BOOKS IN ENVIRONMENTAL SCIENCES

ISBN 978-3-642-16802-4 e-ISBN 978-3-642-16803-1 DOI 10.1007/978-3-642-16803-1 Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011933665

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright, All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse off illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc.in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use

Cover design: Jim Wilkie Project copy editor: Rachael Wilkie Typesetting: David Peduzzi

Printed on acid-free paper

Springer is a part of Springer Science+Business Media (www.springer.com)

Contents

Lis	t of fig	ures x
Lis	t of tal	oles xviii
Lis	t of ab	breviations and acronyms xix
Ab	out the	authors xxiii
1	Intro	duction
	1.1 R	eference 2
2	Phys	ical background (historical outline)
	2.1	Polar geomagnetic disturbances influenced by solar wind
	2.2	Structure of electric fields in polar ionosphere
	2.3	Magnetospheric field-aligned currents
	2.4	Relation of field-aligned currents to aurora and particle precipitation 10
	2.5	Model computations of field-aligned currents and ionospheric electric
		field and currents
	2.6	Approaches to the idea of PC index
		2.6.1 <i>PC</i> , index
		2.6.2 <i>MAGPC</i> index
	2.7	Summary
	2.8	References
3	A me	thod for the PC index determination
	3.1	Coefficients determining relationship between coupling function and
		magnetic activity
		3.1.1 Level of reference for magnetic disturbance value δF
		3.1.2 Direction of disturbance vectors and link between the δF and $E_{\mu r}$
		values

	3.2	Calculation of the PC index	29
	3.3	Interference of DP3 and DP4 disturbances	30
	3.4	Verification of the derived PC indices	33
	3.5	Physical meaning of the PC index	36
	3.6	Summary	38
	3.7	References	39
4	Speci	ial features of procedure for on-line <i>PC</i> index derivation	41
	4.1	A need in producing 1-min PC index	41
	4.2	Postulates used as a basis for the on-line PC index derivation	42
	4.3	Derivation of quiet daily curve (QDC)	44
		4.3.1 Methods used to determine a level of reference and their inadequacy	44
		4.3.2 Parameterization of geomagnetic variations for distinguishing queeriods	uiet 46
		4.3.3 A procedure for calculating a daily quiet curve (ODC)	40
		4.3.4 Interpolation of a ODC for each day	40 48
		4.3.5 Extrapolation of a ODC for subsequent days	40
		4.3.6 Validity of the ODC derivation method	51
	44	Allowance for IMF sector structure	55
		4.4.1 Necessity of SS evaluation for ODC derivation	50
		4.4.2 Separation of the sector structure effect in long series of	50
		observational data	58
		4 4 3 On-line identification of the SS effect by ground magnetic data	61
	45	Invariability of parameters α β and ϕ in a solar activity cycle	66
		4.5.1 The role of ODC in determination of parameters ϕ , α and β	66
		4.5.2 Comparison of parameters α , β and ϕ calculated for solar maxim	num
		and minimum epochs.	
	4.6	Summary	
	4.7	References	75
5	Solar	wind–magnetosphere–ionosphere coupling and the <i>PC</i> index	77
	5.1	Concepts of solar wind-magnetosphere coupling	77
		5.1.1 Dungey's concept of reconnection	77
		5.1.2 Concept of 'viscous-like' interaction	80
		5.1.3 Concept of magnetospheric plasma gradients as a driver for field-aligned currents	80
	5.2	Solar wind-magnetosphere-ionosphere coupling and field-aligned	
		currents	83
	5.3	Solar wind-magnetosphere coupling functions	85
	5.4	Saturation of cross-polar cap potential	87
	5.5	<i>PC</i> index saturation	90
	5.6	Summary	93
	5.7	References	94

6	PC ir	ndex response to solar wind geoeffective variations	103
	6.1	PC index timing vs. interplanetary electric field variations	103
	6.2	Solar wind dynamic pressure variations	104
		6.2.1 Solar wind dynamic pressure impact on magnetospheric	
		processes	104
		6.2. 2 <i>PC</i> index timing vs. sudden changes in solar wind	
		dynamic pressure	106
		6.2.3 Statistical relationships between the <i>PC</i> index and pressure	
		pulses P	108
		6.2.4 Relationships between <i>PC</i> and <i>P</i> under conditions of negative	
		pressure gradients and northward IMF	115
	6.3	Dynamics of the polar convection patterns related to solar wind pressure	
		pulses	116
	6.4	Field-aligned currents determining the response of the <i>PC</i> index to solar	
		wind pressure pulses	119
	6.5	Summary	126
	6.6	References	126
7	<i>PC</i> in	ndex as an indicator of substorm development	129
	7.1	Previous analyzes of relations between polar cap magnetic activity and	
		magnetosphere substorms	129
	7.2	Isolated substorms	130
	7.3	Periodically repetitive magnetic disturbances (sawtooth substorms)	140
		7.3 1 Definition of sawtooth substorms	140
		7.3.2 Examples of sawtooth magnetic disturbances	144
		7.3.3 Statistical relationship between $PC(E_{m})$ variation and sawtooth	
		magnetic disturbances development	. 148
		7.3.4 Evaluation of substorm back influence on polar cap	
		magnetic activity	157
	7.4	<i>PC</i> index as a precursor of magnetic substorm development	158
	7.5	Threshold-dependent driven mode of magnetospheric substorms	162
	7.6	Summary.	164
	7.7	References	165
8	PC in	ndex as an indicator of magnetic storm development	169
	8.1	Identification of magnetic storms and separation of growth and decay	
		parts in the main storm phase	169
	8.2	A PC index value required for the storm beginning	172
	8.3	Relationship between storm parameters and $PC(\vec{E}_{m})$ values	178
	8.4	'Dst index saturation' and interplanetary electric field – magnetosphere	
		coupling function	180
	8.5	Summary	184
	8.6	References	185

9	Speci stead	fic features of magnetic disturbances occurring under conditions of a ily high energy input into the magnetosphere	. 187
	9.1	Inconsistency of substorm magnetic and aurora signatures in the case of	
		powerful sawtooth substorms	. 187
	9.2	Relationships between <i>PC</i> index and substorm (<i>AL</i>) and storm (<i>ASYM</i>) indices in conditions of the steadily high solar wind energy input into the	е
		magnetosphere	. 201
		9.2.1 Existing ideas on interplay between magnetic storms and substorms	. 201
		9.2.2 Relationships between PC, AL and ASYM indices for individual	
		substorms	202
		9.2.3 Relationships between <i>PC</i> , <i>AL</i> and <i>ASYM</i> indices during ' <i>PC</i> growth phase' and ' <i>PC</i> decline phase'	1 206
		9.2.4 A concept of powerful substorms reverse effect.	
	93	Summary	215
	9.4	References	. 216
10	Moor	actic dicturbances developing under conditions of porthward IMF	210
10	10 1	Input of the IME azimuthal component in coupling function F	· 219 210
	10.1	Magnetic storms developed under conditions of a porthward IME	. 219
	10.2	Magnetospheric substorms developed under conditions of	. 221
	10.5	a northward IMF	. 221
	10.4	Magnetospheric substorms triggered by sharp changes in the IMF vertic	al
	1011	or azimuthal components.	
	10.5	Summary	228
	10.6	References	. 228
11	Caus	ative discrepancies between summer and winter PC indices:	
	physi	cal implications	231
	11.1	Reasons for discrepancy between summer and winter <i>PC</i> indices	. 231
	11.2	Effects of IMF northward and azimuthal components	. 232
	11.3	Effect of solar proton events	. 234
	11.4	Effect of solar wind dynamic pressure pulses	. 236
	11.5	Substorm development effect	. 237
	11.6	Role of auroral ionosphere in supporting the magnetic activity in	- 20 /
		the winter polr cap	. 240
	11.7	Statistical significance of <i>PC</i> seasonal differences	.242
	11.8	Summary	. 243
	11.9	References	. 244

12	Moni	toring of the auroral ionosphere	247
	12.1	Parameters characterizing an auroral ionosphere state	247
	12.2	Auroral absorption	248
	12.3	Ionospheric Es and F2 layers	253
	12.4	Summary	255
	12.5	References	255
13	PC in	dex as indicator of anomalous atmospheric processes in the winter	
	Antai	rctica	257
	13.1	Solar activity influence on the Earth's atmosphere: variations in	
		cosmic rays flow or changes in solar wind parameters?	257
	13.2	Distinctive features of atmospheric circulation over the winter	
		Antarctica	261
	13.3	Cloudiness and sudden warmings in central Antarctica	265
	13.4	Changes in height profiles of temperature and pressure above Vostok	
		station	268
	13.5	Anomalous winds at the Antarctic stations and their relation to the	
		PC index	270
	13.6	Mechanisms suggested to explain solar wind influence on atmospheric	
		processes	275
	13.7	Summary	276
	13.8	References	276
14	Conc	lusions	279
	14.1	References	281
Acł	knowle	dgements	283
Ind	ex		285

List of figures

Figure 2.1	Current systems of polar cap magnetic disturbances generated by
	southward ((a) and (b)), northward (c) and azimuthal (d) IMF
E ' 0.0	components
Figure 2.2	Current systems of residual polar cap magnetic disturbances unconnected with IMF
Figure 2.3	Convection in the northern polar cap under various IMF orientations 7
Figure 2.4	Pattern of field-aligned currents derived by Triad data
Figure 2.5	Conformity of field-aligned currents with fluxes of auroral particle
	precipitation 11
Figure 2.6	Current systems of polar cap magnetic disturbances derived from
	numerical simulations
Figure 3.1	Equivalent current system of DP2 disturbances in summer (a)
	and winter (b) polar caps
Figure 3.2	Direction of DP2 disturbance vectors at stations Vostok and Thule in
	various MLT hours
Figure 3.3	Parameters α , β and ϕ determining link between coupling
	function $E_{\kappa L}$ and magnetic disturbance vectors at the Thule and
	Vostok stations
Figure 3.4	Daily variation of α and β coefficient at Thule and Vostok
	designed for day of June 9 30
Figure 3.5	Change of magnetic disturbance vectors δF at Thule and Vostok
	during June 9, 2001 and the appropriate PCN and PCS indices 30
Figure 3.6	Average effect of azimurthal IMF component on convection
	patterns at Thule and Vostok
Figure 3.7	Run of <i>PCN</i> and <i>PCS</i> indices in 1998–2001
Figure 3.8	Behavior of differences $E_{\kappa_I} - PCN$ and $E_{\kappa_I} - PCS$ (in mV/m) during
-	2000
Figure 3.9	Agreement between values $(E_{\kappa_l} - PCS)$ and $(E_{\kappa_l} - PCN)$
Figure 3.10	Careful and careless determination of the PCS index on example of
-	April of 1997 and 1998
	-

Figure 3.11	Relation between PC index and ionospheric electric field
	measured by DMSP spacecraft
Figure 4.1	A set of 1-minute quiet segments in H-component at Vostok used for
	calculation of QDC
Figure 4.2	Run of <i>H</i> component at Vostok in June 2002 and an appropriate quiet
	daily variation
Figure 4.3	Monthly averaged quiet daily variations calculated by the
	independent data sets for 2002 49
Figure 4.4	Quiet daily variations in H and D components at Vostok station
	calculated for November in 1997 and 2002 and levels of QDC
	amplitudes during the Novembers of 1997–2002
Figure 4.5	Comparison of QDC derived by extrapolation method with actual
-	quiet daily variation for 12 September, 2002
Figure 4.6	Standard deviations of differences between the mean daily values
	and the running 1-min <i>H</i> -component at the Vostok station and
F. 45	between the mean daily values and the QDC for 2002
Figure 4.7	Run of <i>H</i> -component at the Vostok station during 5 international quiet
E: 4.9	days in June and November 2002 and the appropriate QDC
r igure 4.8	Graphic presentation of QDC benavior for H and D components at
Figure 4.0	VOSIOK III 1997–2001.
Figure 4.9	'invariable' ODC and between the actual ODC and 'extrapolated'
	ODC 56
Figure 4.10	Actual run of 1-min H component at Thule during summer of
inguite mite	2001 and superposed quiet daily curve (ODC) 57
Figure 4.11	Original data series of azimuthal IMF component measured on board
8	ACE spacecraft and SS effect displayed by the method of filtration 59
Figure 4.12	Original data series of D and H components observed at the Thule
0	station and SS effect displayed by the method of filtration
Figure 4.13	Comparison between SS structures derived from spacecraft
	measurements and ground magnetic variations observed in H and D
	components at the Thule station
Figure 4.14	Mean daily variation of H component at Thule derived for three
	gradations of azimuthal IMF component for summer months of 1998
	and 2001
Figure 4.15	Behavior of the H component median values at Thule during June
	months of 1998 and 2001 derived for time intervals of different
	duration (1, 3 and 5 days)
Figure 4.16	SS effects derived by <i>H</i> component observed at station Thule in 1998
	and 2001 in comparison with actual variation of the IMF B_{γ}
Figure 4 17	Component measured by ACE spacecraft
r igure 4.1 /	Relationship between the sector structure magnitudes derived from
Figure 4 18	saterine-based and ground-based sets of data
rigure 4.10	Daily variation of the angle ψ and coefficients p and u derived respectively with inclusion of a ODC and without using a ODC
	respectively with inclusion of a QDC and without using a QDC

Figure 4.19	<i>PCS</i> indices calculated with a QDC (PC_{QDC}) and without using a QDC (PC_{A}).
Figure 4.20	Seasonal variation of the differences between PCS values calculated
5	with a QDC (PC_{opc}) and without a QDC (PC_{o}) in 2002
Figure 4.21	Variation of the QDC in the H component at Vostok station in
	November for the solar maximum (2002) and solar minimum (2007)
	epochs
Figure 4.22	Parameters α , β and ϕ for the Vostok station, derived independently
	for epochs of solar maximum, solar minimum, and the full cycle of
	solar activity
Figure 4.23	Indices <i>PC</i> (solmax) and <i>PC</i> (solmin) calculated for the same periods
	(December and June 2001) with use of two independent sets of
	parameters α , β and ϕ
Figure 5.1	Dungey's model of reconnecting interplanetary and geomagnetic
	fields
Figure 5.2	The R1 and R2 FAC patterns mapped to equatorial plane with use
	of the Fairfield and Mead (1975) model of magnetic field
	(Potemra, 1978)
Figure 5.3	The R1 and R2 FAC patterns mapped to equatorial plane with use
	of the Tsyganenko (1996, 2002) models of magnetic field
	(Antonova <i>et al.</i> , 2006)
Figure 5.4	Normalized plasma pressure ∇p mapped to the equatorial plane
	(Wing and Newell, 2000)
Figure 5.5	Sources of particle precipitation in the dayside ionosphere identified
	by particle spectra (Newell and Meng, 1992)
Figure 5.6	Cross polar potential (PCP) versus interplanetary electric field
	(Kan <i>et al.</i> , 2010)
Figure 5.7	Cross polar potential and reverse convection potential as a function
E'	of interplanetary electric field (Sundberg <i>et al.</i> , 2009)
Figure 5.8	Relationship between the 1-min values of PCN/PCS indices and
Figure 5.0	Coupling function E_{KL} for summer seasons of 1998–2001
rigure 5.9	Variations of coupling functions $E_{KL}(Em)$ and E_{K-R} (Kivelson and Didley 2008) and must of DC index in event of Nevember 20, 2002
	Kiney, 2008) and run of <i>F</i> C index in event of November 20, 2005 (Geo <i>et al.</i> 2011) (1200)
Figure 5 10	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Figure 6.1	Time changes of quantities $F_{\rm c}$ and PCN for particular events with
I iguite 0.1	sharp rise and sharp decline of F_{KL} value (Stauning and Troshichev
	2008 104
Figure 6.2	Timing and amplitudes of steep P increases and related changes in
i iguire oiz	PCN the key date (T=0) being taken in different manner
	(Stauning and Troshichey, 2008)
Figure 6.3	Timing and amplitudes of steep P_{min} increases and related changes in
8	<i>PCN</i> for day and night hours at Thule (Stauning and Troshichev.
	2008)
Figure 6.4	Behavior of average solar wind velocity v , dynamic pressure P_{max} and
0	coupling function $E_{\nu r}$ derived for 62 pressure jumps in 1998–2002 109
	NL

Figure 6.5	Method used for automatic identification of the solar wind dynamic
F ' ((pressure sudden jump 110
Figure 6.6	Relationship between averaged $P_{SW} E_{KL}$ and PC quantities under
Figure 67	Varying restrictions imposed on coupling function E_{KL}
r igure 0.7	Kerationship between averaged or E_{SW} , E_{KL} and FC quantities under very increasing restrictions improved on the solar wind pressure value often
	the jump
Figure 6 9	$\begin{array}{c} \text{Integration} \\ \text{Deletionship between avanaged } P = E \text{and } PC \text{ avantities under} \\ \end{array}$
r igure 0.0	Kerationship between averaged or E_{SW} , E_{KL} and FC quantities under verying restrictions improved on the pressure increase rate $(dP/dt) = 112$
Figure 60	Varying restrictions imposed on the pressure increase rate (ar/at) 115 Deletionship between eveneed $R_{\rm even}$ and $R_{\rm eventities}$ under
r igure 0.9	Relationship between averaged r_{SW} , E_{KL} and FC quantities under and distance of possible processing and ion and porthword IME 115
Elauna (10	Dettems of acquivelent incombaria convection at the enced time of
r igure 0.10	Tatems of equivalent follospheric convection at the epoch time of
	1=+6 min in reference to SSC events (Stauning and Troshicnev,
E: (11	2008)
r igure 0.11	Folar convection patterns protect for the epoch times from $1=-2$ min to $T_{-1}/2$ min in reference to SSC encode (Stewning and Trachichay)
	to $1=+5$ min in reference to SSC onsets (Stauning and Trosnicnev,
Figure (1)	2006)
r igure 0.12	Trackisherr 2008)
Figure 6 12	Field aligned summers calculated for enach times of T_{-5} , 10
r igure 0.15	15 and 20 min (Stauning and Trachishov 2008)
Elauna 6 14	13 and 20 mm (Stauming and Hosnichev, 2008)
r igure 0.14	Displacement of convection voltex centers during period from T_{-} 1 min to T_{-} 20 min in reference to SSC enset (Stauning and
	T=-1 min to $T=+20$ min in reference to SSC onset (Stauming and Trachichay, 2008) 122
Figure 6 15	Development of EAC systems in magneticenberg following the solar
rigure 0.15	Development of FAC systems in magnetosphere following the solar
	Trachishow 2008) 122
F: 7 1	Irosnicnev, 2008)
rigure /.1	Example of two magnetic bays developing on 27 February, 1998
Figure 7.2	against the background of magnetic quiescence
Figure 7.2	Procedure used for identification of a magnetic substorms sudden
Figure 73	Olisel
rigure 7.5	magnetic hove
Figure 7 4	Inaglicit Days
rigure 7.4	isolated substorms
Figure 7 5	Bolationshing between alonges in the <i>PC</i> and <i>AE</i> indices for long
Figure 7.5	isolated substorms
Figuro 7.6	Relationships between changes in the PC and AE indices for
Figure 7.0	extended isolated disturbances
Figure 77	Bahavior of the averaged <i>PC</i> index in the summer and winter polar
rigure /./	caps and the mean AL and AU indices derived for A classes of
	isolated magnetic disturbances
Figuro 7 8	Solated magnetic distributions
rigure 7.0	southern polar caps during 1988_2001 120
	southern polar caps during 1900–2001

Figure 7.9	Identification of a PC growth beginning (PC increase), AL gradual	
	growth beginning (AL increase) and AL explosive increase	
	(AL sudden onset) adopted in the analysis 1	41
Figure 7.10 (a)	Sawtooth magnetic disturbances on August 28–29, 2000 1	45
Figure 7.10 (b)	Sawtooth magnetic disturbances on October 4, 2000 1	46
Figure 7.10(c)	Saw-tooth magnetic disturbances on November 6, 2000 1	47
Figure 7.11	Correlation between mean summer and winter PC indices over the	
	growth phase (a) and in the expansion phase (b) 1	49
Figure 7.12	Relationships between mean variations of the IMF B_Z and B_Y	
	components, coupling function E_{KL} , PC and AL/AU indices in	
	case of sawtooth magnetic disturbances 1	51
Figure 7.13	Delay times of AL gradual increase and AL sudden onset relative	
	to PC growth beginning 1	52
Figure 7.14	Correlation between sawtooth substorm intensity (ALmax) and	
	<i>PC</i> index value for growth and expansion phases 1	53
Figure 7.15	Delay time of <i>ALmax</i> vs. delay times of maximal polar cap magnetic	
	activity (<i>PCmax</i>) in the summer (a) and winter (b) polar caps 1	54
Figure 7.16	Relationships between the growth phase duration $(Tgro)$ and the	
	<i>PCmean</i> value 1	55
Figure 7.17	Relationship between the growth phase duration $(Tgro)$ and the PC	
	growth rate (PC_{GR})	56
Figure 7.18	Ratios <i>PC</i> / E_{KL} and <i>PC</i> *100/ <i> AL </i> for sawtooth magnetic	
	disturbances 1	57
Figure 7.19	Relationship between average PC and AL indices for weak magnetic	
	bays, isolated short and extended substorms, and sawtooth substorms 1	59
Figure 7.20	Dependence of AL growth rate and substorm intensity ALmax on PC	
	growth rate 1	61
Figure 8.1	Separation of growth and damping phases within the storm main	
	phase 1	71
Figure 8.2	Behavior of coupling function E_{KL} and PC index and respective Dst	
	index variation for 8 storms of different intensity 1	74
Figure 8.3	Relationship between behavior of averaged E_{KL} and PC index	
	quantities and development of magnetic storm (<i>Dst</i> index) for 6	
-	gradations of storm intensity 1	77
Figure 8.4	Relationships between storm intensity <i>Dst(peak)</i> and quantities	
	E_{KL} growth and <i>PC</i> growth averaged over the storm growth phase	
	interval.	/9
Figure 8.5	Correlation between quantities $(Dst(trans_E_{KL}))$ and	0.1
FI 0.4	(Dst(trans_PC))	81
Figure 8.6	Correlation between the storm parameter <i>Dst(trans)</i> and the storm	0.1
	intensity <i>Dst(peak)</i> 1	81
Figure 8.7	Relationships between the storm parameter <i>Dst(trans)</i> and the	
	corresponding quantities $E_{KL}(damp)$ and $PC(damp)$ averaged over	0.7
	the storm damping phase interval 1	82

PC index and coupling function E_{KL} 183Figure 9.1Patterns of ionospheric convection derived 2 min prior to and 2 min after the sawtooth substorm onset189Figure 9.2Sawtooth magnetic disturbances on October 4, 2000 and March 19–20, 2001.190Figure 9.3The electron flux injections detected at the geosynchronous orbit on October 4, 2000 and March 19–20, 2001.192Figure 9.4Sequence of aurora images for three substorms on October 4, 2000.193Figure 9.5Sequence of aurora images for three substorms on March, 2001.195Figure 9.6Time lags between aurora brightening and particle injections at geostationary orbit.200Figure 9.7Relationship between PC, AL and ASYM indices generalized over magnetic storms on October 4, 2000.203Figure 9.8Relationships between PC, AL and ASYM indices generalized over magnetic storms on October 4, 2000.203Figure 9.9The generalized relationships between PC and ASYM, AL and ASYM indices.206Figure 9.10Run of AL, PCwin, PCsum, and ASY indices superposed for 39 substorms with sudden onset (SO=500 nT) in course of PC growth and PC decline phases.208Figure 9.11Relationships between the mean AL, PC, ASYM indices for PC growth and PC decline phases.204Figure 9.12Dependence of the AL drop and PC drop during the recovery phase on substorm intensity.211Figure 10.1Relationship between coupling function E_{kL} and corresponding PC index under conditions of northward IMF $B_z > 2$ nT in respect to azimuthal IMF component (1998–2002).220Figure 10.2<	Figure 8.8	Parameters <i>Dst_peak</i> and <i>Dst_trans</i> calculated as a function of	
Figure 9.1Patterns of ionospheric convection derived 2 min prior to and 2 min after the sawtooth substorm onset.189Figure 9.2Sawtooth magnetic disturbances on October 4, 2000 and March 19–20, 2001.190Figure 9.3The electron flux injections detected at the geosynchronous orbit on October 4, 2000 and March 19–20, 2001.192Figure 9.4Sequence of aurora images for three substorms on October 4, 2000.193Figure 9.5Sequence of aurora images for three substorms on March, 2001.195Figure 9.6Time lags between aurora brightening and particle injections at geostationary orbit.200Figure 9.7Relationship between PC, AL and ASYM indices generalized over magnetic storms on October 4, 2000.203Figure 9.8Relationships between PC, AL and ASYM indices generalized over 9 storm events.206Figure 9.9The generalized relationships between PC and ASYM, AL and ASYM indices.206Figure 9.10Run of AL, PCwin, PCsum, and ASY indices superposed for 39 substorms with sudden onset (SO=500 nT) in course of PC growth and PC decline phases.208Figure 9.12Dependence of the AL drop and PC drop during the recovery phase on substorm intensity.211Dependence of the Asavtooth substorm periodicity on average PC value and substorm intensity.212Figure 10.1Relationship between coupling function E_{kL} and corresponding PC index under conditions of northward IMF $B_{z} > 2$ nT in respect to azimuthal IMF component (1998–2002).220Development of storm on January 21–22, 2005 under conditions of northward IMF.223Figure 10.3		<i>PC</i> index and coupling function E_{KL}	183
22189Figure 9.2Sawtooth magnetic disturbances on October 4, 2000 and March 19–20, 2001.190Figure 9.3The electron flux injections detected at the geosynchronous orbit on October 4, 2000 and March 19–20, 2001.192Figure 9.4Sequence of aurora images for three substorms on October 4, 2000.193Figure 9.5Sequence of aurora images for three substorms on March, 2001.195Figure 9.6Time lags between aurora brightening and particle injections at geostationary orbit.200Figure 9.7Relationship between PC, AL and ASYM indices generalized over magnetic storms on October 4, 2000.203Figure 9.8Relationships between PC, AL and ASYM indices generalized over 9 storm events.205Figure 9.9The generalized relationships between PC and ASYM, AL and ASYM indices.206Figure 9.10Run of AL, PCwim, PCsum, and ASY indices superposed for 39 substorms with sudden onset (SO=500 nT) in course of PC growth and PC decline phases.208Figure 9.11Relationships between the mean AL, PC, ASYM indices for PC growth and PC decline phases.209Figure 9.12Dependence of the AL drop and PC drop during the recovery phase on substorm intensity.211Figure 10.1Relationship between coupling function E_{K0} and corresponding PC index under conditions of northward IMF $B_{\chi} > 2$ nT in respect to azimuthal IMF component (1998–2002).220Figure 10.3Examples of three substorms developing under conditions of northward IMF.223Figure 10.4Examples of IMF B_{χ} and B_{χ} components, PC and AL indices 	Figure 9.1	Patterns of ionospheric convection derived 2 min prior to and	100
Figure 9.2Sawtooth magnetic disturbances on October 4, 2000 and March 19–20, 2001.190Figure 9.3The electron flux injections detected at the geosynchronous orbit on October 4, 2000 and March 19–20, 2001.192Figure 9.4Sequence of aurora images for three substorms on October 4, 2000.193Figure 9.5Sequence of aurora images for three substorms on March, 2001.195Figure 9.6Time lags between aurora brightening and particle injections at geostationary orbit.200Figure 9.7Relationship between PC, AL and ASYM indices generalized over magnetic storms on October 4, 2000.203Figure 9.7Relationships between PC, AL and ASYM indices generalized over over 9 storm events.205Figure 9.8Relationships between PC, AL and ASY indices generalized over 9 storm events.206Figure 9.10Run of AL, PCwin, PCsum, and ASY indices superposed for 39 substorms with sudden onset (SO=500 nT) in course of PC growth and PC decline phases.208Figure 9.11Relationships between the mean AL, PC, ASYM indices for PC growth and PC decline phases.209Figure 9.12Dependence of the AL drop and PC drop during the recovery phase on substorm intensity.211Figure 10.1Relationship between coupling function E_{gL} and corresponding PC index under conditions of northward IMF $B_Z > 2$ nT in respect to azimuthal IMF component (1998–2002).220Figure 10.3Examples of three substorms developing under conditions of northward IMF.223Figure 10.4Examples of IMF B_y polarity.225Figure 10.5Superposition of the	-	2 min after the sawtooth substorm onset.	189
March 19–20, 2001.190Figure 9.3The electron flux injections detected at the geosynchronous orbit on October 4, 2000 and March 19–20, 2001.192Figure 9.4Sequence of aurora images for three substorms on October 4, 2000.193Figure 9.5Sequence of aurora images for three substorms on March, 2001.193Figure 9.6Time lags between aurora brightening and particle injections at geostationary orbit.200Figure 9.7Relationship between PC, AL and ASYM indices generalized over magnetic storms on October 4, 2000.203Figure 9.7Relationships between PC, AL and ASYM indices generalized over over 9 storm events.205Figure 9.8Relationships between PC, AL and ASYM indices generalized over 9 storm events.205Figure 9.10Run of AL, PCwin, PCsum, and ASY indices superposed for 39 substorms with sudden onset (SO=500 nT) in course of PC growth and PC decline phases.208Figure 9.11Relationships between the mean AL, PC, ASYM indices for PC growth and PC decline phases.209Figure 9.12Dependence of the AL drop and PC drop during the recovery phase on substorm intensity.211Figure 10.1Relationship between coupling function E_{KL} and corresponding PC index under conditions of northward IMF $B_Z > 2$ nT in respect to azimuthal IMF component (1998–2002).220Figure 10.2Development of storm on January 21–22, 2005 under conditions of northward IMF.223Figure 10.3Examples of three substorms triggered by IMF northward turning or by sharp change of IMF B_y and B_z components, PC and AL indices for 12 substorms related to IMF no	Figure 9.2	Sawtooth magnetic disturbances on October 4, 2000 and	100
Figure 9.5The electron flux injections detected at the geosynchronous orbit on October 4, 2000 and March 19–20, 2001.192Figure 9.4Sequence of aurora images for three substorms on October 4, 2000.193Figure 9.5Sequence of aurora images for three substorms on March, 2001.193Figure 9.6Time lags between aurora brightening and particle injections at geostationary orbit.200Figure 9.7Relationship between PC, AL and ASYM indices generalized over magnetic storms on October 4, 2000.203Figure 9.7Relationships between PC, AL and ASYM indices generalized over 9 storm events.205Figure 9.8Relationships between PC, AL and ASYM indices generalized over 9 storm events.206Figure 9.10Run of AL, PCwin, PCsun, and ASY indices superposed for 39 substorms with sudden onset (SO=500 nT) in course of PC growth and PC decline phases.208Figure 9.11Dependence of the AL drop and PC drop during the recovery phase on substorm intensity.211Figure 9.13Dependence of the sawtooth substorm periodicity on average PC value and substorm intensity.212Figure 10.1Relationship between coupling function E_{KL} and corresponding PC index under conditions of northward IMF $B_z > 2$ nT in respect to azimuthal IMF component (1998–2002).220Figure 10.3Examples of three substorms triggered by IMF northward turning or by sharp change of IMF B_y nolarity.221Figure 10.4Examples of substorms triggered by IMF northward turning or by sharp change of IMF B_y nolarity.225Figure 10.5Superposition of IMF B_y nolarity.	E'	March 19 $-20, 2001$.	190
Figure 9.4Sequence of aurora images for three substorms on October 4, 2000.193 193Figure 9.5Sequence of aurora images for three substorms on March, 2001.195Figure 9.6Time lags between aurora brightening and particle injections at geostationary orbit.200Figure 9.7Relationship between <i>PC</i> , <i>AL</i> and <i>ASYM</i> indices generalized over magnetic storms on October 4, 2000.203Figure 9.8Relationships between <i>PC</i> , <i>AL</i> and <i>ASYM</i> indices generalized over 9 storm events.205Figure 9.9The generalized relationships between <i>PC</i> and <i>ASYM</i> , <i>AL</i> and <i>ASYM</i> indices.206Figure 9.10Run of <i>AL</i> , <i>PCwin</i> , <i>PCsum</i> , and <i>ASY</i> indices superposed for 39 substorms with sudden onset (S0=500 nT) in course of <i>PC</i> growth and <i>PC</i> decline phases.208Figure 9.11Relationships between the mean <i>AL</i> , <i>PC</i> , <i>ASYM</i> indices for <i>PC</i> growth and <i>PC</i> decline phases.209Figure 9.12Dependence of the <i>AL</i> drop and <i>PC</i> drop during the recovery phase on substorm intensity.211Figure 9.13Dependence of the sawtooth substorm periodicity on average <i>PC</i> value and substorm intensity.212Figure 10.1Relationship between coupling function E_{KL} and corresponding <i>PC</i> index under conditions of northward IMF $B_Z > 2$ nT in respect to azimuthal IMF component (1998–2002).220Figure 10.3Examples of three substorms triggered by IMF northward turning or by sharp change of IMF B_y nolarity.223Figure 10.4Examples of substorms triggered by IMF northward turning or by sharp change of IMF B_y nolarity.225Figure 10.5Superpositio	Figure 9.5	October 4, 2000 and March 19–20, 2001.	192
Figure 9.5October 4, 2000.193Figure 9.5Sequence of aurora images for three substorms on March, 2001.195Figure 9.6Time lags between aurora brightening and particle injections at geostationary orbit.200Figure 9.7Relationship between PC, AL and ASYM indices generalized over magnetic storms on October 4, 2000.203Figure 9.7Relationships between PC, AL and ASYM indices generalized over 9.8205Figure 9.9The generalized relationships between PC and ASYM, AL and ASYM indices.206Figure 9.9The generalized relationships between PC and ASYM, AL and ASYM indices.206Figure 9.10Run of AL, PCwin, PCsum, and ASY indices superposed for 39 substorms with sudden onset (SO=500 nT) in course of PC growth and PC decline phases.208Figure 9.11Relationships between the mean AL, PC, ASYM indices for PC growth and PC decline phases.209Figure 9.12Dependence of the AL drop and PC drop during the recovery phase on substorm intensity.211Figure 9.13Dependence of the sawtooth substorm periodicity on average PC value and substorm intensity.212Figure 10.1Relationship between coupling function E_{KL} and corresponding PC index under conditions of northward IMF $B_Z > 2$ nT in respect to azimuthal IMF component (1998–2002).220Figure 10.3Examples of storm on January 21–22, 2005 under conditions of northward IMF.223Figure 10.4Examples of stubstorms triggered by IMF northward turning or by sharp change of IMF B_y nol B_z components, PC and AL indices for 12 substorms related to IMF northward turning. <th>Figure 9.4</th> <th>Sequence of aurora images for three substorms on</th> <th></th>	Figure 9.4	Sequence of aurora images for three substorms on	
Figure 9.5Sequence of aurora images for three substorms on March, 2001	8	October 4, 2000.	193
Figure 9.6Time lags between aurora brightening and particle injections at geostationary orbit.200Figure 9.7Relationship between PC, AL and ASYM indices generalized over magnetic storms on October 4, 2000.203Figure 9.8Relationships between PC, AL and ASYM indices generalized over 9 storm events.205Figure 9.9The generalized relationships between PC and ASYM, AL and ASYM indices.206Figure 9.10Run of AL, PCwin, PCsum, and ASY indices superposed for 39 substorms with sudden onset (SO=500 nT) in course of PC growth and PC decline phases.208Figure 9.11Relationships between the mean AL, PC, ASYM indices for PC growth and PC decline phases.209Figure 9.12Dependence of the AL drop and PC drop during the recovery phase on substorm intensity.211Figure 9.13Dependence of the sawtooth substorm periodicity on average PC value and substorm intensity.212Figure 10.1Relationship between coupling function E_{KL} and corresponding PC index under conditions of northward IMF $B_Z > 2$ nT in respect to azimuthal IMF component (1998–2002).220Figure 10.2Development of storm on January 21–22, 2005 under conditions of northward IMF.223Figure 10.3Examples of three substorms triggered by IMF northward turning or by sharp change of IMF B_y polarity.225Figure 10.5Superposition of the IMF B_y and B_z components, PC and AL indices for 12 substorms related to IMF northward turning.227Figure 11.1Example of asymmetrical response of summer and winter PC indices	Figure 9.5	Sequence of aurora images for three substorms on March. 2001	195
Figure 9.7geostationary orbit.200Figure 9.7Relationship between PC, AL and ASYM indices generalized over magnetic storms on October 4, 2000.203Figure 9.8Relationships between PC, AL and ASYM indices generalized over 9 storm events.205Figure 9.9The generalized relationships between PC and ASYM, AL and ASYM indices.206Figure 9.10Run of AL, PCwin, PCsum, and ASY indices superposed for 39 substorms with sudden onset (SO=500 nT) in course of PC growth and PC decline phases.208Figure 9.11Relationships between the mean AL, PC, ASYM indices for PC growth and PC decline phases.209Figure 9.12Dependence of the AL drop and PC drop during the recovery phase on substorm intensity.211Figure 9.13Dependence of the sawtooth substorm periodicity on average PC value and substorm intensity.212Figure 10.1Relationship between coupling function E_{KL} and corresponding PC index under conditions of northward IMF $B_Z > 2$ nT in respect to azimuthal IMF component (1998–2002).220Figure 10.2Development of storm on January 21–22, 2005 under conditions of northward IMF.223Figure 10.3Examples of three substorms triggered by IMF northward turning or by sharp change of IMF B_{γ} polarity.225Figure 10.4Examples of substorms triggered by IMF northward turning.225Figure 10.5Superposition of the IMF B_{γ} and B_{z} components, PC and AL indices for 12 substorms related to IMF northward turning.227Figure 10.5Example of asymmetrical response of summer and winter PC indices227 <th>Figure 9.6</th> <th>Time lags between aurora brightening and particle injections at</th> <th></th>	Figure 9.6	Time lags between aurora brightening and particle injections at	
Figure 9.7Relationship between PC, AL and ASYM indices generalized over magnetic storms on October 4, 2000.203Figure 9.8Relationships between PC, AL and ASYM indices generalized over 9 storm events.205Figure 9.9The generalized relationships between PC and ASYM, AL and ASYM indices.206Figure 9.10Run of AL, PCwin, PCsum, and ASY indices superposed for 39 substorms with sudden onset (SO=500 nT) in course of PC growth and PC decline phases.208Figure 9.11Relationships between the mean AL, PC, ASYM indices for PC growth and PC decline phases.209Figure 9.12Dependence of the AL drop and PC drop during the recovery phase on substorm intensity.211Figure 9.13Dependence of the sawtooth substorm periodicity on average PC value and substorm intensity.212Figure 10.1Relationship between coupling function E_{KL} and corresponding PC index under conditions of northward IMF $B_Z > 2$ nT in respect to azimuthal IMF component (1998–2002).220Figure 10.3Examples of substorms triggered by IMF northward turning or by sharp change of IMF B_y polarity.223Figure 10.4Examples of substorms triggered by IMF northward turning or by sharp change of IMF B_y and B_z components, PC and AL indices for 12 substorms related to IMF northward turning.227Figure 11.1Example of asymmetrical response of summer and winter PC indices		geostationary orbit	200
Figure 9.8Relationships between PC, AL and ASYM indices generalized over 9 storm events.203Figure 9.9The generalized relationships between PC and ASYM, AL and ASYM indices.205Figure 9.9The generalized relationships between PC and ASYM, AL and ASYM indices.206Figure 9.10Run of AL, PCwin, PCsum, and ASY indices superposed for 39 substorms with sudden onset (SO=500 nT) in course of PC growth and PC decline phases.208Figure 9.11Relationships between the mean AL, PC, ASYM indices for PC growth and PC decline phases.209Figure 9.12Dependence of the AL drop and PC drop during the recovery phase on substorm intensity.211Figure 9.13Dependence of the sawtooth substorm periodicity on average PC value and substorm intensity.212Figure 10.1Relationship between coupling function E_{kL} and corresponding PC index under conditions of northward IMF $B_z > 2$ nT in respect to azimuthal IMF component (1998–2002).220Figure 10.3Examples of three substorms developing under conditions of northward IMF.223Figure 10.4Examples of substorms triggered by IMF northward turning or by sharp change of IMF B_y and B_z components, PC and AL indices for 12 substorms related to IMF northward turning.225Figure 11.1Example of asymmetrical response of summer and winter PC indices227	Figure 9.7	Relationship between <i>PC</i> . <i>AL</i> and <i>ASYM</i> indices generalized over	
Figure 9.8Relationships between PC, AL and ASYM indices generalized over 9 storm events.205Figure 9.9The generalized relationships between PC and ASYM, AL and ASYM indices.206Figure 9.10Run of AL, PCwin, PCsum, and ASY indices superposed for 39 substorms with sudden onset (SO=500 nT) in course of PC growth and PC decline phases.208Figure 9.11Relationships between the mean AL, PC, ASYM indices for PC growth and PC decline phases.209Figure 9.12Dependence of the AL drop and PC drop during the recovery phase on substorm intensity.211Figure 9.13Dependence of the sawtooth substorm periodicity on average PC value and substorm intensity.212Figure 10.1Relationship between coupling function E_{kL} and corresponding PC index under conditions of northward IMF $B_z > 2$ nT in respect to azimuthal IMF component (1998–2002).220Figure 10.3Examples of three substorms developing under conditions of northward IMF.223Figure 10.4Examples of substorms triggered by IMF northward turning or by sharp change of IMF B_y and B_z components, PC and AL indices for 12 substorms related to IMF northward turning.225Figure 11.1Example of asymmetrical response of summer and winter PC indices		magnetic storms on October 4 2000	203
Figure 9.9Interformed expression205Figure 9.9The generalized relationships between PC and ASYM, AL and ASYM indices	Figure 9.8	Relationships between <i>PC</i> AL and ASYM indices generalized	200
Figure 9.9The generalized relationships between PC and ASYM, AL and ASYM indices.206Figure 9.10Run of AL, PCwin, PCsum, and ASY indices superposed for 39 substorms with sudden onset (SO=500 nT) in course of PC growth and PC decline phases.208Figure 9.11Relationships between the mean AL, PC, ASYM indices for PC growth and PC decline phases.209Figure 9.12Dependence of the AL drop and PC drop during the recovery phase on substorm intensity.211Figure 9.13Dependence of the sawtooth substorm periodicity on average PC value and substorm intensity.212Figure 10.1Relationship between coupling function E_{KL} and corresponding PC index under conditions of northward IMF $B_Z > 2$ nT in respect to azimuthal IMF component (1998–2002).220Figure 10.2Development of storm on January 21–22, 2005 under conditions of northward IMF.223Figure 10.3Examples of three substorms developing under conditions of northward IMF.223Figure 10.4Examples of substorms triggered by IMF northward turning or by sharp change of IMF B_{γ} and B_{z} components, PC and AL indices for 12 substorms related to IMF northward turning.227Figure 11.1Example of asymmetrical response of summer and winter PC indices	I Igure >10	over 9 storm events	205
Figure 9.10Integrate relationary of the end of the	Figure 9.9	The generalized relationships between <i>PC</i> and <i>ASYM</i> AL and <i>ASYM</i>	200
Figure 9.10Run of AL, PCwin, PCsum, and ASY indices superposed for 39 substorms with sudden onset (SO=500 nT) in course of PC growth and PC decline phases.208Figure 9.11Relationships between the mean AL, PC, ASYM indices for PC growth and PC decline phases.209Figure 9.12Dependence of the AL drop and PC drop during the recovery phase on substorm intensity.211Figure 9.13Dependence of the sawtooth substorm periodicity on average PC value and substorm intensity.212Figure 10.1Relationship between coupling function E_{KL} and corresponding PC index under conditions of northward IMF $B_Z > 2$ nT in respect to azimuthal IMF component (1998–2002).220Figure 10.2Development of storm on January 21–22, 2005 under conditions of northward IMF.222Figure 10.3Examples of three substorms developing under conditions of northward IMF.223Figure 10.4Examples of substorms triggered by IMF northward turning or by sharp change of IMF B_{γ} polarity.225Figure 10.5Superposition of the IMF B_{γ} and B_{z} components, PC and AL indices for 12 substorms related to IMF northward turning.227Figure 11.1Example of asymmetrical response of summer and winter PC indices	I Igui e >i>	indices.	206
Figure 9.11Internationally control of the phases is ubstorms with sudden onset (SO=500 nT) in course of PC growth and PC decline phases.208Figure 9.11Relationships between the mean AL, PC, ASYM indices for PC growth and PC decline phases.209Figure 9.12Dependence of the AL drop and PC drop during the recovery phase on substorm intensity.211Figure 9.13Dependence of the sawtooth substorm periodicity on average PC value and substorm intensity.212Figure 10.1Relationship between coupling function E_{KL} and corresponding PC index under conditions of northward IMF $B_z > 2$ nT in respect to azimuthal IMF component (1998–2002).220Figure 10.2Development of storm on January 21–22, 2005 under conditions of northward IMF.222Figure 10.3Examples of three substorms developing under conditions of northward IMF.223Figure 10.4Examples of IMF B_y polarity.225Superposition of the IMF B_y and B_z components, PC and AL indices for 12 substorms related to IMF northward turning.227Figure 11.1Example of asymmetrical response of summer and winter PC indices	Figure 9.10	Run of AL, PCwin, PCsum, and ASY indices superposed for 39	200
Figure 9.11and PC decline phases.208Figure 9.11Relationships between the mean AL, PC, ASYM indices for PC growth and PC decline phases.209Figure 9.12Dependence of the AL drop and PC drop during the recovery phase on substorm intensity.211Figure 9.13Dependence of the sawtooth substorm periodicity on average PC value and substorm intensity.212Figure 10.1Relationship between coupling function E_{KL} and corresponding PC index under conditions of northward IMF $B_z > 2$ nT in respect to azimuthal IMF component (1998–2002).220Figure 10.2Development of storm on January 21–22, 2005 under conditions of northward IMF.222Figure 10.3Examples of three substorms developing under conditions of northward IMF.223Figure 10.4Examples of substorms triggered by IMF northward turning or by sharp change of IMF B_y polarity.225Figure 10.5Superposition of the IMF B_y and B_z components, PC and AL indices for 12 substorms related to IMF northward turning.227Figure 11.1Example of asymmetrical response of summer and winter PC indices	i iguite >110	substorms with sudden onset (SQ=500 nT) in course of PC growth	
Figure 9.11Relationships between the mean AL , PC , $ASYM$ indices for PC growth and PC decline phases.209Figure 9.12Dependence of the AL drop and PC drop during the recovery phase on substorm intensity.211Figure 9.13Dependence of the sawtooth substorm periodicity on average PC value and substorm intensity.212Figure 10.1Relationship between coupling function E_{KL} and corresponding PC index under conditions of northward IMF $B_z > 2$ nT in respect to azimuthal IMF component (1998–2002).220Figure 10.2Development of storm on January 21–22, 2005 under conditions of northward IMF.222Figure 10.3Examples of three substorms developing under conditions of northward IMF.223Figure 10.4Examples of substorms triggered by IMF northward turning or by sharp change of IMF B_{γ} and B_{z} components, PC and AL indices for 12 substorms related to IMF northward turning.227Figure 11.1Example of asymmetrical response of summer and winter PC indices		and <i>PC</i> decline phases	208
PC growth and PC decline phases.209Figure 9.12Dependence of the AL drop and PC drop during the recovery phase on substorm intensity.211Figure 9.13Dependence of the sawtooth substorm periodicity on average PC value and substorm intensity.212Figure 10.1Relationship between coupling function E_{KL} and corresponding PC index under conditions of northward IMF $B_Z > 2$ nT in respect to azimuthal IMF component (1998–2002).220Figure 10.2Development of storm on January 21–22, 2005 under conditions of northward IMF.222Figure 10.3Examples of three substorms developing under conditions of northward IMF.223Figure 10.4Examples of substorms triggered by IMF northward turning or by sharp change of IMF B_{γ} polarity.225Figure 10.5Superposition of the IMF B_{γ} and B_{z} components, PC and AL indices for 12 substorms related to IMF northward turning.227Figure 11.1Example of asymmetrical response of summer and winter PC indices	Figure 9.11	Relationships between the mean AL, PC, ASYM indices for	200
Figure 9.12Dependence of the AL drop and PC drop during the recovery phase on substorm intensity.211Figure 9.13Dependence of the sawtooth substorm periodicity on average PC value and substorm intensity.212Figure 10.1Relationship between coupling function E_{KL} and corresponding PC index under conditions of northward IMF $B_Z > 2$ nT in respect to azimuthal IMF component (1998–2002).220Figure 10.2Development of storm on January 21–22, 2005 under conditions of northward IMF.222Figure 10.3Examples of three substorms developing under conditions of northward IMF.223Figure 10.4Examples of substorms triggered by IMF northward turning or by sharp change of IMF B_γ and B_Z components, PC and AL indices for 12 substorms related to IMF northward turning.227Figure 11.1Example of asymmetrical response of summer and winter PC indices	i iguite 2011	PC growth and PC decline phases	209
Figure 9.12Dependence of the fill arep and 10 arep a			
Figure 9.13Dependence of the sawtooth substorm periodicity on average PC value and substorm intensity.212Figure 10.1Relationship between coupling function E_{KL} and corresponding PC index under conditions of northward IMF $B_Z > 2$ nT in respect to azimuthal IMF component (1998–2002).220Figure 10.2Development of storm on January 21–22, 2005 under conditions of northward IMF.222Figure 10.3Examples of three substorms developing under conditions of northward IMF.223Figure 10.4Examples of substorms triggered by IMF northward turning or by sharp change of IMF B_γ and B_Z components, PC and AL indices for 12 substorms related to IMF northward turning.227Figure 11.1Example of asymmetrical response of summer and winter PC indices	Figure 9.12	Dependence of the <i>AL</i> drop and <i>PC</i> drop during the recovery phase	
Figure 10.1Relationship between coupling function E_{KL} and corresponding PC index under conditions of northward IMF $B_z > 2$ nT in respect to azimuthal IMF component (1998–2002).212Figure 10.2Development of storm on January 21–22, 2005 under conditions of northward IMF.222Figure 10.3Examples of three substorms developing under conditions of northward IMF.223Figure 10.4Examples of substorms triggered by IMF northward turning or by sharp change of IMF B_{γ} and B_{z} components, PC and AL indices for 12 substorms related to IMF northward turning.227Figure 11.1Example of asymmetrical response of summer and winter PC indices	Figure 9.12	Dependence of the <i>AL</i> drop and <i>PC</i> drop during the recovery phase on substorm intensity.	211
Figure 10.1Relationship between coupling function E_{KL} and corresponding PC index under conditions of northward IMF $B_Z > 2$ nT in respect to azimuthal IMF component (1998–2002).220Figure 10.2Development of storm on January 21–22, 2005 under conditions of northward IMF.222Figure 10.3Examples of three substorms developing under conditions of northward IMF.223Figure 10.4Examples of substorms triggered by IMF northward turning or by sharp change of IMF B_γ and B_Z components, PC and AL indices for 12 substorms related to IMF northward turning.227Figure 11.1Example of asymmetrical response of summer and winter PC indices	Figure 9.12 Figure 9.13	Dependence of the AL drop and PC drop during the recovery phase on substorm intensity	211
PC index under conditions of northward IMF $B_z > 2$ nT in respect to azimuthal IMF component (1998–2002).220Figure 10.2Development of storm on January 21–22, 2005 under conditions of northward IMF.222Figure 10.3Examples of three substorms developing under conditions of northward IMF.223Figure 10.4Examples of substorms triggered by IMF northward turning or by sharp change of IMF B_y polarity.225Figure 10.5Superposition of the IMF B_y and B_z components, PC and AL indices for 12 substorms related to IMF northward turning.227Figure 11.1Example of asymmetrical response of summer and winter PC indices	Figure 9.12 Figure 9.13	Dependence of the AL drop and PC drop during the recovery phase on substorm intensity. Dependence of the sawtooth substorm periodicity on average PC value and substorm intensity.	211 212
Image: Colspan="2" To a simulate IMF component (1998–2002).Figure 10.2Development of storm on January 21–22, 2005 under conditions of northward IMF.222Figure 10.3Examples of three substorms developing under conditions of northward IMF.223Figure 10.4Examples of substorms triggered by IMF northward turning or by sharp change of IMF B_{γ} and B_{z} components, <i>PC</i> and <i>AL</i> indices for 12 substorms related to IMF northward turning.227Figure 11.1Example of asymmetrical response of summer and winter <i>PC</i> indices	Figure 9.12 Figure 9.13 Figure 10.1	Dependence of the AL drop and PC drop during the recovery phase on substorm intensity	211 212
Figure 10.2Development of storm on January 21–22, 2005 under conditions of northward IMF.222Figure 10.3Examples of three substorms developing under conditions of northward IMF.223Figure 10.4Examples of substorms triggered by IMF northward turning or by sharp change of IMF B_{γ} polarity.225Figure 10.5Superposition of the IMF B_{γ} and B_{z} components, PC and AL indices for 12 substorms related to IMF northward turning.227Figure 11.1Example of asymmetrical response of summer and winter PC indices	Figure 9.12 Figure 9.13 Figure 10.1	Dependence of the <i>AL</i> drop and <i>PC</i> drop during the recovery phase on substorm intensity Dependence of the sawtooth substorm periodicity on average <i>PC</i> value and substorm intensity Relationship between coupling function E_{KL} and corresponding <i>PC</i> index under conditions of northward IMF $B_{a} > 2$ nT in respect	211 212
Figure 10.3for thward IMF.222Figure 10.3Examples of three substorms developing under conditions of northward IMF.223Figure 10.4Examples of substorms triggered by IMF northward turning or by sharp change of IMF B_{γ} polarity.225Figure 10.5Superposition of the IMF B_{γ} and B_{z} components, PC and AL indices for 12 substorms related to IMF northward turning.227Figure 11.1Example of asymmetrical response of summer and winter PC indices	Figure 9.12 Figure 9.13 Figure 10.1	Dependence of the <i>AL</i> drop and <i>PC</i> drop during the recovery phase on substorm intensity Dependence of the sawtooth substorm periodicity on average <i>PC</i> value and substorm intensity Relationship between coupling function E_{KL} and corresponding <i>PC</i> index under conditions of northward IMF $B_Z > 2$ nT in respect to azimuthal IMF component (1998–2002)	211 212 220
Figure 10.3Examples of three substorms developing under conditions of northward IMF	Figure 9.12 Figure 9.13 Figure 10.1 Figure 10.2	Dependence of the <i>AL</i> drop and <i>PC</i> drop during the recovery phase on substorm intensity Dependence of the sawtooth substorm periodicity on average <i>PC</i> value and substorm intensity Relationship between coupling function E_{KL} and corresponding <i>PC</i> index under conditions of northward IMF $B_Z > 2$ nT in respect to azimuthal IMF component (1998–2002) Development of storm on January 21–22, 2005 under conditions	211 212 220
Figure 10.4of northward IMF	Figure 9.12 Figure 9.13 Figure 10.1 Figure 10.2	Dependence of the <i>AL</i> drop and <i>PC</i> drop during the recovery phase on substorm intensity Dependence of the sawtooth substorm periodicity on average <i>PC</i> value and substorm intensity Relationship between coupling function E_{KL} and corresponding <i>PC</i> index under conditions of northward IMF $B_Z > 2$ nT in respect to azimuthal IMF component (1998–2002) Development of storm on January 21–22, 2005 under conditions of northward IMF.	211212220222
Figure 10.4Examples of substorms triggered by IMF northward turning or by sharp change of IMF B_y polarity	Figure 9.12 Figure 9.13 Figure 10.1 Figure 10.2 Figure 10.3	Dependence of the <i>AL</i> drop and <i>PC</i> drop during the recovery phase on substorm intensity	211 212 220 222
by sharp change of IMF B_{γ} polarity.225Figure 10.5Superposition of the IMF B_{γ} and B_{z} components, PC and AL indices for 12 substorms related to IMF northward turning.227Figure 11.1Example of asymmetrical response of summer and winter PC indices	Figure 9.12 Figure 9.13 Figure 10.1 Figure 10.2 Figure 10.3	Dependence of the <i>AL</i> drop and <i>PC</i> drop during the recovery phase on substorm intensity Dependence of the sawtooth substorm periodicity on average <i>PC</i> value and substorm intensity Relationship between coupling function E_{KL} and corresponding <i>PC</i> index under conditions of northward IMF $B_Z > 2$ nT in respect to azimuthal IMF component (1998–2002) Development of storm on January 21–22, 2005 under conditions of northward IMF Examples of three substorms developing under conditions of northward IMF.	 211 212 220 222 223
Figure 10.5Superposition of the IMF B_{γ} and B_{z} components, PC and AL indices for 12 substorms related to IMF northward turning.227Figure 11.1Example of asymmetrical response of summer and winter PC indices	Figure 9.12 Figure 9.13 Figure 10.1 Figure 10.2 Figure 10.3 Figure 10.4	Dependence of the <i>AL</i> drop and <i>PC</i> drop during the recovery phase on substorm intensity Dependence of the sawtooth substorm periodicity on average <i>PC</i> value and substorm intensity Relationship between coupling function E_{KL} and corresponding <i>PC</i> index under conditions of northward IMF $B_Z > 2$ nT in respect to azimuthal IMF component (1998–2002) Development of storm on January 21–22, 2005 under conditions of northward IMF Examples of three substorms developing under conditions of northward IMF Examples of substorms triggered by IMF northward turning or	 211 212 220 222 223
for 12 substorms related to IMF northward turning.227Figure 11.1Example of asymmetrical response of summer and winter PC indices	Figure 9.12 Figure 9.13 Figure 10.1 Figure 10.2 Figure 10.3 Figure 10.4	Dependence of the <i>AL</i> drop and <i>PC</i> drop during the recovery phase on substorm intensity	211212220222223225
Figure 11.1 Example of asymmetrical response of summer and winter <i>PC</i> indices	Figure 9.12 Figure 9.13 Figure 10.1 Figure 10.2 Figure 10.3 Figure 10.4 Figure 10.5	Dependence of the <i>AL</i> drop and <i>PC</i> drop during the recovery phase on substorm intensity Dependence of the sawtooth substorm periodicity on average <i>PC</i> value and substorm intensity Relationship between coupling function E_{KL} and corresponding <i>PC</i> index under conditions of northward IMF $B_Z > 2$ nT in respect to azimuthal IMF component (1998–2002) Development of storm on January 21–22, 2005 under conditions of northward IMF Examples of three substorms developing under conditions of northward IMF Examples of substorms triggered by IMF northward turning or by sharp change of IMF B_γ polarity Superposition of the IMF B_γ and B_γ components, <i>PC</i> and <i>AL</i> indices	 211 212 220 222 223 225
	Figure 9.12 Figure 9.13 Figure 10.1 Figure 10.2 Figure 10.3 Figure 10.4 Figure 10.5	Dependence of the <i>AL</i> drop and <i>PC</i> drop during the recovery phase on substorm intensity	 211 212 220 222 223 225 227
to impact of northward and azimuthal IMF components	Figure 9.12 Figure 9.13 Figure 10.1 Figure 10.2 Figure 10.3 Figure 10.4 Figure 10.5 Figure 11.1	Dependence of the <i>AL</i> drop and <i>PC</i> drop during the recovery phase on substorm intensity	 211 212 220 222 223 225 227
Figure 11.2 Sawtooth substorm on November 26–27, 2000 developed against the	Figure 9.12 Figure 9.13 Figure 10.1 Figure 10.2 Figure 10.3 Figure 10.4 Figure 10.5 Figure 11.1	Dependence of the <i>AL</i> drop and <i>PC</i> drop during the recovery phase on substorm intensity	 211 212 220 222 223 225 227 233
	Figure 9.12 Figure 9.13 Figure 10.1 Figure 10.2 Figure 10.3 Figure 10.4 Figure 10.5 Figure 11.1 Figure 11.2	Dependence of the <i>AL</i> drop and <i>PC</i> drop during the recovery phase on substorm intensity	 211 212 220 222 223 225 227 233
background of a solar proton event	Figure 9.12 Figure 9.13 Figure 10.1 Figure 10.2 Figure 10.3 Figure 10.4 Figure 10.5 Figure 11.1 Figure 11.2	Dependence of the <i>AL</i> drop and <i>PC</i> drop during the recovery phase on substorm intensity	 211 212 220 222 223 225 227 233 235
Figure 11.3 Behavior of the differences $(PCsum - E_{\nu_1})/E_{\nu_1}$ and $(PCwin - E_{\nu_1})/E_{\nu_1}$	Figure 9.12 Figure 9.13 Figure 10.1 Figure 10.2 Figure 10.3 Figure 10.4 Figure 10.5 Figure 11.1 Figure 11.2 Figure 11.3	Dependence of the <i>AL</i> drop and <i>PC</i> drop during the recovery phase on substorm intensity	 211 212 220 222 223 225 227 233 235
background of a solar proton event	Figure 9.12 Figure 9.13 Figure 10.1 Figure 10.2 Figure 10.3 Figure 10.4 Figure 10.5 Figure 11.1 Figure 11.2	Dependence of the <i>AL</i> drop and <i>PC</i> drop during the recovery phase on substorm intensity	 211 212 220 222 223 225 227 233 235
Figure 11.3 Behavior of the differences $(PCsum - E_{KL})/E_{KL}$ and $(PCwin - E_{KL})/E_{KL}$	Figure 9.12 Figure 9.13 Figure 10.1 Figure 10.2 Figure 10.3 Figure 10.4 Figure 10.5 Figure 11.1 Figure 11.2 Figure 11.3	Dependence of the <i>AL</i> drop and <i>PC</i> drop during the recovery phase on substorm intensity	 211 212 220 222 223 225 227 233 235

Figure 11.4	Behavior of differences (<i>PCsum–PCwin</i>)/ <i>PCwin</i> for 3 categories of	220
Figure 11.5	Scheme presenting the Region 1 currents closure in the summer	238
	and winter polar caps for magnetically quiet, weakly disturbed,	
	and strongly disturbed conditions	241
Figure 11.6	Statistically mean difference between values of summer and winter	
	PC indices in 2000 as a function of the IMF B_z component	242
Figure 12.1	Run of the <i>PC</i> index and development of auroral absorption on	• • •
T' 10.0	January 7, 2004.	249
Figure 12.2	Distribution of maximal absorption observed at the Canadian chain	250
T' 10.0	of stations under conditions of low magnetic activity.	250
Figure 12.3	Distribution of maximal absorption observed at the Canadian chain	0.5.1
T' 10.4	of stations under conditions of enhanced magnetic activity.	251
Figure 12.4	Correlation between the 1 min values of PC and absorption as a	
	function of U1 and geomagnetic latitude for winter months with low	0.5.1
T' 10 8	and enhanced magnetic activity.	251
Figure 12.5	Relationship between the PC index and auroral absorption at latitudes $(2.00 - 1.0070)$	S
	63.9° and 68.7° derived for time intervals of their best	250
F' 10 (correspondence.	252
Figure 12.6	Daily variations of parameters F_0Es and f_0F2 under quiet and	054
F' 12.1	disturbed conditions.	254
Figure 15.1	Relationship between average Forbush decrease (FD), southward ME	
	INF component (B_{ZS}) , and cloudiness above vostok for the most	250
E: 12.2	powerful FD events	238
Figure 15.2	Changes in daily mean cloudiness for three gradations of INIF B_{ZS}	260
E: 12.2	Component.	260
Figure 15.5	Drainage patient of near-surface katabatic winds	262
Figure 12.4	(Parish and Bromvich, 1991).	202
Figure 13.4	Conceptual scheme of vertical mass circulation forced by the	162
Figure 12 5	Ratabatic wind regime in Antarcuca (Parisi and Broniwich, 1991)	205
rigure 13.5	chause the Vestels station in pages IME strong pagetive and strong	
	above the vostok station in cases first strong negative and strong	261
Figure 136	Polationship between <i>PC</i> index IME <i>B</i> component and sudden	204
Figure 15.0	changes of surface temperature at Voctok in winter seasons of	
	1078 1002	266
Figure 137	Hourly temperature changes ΔT at stations Vostok. Dome C	200
Figure 15.7	and South Pole as a function of number of hourly intervals with	
	$R \sim -2 \mathrm{pT}$	267
Figure 13.8	$D_Z \sim -2$ III.	207
Figure 15.0	conditions of positive and negative <i>PC</i> index deviations	
	in 1978–1991	269
Figure 13.9	Transformation of atmospheric pressure height profiles above Vostok	207
1 15010 1007	under conditions of positive and pegative <i>PC</i> index deviations in	
	1978–1991	270
	12 / 5 12 2 11 10000000000000000000000000000	-,0

List of figures

Figure 13.10	Relationship between daily averaged PC index, IMF B_Z component	
	and extended (~ 2 days) anomalous winds at the Vostok station	
	during the winter seasons of 1981–1989	271
Figure 13.11	Anomalous winds at stations Vostok, Neumayer, Casey and	
	Russkaya in their relation to changes in the IMF B_{z} for winter	
	seasons of 1981–1989.	272
Figure 13.12	Spatial distribution of regular and anomalous winds at the Antarctic	
	stations.	273
Figure 13.13	Global atmospheric electric circuit and causes of its temporal and	
-	spatial variation (Tinsley and Zhou, 2006).	274

List of tables

Table 6.1	Average E_{KL} and PC values for different dynamic pressure gradients	5
	ΔP_{sw}	114
Table 7.1	Parameters of sawtooth substorms examined in the analysis: start of	f
	the PC growth, start of the AL growth and sudden onset of the AL	
	increase	143
Table 7.2	Mean values of PC and AE indices typical of different gradations of	f
	magnetic disturbances.	160
Table 8.1	List of magnetic storms used in the analysis	170
Table 9.1	The onset times of magnetic disturbances, auroral brightenings and	
	particle injections identified in the course of the repetitive bay-like	
	disturbances on October 4, 2000, March 20, 2001, August 28-29,	
	2000, November 6, 2000, and November 27, 2000	198
Table 9.2	Maximal coefficients of correlation between PC and AL indices,	
	between PC and ASYM indices, and between AL and ASYM indices	
	with indication of corresponding delay times. Delay times of AL and	d
	ASYM indices relative to PC are marked by $(+)$, ahead times of AL	
	relative to PC are marked by (-).	204
Table 12.1	List of stations whose riometer observations were used in	
	the analysis	248
	-	

List of abbreviations and acronyms

AA	auroral absorption
AARI	Arctic and Antarctic Research Institute
AWS	automatic weather station
AE	index of magnetic activity in the auroral zone: $AE = AU + AL $
AL	index of negative magnetic activity in the auroral zone
ASYM	index characterizing asymmetry of DR disturbances
AU	index of positive magnetic activity in auroral zone
a _p	planetary geomagnetic activity index
BPS	boundary plasma sheet
BR	radiation balance
BY	field-aligned current system determined by the IMF By component
	impact on magnetosphere
В	magnitude of interplanetary magnetic field IMF
B_{T}	tangential IMF component in GSM coordinates: $B_T = (B_y^2 + B_z^2)^{1/2}$
$B_{\rm x}$	radial IMF component in GSM coordinates
B_{y}^{n}	azimuthal IMF component in GSM coordinates
$B_{\overline{z}}$	vertical IMF component in GSM coordinates
B_{ZN}^{L}	northward (positive) IMF component in GSM coordinates
B _{ZS}	southward (negative) IMF component in GSM coordinates
CĈW	counterclockwise convection
CME	coronal mass ejection
CPCP	cross polar cap potential
CPCV	cross polar cap convection velocity
CPS	central plasma sheet
CW	clockwise convection
DCF	magnetic disturbances produced by currents flowing over the
	magnetopause
DMI	Danish Meteorological Institute
DP0	magnetic disturbances available irrespective of IMF impact on magnetosphere

DP1	magnetic disturbances of substorm type
DP2	high-latitude magnetic disturbances initiated by IMF B_{75} impact on
	magnetosphere
DP3	high-latitude magnetic disturbances initiated by IMF B ₂₀ impact on
	magnetosphere
DP4	high-latitude magnetic disturbances initiated by IMF <i>B</i> impact on
	magnetosphere
DR	magnetic disturbances produced by ring current in the inner
DR	magnetic disturbances produced by ring current in the inner
Det	index intensity of magnetic storms
DSI E	alectric field (interplanetary or ionospheric)
E	electric field (interpratetary of follospheric)
	eccentric dipole time
E_{KL}	(1979) geoeffective interplanetary electric field determined by Kan and Lee
E_{KR}	geoeffective interplanetary electric field determined by Kivelson and
	Riedly (2008)
E_{SW}	interplanetary electric field bearing by solar wind
$E_T(E_Y)$	tangential component of interplanetary electric field
FAC	field-aligned currents
FD	Forbush decrease (of galactic cosmic rays flux)
f ₀	critical frequency
GCR	galactic cosmic rays
HF	high frequency
H,D,Z(X,Y,Z)	components of geomagnetic field
IEF	interplanetary electric field
J(j)	electric currents (in ionosphere or magnetosphere)
K_{p}	planetary magnetic activity index
LLBL	low-latitude boundary layer
LT	local time
L-shell	radial distance in equatorial plane (in R_{F}) to the dipole magnetic line
	with certain value B
L1	Lagrange point
$l_0 (l_{eff})$	stagnation (reconnection) line length
MHD	magneto-hydrodynamic (simulation)
MP	magnetopause
MAGPC	initial version of PC index
NBZ	field-aligned current system associated with the IMF B_{7N} component
	impact on magnetosphere
Ne	electron density in the ionosphere layers
n	solar wind density
O+	oxygen ions of ionospheric origin in the magnetosphere
PCA	polar cap absorption
PCP	cross polar potential
P _{sw}	solar wind dynamic pressure
PC	index of polar cap magnetic activity

PCN	index of polar cap magnetic activity in northern hemisphere
PCS	index of polar cap magnetic activity in southern hemisphere
QDC	quiet daily curve
R _E	the Earth's radius
Regions 1/2	main field-aligned currents systems in the magnetosphere
SI	sudden impulse
SO	(substorm) sudden onset
SPE	solar proton events
SSC	storm sudden commencement
S ^p	quiet daily variation in the near-pole region
SYM	1-min index of the DR current intensity
THL	Thule station (Greenland)
TCV	traveling convection vortices
UT	universal (Greenwich) time
UV	ultra-violet irradiation
VOS	Vostok station (Antarctica)
V	geomagnetic field tube volume
V_{A}	Alfven velocity
$V_{SW}(v)$	solar wind velocity
α, β, φ	parameters characterizing statistically justified link between values δF
	and $E_{_{KL}}$
$\delta F\left(\Delta F \right)$	value of the polar cap magnetic disturbance vector
ΔT	temperature gradient
ΔV	transpolar potential
θ	angle between the IMF B_T component and geomagnetic Z axis
Σ_{A}	Alfven conductivity
$\Sigma_{_{H}}$	Hall conductivity
Σ_{P}	Pedersen conductivity
$arPsi_{_{PC}}$	$(\Delta \Phi)$ cross polar cap potential difference
$arPsi_{_{SW}}$	potential difference in solar wind

About the Authors

Oleg Troshichev

After graduating from the Faculty of Physics of Leningrad University (1961) and earning Ph.D degrees (1969) from the Siberian Institute of Earth Magnetism, Ionosphere, and Radiowave Propagation (Irkutsk), Oleg worked at Leningrad University. In 1978 he affiliated with the Arctic and Antarctic Research Institute (AARI). In 1979, he formulated the idea of polar cap magnetic activity as a proxy of the geoeffective solar wind influence on the magnetosphere. For over three decades he has led research programs that elaborate the procedures for the *PC* index derivation and methods for monitoring the magnetosphere state by means of the *PC* index. His contribution to solar–terrestrial physics includes: studies of the high-latitude magnetic disturbances and their relation to the field-aligned magnet-ospheric currents; elaboration of the mechanism for field-aligned current generation in the magnetosphere; the concept of solar wind influence on processes in the Antarctic winter atmosphere; mechanisms for the QBO influence on ozone content in polar caps, and others.

Alexander Janzhura

Alexander received his M.Sc from the Russian State Hydrometeorological University, St. Petersburg as master of science in 2002. From 1994 to 1998 he worked at the Russian Hydromet service stations in Arctica. In 1999, he affiliated with the Department of Geophysics of the Arctic and Antarctic Research Institute (AARI) in St. Petersburg, where he became a leading developer of hard- and software for geophysical research. He initiated the adoption of the digital data aquisition system for the Russian Arctic and Antarctic geophysical networks and organized the on-line transmission of geophysical data from remote stations to AARI. He played a crucial role in developing the on-line procedure for the *PC* index calculation. In 2009, he received his Ph.D degree in geophysic sciences. His thesis contained strong evidence that the *PC* index can be regarded as an adequate ground-based indicator of the solar wind energy that enters into the magnetosphere.

1. Introduction

The term 'space weather' came into being about 25–30 years ago to denote, by analogy with 'meteorological weather', a complex process of space phenomena and processes affected by varying sun activity. In its broad sense, the term refers to entire an heliosphere whose limits are determined by expanding fluxes of solar plasma. In its narrow, usual sense, the term applies to the Earth environment and, to be more exact, to the space subjected to geomagnetic field influence, i.e. to the Earth's magnetosphere.

The concept of bad (disturbed) space weather covers a wide range of phenomena directly affecting human activity. They include satellite damage, radiation hazards for astronauts and airline passengers, telecommunication problems, outages of power and electronic systems, effects in the atmospheric processes, and even some evidence of impact on human health. These issues, as well as a description of some main physics processes that provide a basis of the above phenomena are well presented in the book Space Weather: Physics and *Effects* by Bothimer and Daglis (2007). Results highlighted in the book demonstrate the vital necessity of space weather forecasting and nowcasting. Prediction of space weather is based on continuous ground-based or space missions-based visual and instrumental observations of processes on the solar disc, primarily Coronal Mass Ejections (CME), that provide information on probable space weather disturbances 1–3 days in advance. Space weather nowcasting is based mainly on measurements of solar wind parameters - wind speed and IMF B_{z} component being the most important of them – at the Lagrange point L1, that provide information on predictable space weather changes about one hour in advance. Unfortunately, specific features of solar wind impact on the Earths's magnetosphere imperfectly and so never conform to solar wind features detected at point L1, except interplanetary shocks producing powerful magnetic disturbances.

Taking into account extremely vague ideas on the physical mechanisms of the solar wind-magnetosphere coupling and a lack of regular information on the magnetopause parameters in their relation to the solar wind impact, it would be very important to derive an adequate indicator displaying the coupling efficiency, using regular observations within the magnetosphere. It is becoming obvious right away that satellites moving in space cannot provide timely data on plasma and magnetic fields at the required points of the magnetosphere; in addition, there is always a problem of separation of temporal and spatial varia-

O. Troshichev and A. Janzhura, *Space Weather Monitoring by Ground-Based Means: PC index*, Springer Praxis Books, DOI 10.1007/978-3-642-16803-1_1, © Springer-Verlag Berlin Heidelberg 2012

tions in spacecraft device readings. It implies that a ground network of observations must form the basis for a derivation of a coupling efficiency indicator with reference to satellitebased measurements to testify and verify the indicator.

Indeed, ground-based indices such as Kp, AE and Dst (we shall not mention other less popular ones), are commonly considered as indicators displaying the power of disturbances in the magnetosphere and, therefore, the current state of space weather. However, all these indices characterize the energy realized in the form of magnetospheric disturbances but not the energy coming into the magnetosphere, or that stored in the magnetosphere, while coupling the solar wind with the magnetosphere. Indeed, the AE index, which is regarded as a characteristic of a magnetospheric substorm, is a measure of electrojet intensity in the auroral zone; the Dst index, regarded as a characteristic of global magnetospheric storms, is a measure of magnetic depression in the H component in the equatorial zone; and the physical meaning of the Kp index is not clear at all. So all these indices do not display a solar wind energy input into the magnetosphere, and therefore cannot be regarded as an indicator of the efficiency of solar wind–magnetosphere coupling. Only coupling efficiency monitoring is important for reliable space weather nowcasting.

This monograph is devoted to the *PC* index which was put into practice about 30 years ago as an index of polar cap magnetic activity. Some recent studies have showed that the implications of a *PC* index seem to be far more significant: the index can be considered as an adequate proxy of solar wind energy incoming into the magnetosphere, and a basic procedure for *PC* index calculation has been developed to provide uninterrupted on-line *PC* index derivation. These circumstances make it possible to examine the *PC* index as the most proper applicant to monitor the geoefficiency of the solar wind–magnetosphere coupling, and therefore to monitor (and nowcast) space weather changes.

The following issues are discussed in the book:

- PC index concept;
- *PC* index derivation procedure and its verification;
- *PC* index response to solar wind parameters changes;
- *PC* index relation to magnetospheric substorms and magnetic storms;
- PC index saturation and solar wind-magnetosphere coupling functions, physical sense
 of occasional discrepancies between summer and winter indices;
- PC index as an indicator of an auroral ionosphere state and anomalous atmospheric processes in Antarctica; and
- physical meanings of some peculiarities in PC index behavior

1.1 Reference

Bothimer V, Daglis IA (2007) Space weather: physics and effects. Chichester: Springer Praxis

2. Physical background (historical outline)

2.1 Polar geomagnetic disturbances influenced by solar wind

The first examinations of the relations between solar wind variations and geomagnetic activity, represented by the Kp index, displayed the dependence of the Kp value on the solar wind speed v and the interplanetary magnetic field (IMF) intensity B (Coleman et al., 1961; Snyder et al., 1963). Later, it was found that magnetic activity is much better determined by the IMF southward (B_{zs}) component (Fairfield and Cahill, 1966; Wilcox *et al.*, 1967; Rostoker and Fälthammar, 1967), or by the IMF transverse fluctuations $(\delta B_{\tau})^2 = (\delta B_{\tau})^2 + (\delta B_{\nu})^2$ (Baliff et al., 1967). The dependence of the auroral AE index on southward IMF was shown by Pudovkin et al. (1970), Arnoldy (1971), Foster et al. (1971), Kokubun (1972) and Meng et al. (1973). It was found that magnetic activity in the auroral zone starts to increase about 15–30 minutes after the IMF turns south, and the correlation between B_{z} and AE variations is maximal for the delay time ~ 40 minutes. As analyzes (Kokubun, 1972; Kane, 1974) showed, geomagnetic storms are also affected by the IMF southward component, but they develop only if the magnetosphere is exposed to the southward IMF for some hours. According to Hirshberg and Colburn (1969) and Russel et al. (1974), Dst variation develops when the value of southward IMF exceeds the threshold level of -(3-5) nT. The correlation of the AE index with the solar wind fluctuations distinctly increases if the product of the solar wind speed and southward IMF is taken into account (Rostoker and Fälthammar, 1967; Garrett et al., 1974; Murayama and Hakamada, 1975). The conclusion made by Rostoker and Fälthammar (1967) is that the interplanetary electric field $E = [vB_{yy}]$ plays a crucial part in geomagnetic disturbances.

The actual distribution of magnetic disturbances at ground level is commonly described by systems of equivalent currents being hypothetic currents, providing the observed magnetic effect on the ground surface. Nagata and Kokubun (1962) were the first to examine under the name of S^P_p a current system of high-latitude magnetic variations observed within the polar cap in periods free of magnetic disturbances. Next, Obayashi (1967) separated a special class of magnetic disturbances (DP2) from magnetic substorms (DP1): the DP2 current system consists of two vortices without any peculiarities in the auroral zone and with currents flowing sunward in the near-pole region. DP2 variations were extensively studied

^{O. Troshichev and A. Janzhura, Space Weather Monitoring by Ground-Based Means: PC index,} Springer Praxis Books, DOI 10.1007/978-3-642-16803-1_2,
© Springer-Verlag Berlin Heidelberg 2012

by Nishida, who revealed their close relation to southward IMF (Nishida, 1968a,b; Nishida and Maezawa, 1971). According to Nishida (1968a), a DP2 currents system is a global system expanding from pole to equator, with focuses located at the latitudes of $\Phi=72-74^{\circ}$. Further studies (Troshichev, 1975) showed that a two-vortices DP2 current system is terminated by the latitudes of Φ =50–60°, the disturbances at the lower latitudes of Φ < 50° being produced by equivalent zonal currents of the extra-ionospheric origin. Current vortices focuses in system (Troshichev, 1975) turned out to be located at the morning and evening poleward boundaries of the auroral oval (Φ =76–78°). This peculiarity made it possible to further identify the current vortices focuses with disposition of the magnetospheric fieldaligned currents flowing in and out of the polar ionosphere. Kuznetsov and Troshichev (1977) also noted that variations similar to DP2 are observed in the absence of southward IMF. This fact has been attributed to the permanent availability of the geomagnetic variation of (S_q^q) type (Nagata and Kokubun, 1962). Similar permanent disturbances were also separated by Mishin et al. (1978) and Levitin et al. (1982). To explain generation of these weak disturbances, a mechanism of quasi-viscous interaction between the solar wind and the magnetosphere (Axford, 1964) was accepted.

Besides the DP2 currents affected by southward IMF, some other types of disturbances are also typical of the polar caps. An abnormal 'near-pole DP variation' with direction of currents opposite to that in DP2 was separated by Iwasaki (1971) in the dayside summer polar cap. It was shown by Maezawa (1976) and Kuznetsov and Troshichev (1977) that these disturbances (named as DP3 by Kuznetsov and Troshichev (1977)) are observed when northward IMF impacts on the magnetosphere, and their current system consists of two less-scale current cells centered at latitudes of $\phi \sim 82^{\circ}$ with the current flow opposite to that in DP2.

Disturbances related to azimuthal IMF component were first separated as an effect of the IMF sector structure (Svalgaard, 1968; Mansurov, 1969). Later, their dependence on azimuthal IMF component was demonstrated (Friis-Christensen *et al.*, 1972; Sumaruk and Feldstein, 1973; Mishin *et al.*, 1973). The current system of these disturbances, named as BY or as DP4 (Kuznetsov and Troshichev, 1977), includes currents flowing along geomagnetic latitudes with maximal intensity in the daytime cusp region ($\Phi \sim 80^\circ$), the current direction being dependent on the sign of the IMF azimuthal component. The actual interplanetary magnetic field usually contains both vertical and azimuthal component s, and the ground magnetic disturbances display the combined effect of DP2+DP4 or DP3+DP4 current systems. In these conditions, the influence of the azimuthal IMF component reveals itself in the deformation of the DP2 (or DP3) current systems: in the northern polar cap, the evening DP2 current vortex expands into the dawn sector under conditions of $B_\gamma > 0$, and the morning vortex expands into the dusk sector under conditions of $B_\gamma < 0$ (Matsushita *et al.*, 1973).

The multi-functional analysis of relationships between the IMF and geomagnetic components has been fulfilled by Troshichev and Tsyganenko (1979) to separate effects of the IMF B_x , B_y , B_z components in the case of their combined influence. Results of this analysis (presented in Figure 2.1) demonstrate, as in previous studies, availability of the DP2, DP3 and DP4 current systems associated with the action of southward, northward and azimuthal IMF components respectively. DP2 currents are shown in Figure 2.1 for two different IMF B_{zs} values: B_z =-1nT (left) and B_z =-0.25nT (right). DP4 currents are shown for B_y > 0 in

Figure 2.1 Current systems of DP2, DP3 and DP4 disturbances generated by variations of IMF components: (a) southward B_{ZS} =-1nT, (b) southward B_{ZS} =-0.25nT, (c) northward B_{ZN} , (d) azimuthal B_{γ} (Kuznetsov and Troshichev, 1977). Short arrows present distribution of the magnetic disturbance vectors on the ground surface.

the northern hemisphere. The current flow in DP4 system is quite opposite in the southern polar cap.

In addition, the residual magnetic disturbance DP0 unrelated to the IMF has been separated in line with the conclusion made by Kuznetsov and Troshichev (1977). The DP0 current system shown in Figure 2.2 for conditions of (a) northward and (b) southward IMF component is similar to the DP2 system, but exists permanently irrespective of the IMF polarity. Therefore, under the influence of southward IMF, the DP2 currents can be considered as an enhancement of currents in the constantly existing DP0 system. Later, Sergeev and Kuznetsov (1981) showed that intensity of the DP0 currents well correlates with the solar wind velocity v in the second power and, therefore, can be associated with the solar wind dynamic pressure.