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Preface

The present volume arose from the conference on “Quantum field theory and
gravity – Conceptual and mathematical advances in the search for a unified
framework”, held at the University of Regensburg (Germany) from September
28 to October 1, 2010. This conference was the successor of similar confer-
ences which took place at the Heinrich Fabri Institut in Blaubeuren in 2003
and 2005 and at the Max Planck Institute for Mathematics in the Sciences
in Leipzig in 2007. The intention of this series of conferences is to bring to-
gether mathematicians and physicists to discuss profound questions within
the non-empty intersection of mathematics and physics. More specifically,
the series aims at discussing conceptual ideas behind different mathematical
and physical approaches to quantum field theory and (quantum) gravity.

As its title states, the Regensburg conference was devoted to the search
for a unified framework of quantum field theory and general relativity. On
the one hand, the standard model of particle physics – which describes all
physical interactions except gravitation – is formulated as a quantum field
theory on a fixed Minkowski-space background. The affine structure of this
background makes it possible for instance to interpret interacting quantum
fields as asymptotically “free particles”. On the other hand, the gravitational
interaction has the peculiar property that all kinds of energy couple to it.
Furthermore, since Einstein developed general relativity theory, gravity is
considered as a dynamical property of space-time itself. Hence space-time
does not provide a fixed background, and a back-reaction of quantum fields
to gravity, i.e. to the curvature of space-time, must be taken into account.
It is widely believed that such a back-reaction can be described consistently
only by a (yet to be found) quantum version of general relativity, commonly
called quantum gravity. Quantum gravity is expected to radically change our
ideas about the structure of space-time. To find this theory, it might even be
necessary to question the basic principles of quantum theory as well.

Similar to the third conference of this series, the intention of the confer-
ence held at the University of Regensburg was to provide a forum to discuss
different mathematical and conceptual approaches to a quantum (field) the-
ory including gravitational back-reactions. Besides the two well-known paths
laid out by string theory and loop quantum gravity, also other ideas were pre-
sented. In particular, various functorial approaches were discussed, as well as
the possibility that space-time emerges from discrete structures.

vii



viii Preface

The present volume provides an appropriate cross-section of the con-
ference. The refereed articles are intended to appeal to experts working in
different fields of mathematics and physics who are interested in the subject
of quantum field theory and (quantum) gravity. Together they give the reader
some overview of new approaches to develop a quantum (field) theory taking
a dynamical background into account.

As a complement to the invited talks which the articles in this volume
are based on, discussion sessions were held on the second and the last day of
the conference. We list some of the questions raised in these sessions:

1. Can we expect to obtain a quantum theory of gravity by purely math-
ematical considerations? What are the physical requirements to expect
from a unified field theory? How can these be formulated mathemat-
ically? Are the present mathematical notions sufficient to formulate
quantum gravity, or are new mathematical concepts needed? Are the
criteria of mathematical consistency and simplicity promising guiding
principles for finding a physical theory? Considering the wide variety
of existing approaches, the use of gedanken experiments as guiding
paradigms seems indispensable even for pure mathematicians in the
field.

2. Evolution or revolution? Should we expect progress rather by small
steps or by big steps? By “small steps” we mean a conservative approach
towards a unified theory where one tries to keep the conventional ter-
minology as far as possible. In contrast, proceeding in “big steps” often
entails to replace the usual terminology and the conventional physical
objects by completely new ones.

In the discussion, the possibilities for giving up the following con-
ventional structures were considered:
• Causality: In what sense should it hold in quantum gravity?
• Superposition principle: Should it hold in a unified field theory?
More specifically, do we have to give up the Hilbert space formalism
and its probabilistic interpretation?

A related question is:
3. Can we quantize gravity separately? That is, does it make physical sense

to formulate a quantum theory of pure gravity? Can such a formulation
be mathematically consistent? Or is it necessary to include all other
interactions to obtain a consistent theory?

4. Background independence: How essential is it, and which of the present
approaches implement it? Which basic mathematical structure would
be physically acceptable as implementing background independence?

5. What are the relevant open problems in classical field theory?One prob-
lem is the concept of charged point particles in classical electrodynamics
(infinite self-energy). Other problems concern the notion of quasi-local
mass in general relativity and the cosmic censorship conjectures.
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6. (How) can we test quantum gravity? Can one hope to test quantum
gravity in experiments whose initial conditions are controlled by hu-
mans, similar to tests of the standard model in particle accelerators?
Or does one need to rely on astronomical observations (of events like
supernovae or black hole mergers)?

Having listed some of the basic questions, we will now give brief sum-
maries of the articles in this volume. They are presented in chronological
order of the corresponding conference talks. Unfortunately, not all the topics
discussed at the conference are covered in this volume, because a few speakers
were unable to contribute; see also pp. xii–xiii below.

The volume begins with an overview by Claus Kiefer on the main roads
towards quantum gravity. After a brief motivation why one should search for
a quantum theory of gravitation, he discusses canonical approaches, covari-
ant approaches like loop quantum gravity, and string theory. As two main
problems that a theory of quantum gravity should solve, he singles out a sta-
tistical explanation of the Bekenstein–Hawking entropy and a description of
the final stage of black-hole evaporation. He summarizes what the previously
discussed approaches have found out about the first question so far.

Locally covariant quantum field theory is a framework proposed by Bru-
netti–Fredenhagen–Verch that replaces the Haag–Kastler axioms for a quan-
tum field theory on a fixed Minkowski background, by axioms for a functor
which describes the theory on a large class of curved backgrounds simultane-
ously. After reviewing this framework, Klaus Fredenhagen∗ 1 and Katarzyna
Rejzner suggest that quantum gravity can be obtained from it via perturba-
tive renormalization à la Epstein–Glaser of the Einstein–Hilbert action. One
of the technical problems one encounters is the need for a global version of
BRST cohomology related to diffeomorphism invariance. As a preliminary
step, the authors discuss the classical analog of this quantum problem in
terms of infinite-dimensional differential geometry.

Based on his work with Joel Smoller, Blake Temple suggests an alter-
native reason for the observed increase in the expansion rate of the universe,
which in the standard model of cosmology is explained in terms of “dark en-
ergy” and usually assumed to be caused by a positive cosmological constant.
He argues that since the moment when radiation decoupled from matter
379000 years after the big bang, the universe should be modelled by a wave-
like perturbation of a Friedmann–Robertson–Walker space-time, according
to the mathematical theory of Lax–Glimm on how solutions of conservation
laws decay to self-similar wave patterns. The possible perturbations form a
1-parameter family. Temple proposes that a suitable member of this family
describes the observed anomalous acceleration of the galaxies (without in-
voking a cosmological constant). He points out that his hypothesis makes
testable predictions.

1In the cases where articles have several authors, the star marks the author who delivered
the corresponding talk at the conference.
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The term “third quantization” refers to the idea of quantum gravity as
a quantum field theory on the space of geometries (rather than on space-
time), which includes a dynamical description of topology change. Steffen
Gielen and Daniele Oriti∗ explain how matrix models implement the third-
quantization program for 2-dimensional Riemannian quantum gravity, via a
rigorous continuum limit of discretized geometries. Group field theory (GFT)
models, which originated in loop quantum gravity (LQG) but are also rele-
vant in other contexts, implement third quantization for 3-dimensional Rie-
mannian quantum gravity – but only in the discrete setting, without taking
a continuum limit. The authors compare the GFT approach to the LQG-
motivated idea of constructing, at least on a formal level, a continuum third
quantization on the space of connections rather than geometries. They ar-
gue that the continuum situation should be regarded only as an effective
description of a physically more fundamental GFT.

Andreas Döring∗ and Rui Soares Barbosa present the topos approach to
quantum theory, an attempt to overcome some conceptual problems with the
interpretation of quantum theory by using the language of category theory.
One aspect is that physical quantities take their values not simply in the real
numbers; rather, the values are families of real intervals. The authors describe
a connection between the topos approach, noncommutative operator algebras
and domain theory.

Many problems in general relativity, as well as the formulation of the
AdS/CFT correspondence, involve assigning a suitable boundary to a given
space-time. A popular choice is Penrose’s conformal boundary, but it does not
always exist, and it depends on non-canonical data and is therefore not always
unique. José Luis Flores, Jónatan Herrera and Miguel Sánchez∗ explain the
construction of a causal boundary of space-time which does not suffer from
these problems. They describe its properties and the relation to the conformal
boundary. Several examples are discussed, in particular pp-waves.

Dietrich Häfner gives a mathematically rigorous description of the Haw-
king effect for second-quantized spin- 12 fields in the setting of the collapse of
a rotating charged star. The result, which confirms physical expectations, is
stated and proved using the language and methods of scattering theory.

One problem in constructing a background-free quantum theory is that
the standard quantum formalism depends on a background metric: its opera-
tional meaning involves a background time, and its ability to describe physics
locally in field theory arises dynamically, via metric concepts like causality
and cluster decomposition. In his general boundary formulation (GBF) of
quantum theory, Robert Oeckl tries to overcome this problem by using, in-
stead of spacelike hypersurfaces, boundaries of arbitrary spacetime regions
as carriers of quantum states. His article lists the basic GBF objects and the
axioms they have to satisfy, and describes how the usual quantum states,
observables and probabilities are recovered from a GBF setting. He proposes
various quantization schemes to produce GBF theories from classical theories.
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Felix Finster, Andreas Grotz∗ and Daniela Schiefeneder introduce caus-
al fermion systems as a general mathematical framework for formulating rela-
tivistic quantum theory. A particular feature is that space-time is a secondary
object which emerges by minimizing an action for the so-called universal
measure. The setup provides a proposal for a “quantum geometry” in the
Lorentzian setting. Moreover, numerical and analytical results on the sup-
port of minimizers of causal variational principles are reviewed which reveal
a “quantization effect” resulting in a discreteness of space-time. A brief survey
is given on the correspondence to quantum field theory and gauge theories.

Christian Bär∗ and Nicolas Ginoux present a systematic construction
of bosonic and fermionic locally covariant quantum field theories on curved
backgrounds in the case of free fields. In particular, they give precise math-
ematical conditions under which bosonic resp. fermionic quantization is pos-
sible. It turns out that fermionic quantization requires much more restrictive
assumptions than bosonic quantization.

Christopher J. Fewster asks whether every locally covariant quantum
field theory (cf. the article by Fredenhagen and Rejzner described above)
represents “the same physics in all space-times”. In order to give this phrase
a rigorous meaning, he defines the “SPASs” property for families of locally
covariant QFTs, which intuitively should hold whenever each member of the
family represents the same physics in all space-times. But not every family of
locally covariant QFTs has the SPASs property. However, for a “dynamical
locality” condition saying that kinematical and dynamical descriptions of
local physics coincide, every family of dynamically local locally covariant
QFTs has SPASs.

Rainer Verch extends the concept of local thermal equilibrium (LTE)
states, i.e. quantum states which are not in global thermal equilibrium but
possess local thermodynamical parameters like temperature, to quantum field
theory on curved space-times. He describes the ambiguities and anomalies
that afflict the definition of the stress-energy tensor of QFT on curved space-
times and reviews the work of Dappiaggi–Fredenhagen–Pinamonti which, in
the setting of the semi-classical Einstein equation, relates a certain fixing of
these ambiguities to cosmology. In this context, he applies LTE states and
shows that the temperature behavior of a massless scalar quantum field in
the very early history of the universe is more singular than the behavior of
the usually considered model of classical radiation.

Inspired by a version of Mach’s principle, Julian Barbour presents a
framework for the construction of background-independent theories which
aims at quantum gravity, but whose present culmination is a theory of clas-
sical gravitation called shape dynamics. Its dynamical variables are the ele-
ments of the set of compact 3-dimensional Riemannian manifolds divided by
isometries and volume-preserving conformal transformations. It “eliminates
time”, involves a procedure called conformal best matching, and is equiva-
lent to general relativity for space-times which admit a foliation by compact
spacelike hypersurfaces of constant mean curvature.
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Michael K.-H. Kiessling considers the old problem of finding the cor-
rect laws of motion for a joint evolution of electromagnetic fields and their
point-charge sources. After reviewing the long history of proposals, he re-
ports on recent steps towards a solution by coupling the Einstein–Maxwell–
Born–Infeld theory for an electromagnetic space-time with point defects to
a Hamilton–Jacobi theory of motion for these defects. He also discusses how
to construct a “first quantization with spin” of the sources in this classical
theory by replacing the Hamilton–Jacobi law with a de Broglie–Bohm–Dirac
quantum law of motion.

Several theories related to quantum gravity postulate (large- or small-
sized) extra dimensions of space-time. Stefan Hollands’ contribution inves-
tigates a consequence of such scenarios, the possible existence of higher-
dimensional black holes, in particular of stationary ones. Because of their
large number, the possible types of such stationary black holes are much
harder to classify than their 4-dimensional analogs. Hollands reviews some
partial uniqueness results.

Since properties of general relativity, for instance the Einstein equiva-
lence principle (EEP), could conceivably fail to apply to quantum systems,
experimental tests of these properties are important. Domenico Giulini’s arti-
cle explains carefully which subprinciples constitute the EEP, how they apply
to quantum systems, and to which accuracy they have been tested. In 2010,
Müller–Peters–Chu claimed that the least well-tested of the EEP subprinci-
ples, the universality of gravitational redshift, had already been verified with
very high precision in some older atom-interferometry experiments. Giulini
argues that this claim is unwarranted.

Besides the talks summarized above there were also presentations cover-
ing the “main roads” to quantum gravity and other topics related to quantum
theory and gravity. PDF files of these presentations can be found at www.uni-
regensburg.de/qft2010.

Dieter Lüst (LMU München) gave a talk with the title The landscape of
multiverses and strings: Is string theory testable?. He argued that, despite the
huge number of vacua that superstring/M-theory produces after compactifi-
cation, it might still yield experimentally testable predictions. If the string
mass scale, which can a priori assume arbitrary values in brane-world scenar-
ios, is not much larger than 5 TeV, then effects like string Regge excitations
will be seen at the Large Hadron Collider.

Christian Fleischhack from the University of Paderborn gave an over-
view of loop quantum gravity, emphasizing its achievements – e.g. the con-
struction of geometric operators for area and volume, and the derivation of
black hole entropy – but also its problems, in particular the still widely un-
known dynamics of the quantum theory.

In her talk New ‘best hope’ for quantum gravity, Renate Loll from the
University of Utrecht presented the motivation, the status and perspectives of
“Quantum Gravity from Causal Dynamical Triangulation (CDT)” and how

http://www.uni-regensburg.de/qft2010
http://www.uni-regensburg.de/qft2010
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it is related to other approaches to a non-perturbative and mathematically
rigorous formulation of quantum gravity.

Mu-Tao Wang from Columbia University gave a talk On the notion of
quasilocal mass in general relativity. After explaining why it is difficult to
define a satisfying notion of quasilocal mass, he presented a new proposal
due to him and Shing-Tung Yau. This mass is defined via isometric embed-
dings into Minkowski space and has several desired properties, in particular
a vanishing property that previous definitions were lacking.

Motivated by the question – asked by ’t Hooft and others – whether
quantum mechanics could be an emergent phenomenon that occurs on length
scales sufficiently larger than the Planck scale but arises from different dy-
namics at shorter scales, Thomas Elze from the University of Pisa discussed in
the talk General linear dynamics: quantum, classical or hybrid a path-integral
representation of classical Hamiltonian dynamics which allows to consider di-
rect couplings of classical and quantum objects. Quantum dynamics turns out
to be rather special within the class of such general linear evolution laws.

In his talk on Massive quantum gauge models without Higgs mechanism,
Michael Dütsch explained how to construct the S-matrix of a non-abelian
gauge theory in Epstein–Glaser style, via the requirements of renormalizabil-
ity and causal gauge invariance. These properties imply already the occur-
rence of Higgs fields in massive non-abelian models; the Higgs fields do not
have to be put in by hand. He discussed the relation of this approach to
model building via spontaneous symmetry breaking.

Jerzy Kijowski from the University of Warszawa spoke about Field quan-
tization via discrete approximations: problems and perspectives. He explained
how the set of discrete approximations of a physical theory is partially or-
dered, and that the observable algebras form an inductive system for this
partially ordered set, whereas the states form a projective system. Then he
argued that loop quantum gravity is the best existing proposal for a quantum
gravity theory, but suffers from the unphysical property that its states form
instead an inductive system.

Acknowledgments

It is a great pleasure for us to thank all participants for their contributions,
which have made the conference so successful. We are very grateful to the
staff of the Department of Mathematics of the University of Regensburg,
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Quantum Gravity: Whence, Whither?

Claus Kiefer

Abstract. I give a brief summary of the main approaches to quantum
gravity and highlight some of the recent developments.

Mathematics Subject Classification (2010). Primary 83-02; Secondary
83C45, 83C47, 83E05, 83E30.

Keywords.Quantum gravity, string theory, quantum geometrodynamics,
loop quantum gravity, black holes, quantum cosmology.

1. Why quantum gravity?

Quantum theory provides a universal framework that encompasses so far
all particular interactions – with one exception: gravitation. The question
whether gravity must also be described by a quantum theory at the most
fundamental level and, if yes, how such a theory can be constructed, is per-
haps the deepest unsolved problem of theoretical physics. In my contribution
I shall try to give a general motivation and a brief overview of the main
approaches as well as of some recent developments and applications. A com-
prehensive presentation can be found in [1], where also many references are
given; an earlier short overview is [2].

The main obstacle so far in constructing a theory of quantum gravity
is the lack of experimental support. Physics is an empirical science, and it
is illusory to expect that a new fundamental physical theory can be found
without the help of data. This difficulty is connected with the fact that the
fundamental quantum-gravity scale – the Planck scale – is far from being
directly accessible. The Planck scale (Planck length, Planck time, and Planck
mass or energy) follows upon combining the gravitational constant, G, the
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2 C. Kiefer

speed of light, c, and the quantum of action, �,

lP =

√
�G

c3
≈ 1.62× 10−33 cm , (1)

tP =
lP
c

=

√
�G

c5
≈ 5.39× 10−44 s , (2)

mP =
�

lPc
=

√
�c

G
≈ 2.18× 10−5 g ≈ 1.22× 1019 GeV/c2 . (3)

To probe the Planck scale with present technology, for example, one would
need a storage ring of galactic size, something beyond any imagination. So
why should one be interested in looking for a quantum theory of gravity?

The reasons are of conceptual nature. The current edifice of theoreti-
cal physics cannot be complete. First, Einstein’s theory of general relativity
(GR) breaks down in certain situations, as can be inferred from the singu-
larity theorems. Such situations include the important cases of big bang (or
a singularity in the future) and the interior of black holes. The hope is that
a quantum theory can successfully deal with such situations and cure the
singularities. Second, present quantum (field) theory and GR use concepts of
time (and spacetime) that are incompatible with each other. Whereas current
quantum theory can only be formulated with a rigid external spacetime struc-
ture, spacetime in GR is dynamical; in fact, even the simplest features of GR
(such as the gravitational redshift implemented e.g. in the GPS system) can-
not be understood without a dynamical spacetime. This is often called the
problem of time, since non-relativistic quantum mechanics is characterized
by the absolute Newtonian time t as opposed to the dynamical configuration
space. A fundamental quantum theory of gravity is therefore assumed to be
fully background-independent. And third, the hope that all interactions of
Nature can be unified into one conceptual framework will only be fulfilled if
the present hybrid character of the theoretical structure is overcome.

In the following, I shall first review the situations where quantum effects
are important in a gravitational context. I shall then give an overview of the
main approaches and end with some applications.

2. Steps towards quantum gravity

The first level of connection between gravity and quantum theory is quan-
tum mechanics in an external Newtonian gravitational field. This is the only
level where experiments exist so far. The quantum-mechanical systems are
mostly neutrons or atoms. Neutrons, like any spin-1/2 system, are described
by the Dirac equation, which for the experimental purposes is investigated in
a non-relativistic approximation (‘Foldy–Wouthuysen approximation’). One
thereby arrives at

i�
∂ψ

∂t
≈ HFWψ
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with (in a standard notation)

HFW = βmc2︸ ︷︷ ︸
rest mass

+
β

2m
p2︸ ︷︷ ︸

kinetic energy

− β

8m3c2
p4︸ ︷︷ ︸

SR correction

+βm(a x)︸ ︷︷ ︸
COW

− ωL︸︷︷︸
Sagnac effect

− ωS︸︷︷︸
Mashhoon effect

+
β

2m
p
a x

c2
p+

β�

4mc2
�Σ(a× p) +O

(
1

c3

)
.

(4)

The underbraced terms have been experimentally tested directly or indi-
rectly. (‘COW’ stands for the classic neutron interferometry experiment per-
formed by Colella, Overhauser, and Werner in 1975.)

The next level on the way to quantum gravity is quantum field theory
in an external curved spacetime (or, alternatively, in a non-inertial system in
Minkowski spacetime). Although no experimental tests exist so far, there are
definite predictions.

One is the Hawking effect for black holes. Black holes radiate with a
temperature proportional to �,

TBH =
�κ

2πkBc
, (5)

where κ is the surface gravity. In the important special case of a Schwarzschild
black hole with mass M , one has for the Hawking temperature,

TBH =
�c3

8πkBGM

≈ 6.17× 10−8

(
M�
M

)
K .

Due to the smallness of this temperature, the Hawking effect cannot be ob-
served for astrophysical black holes. One would need for this purpose primor-
dial black holes or small black holes generated in accelerators.

Since black holes are thermodynamical systems, one can associate with
them an entropy, the Bekenstein–Hawking entropy

SBH = kB
A

4l2P

Schwarzschild≈ 1.07× 1077kB

(
M

M�

)2

. (6)

Among the many questions for a quantum theory of gravity is the microscopic
foundation of SBH in the sense of Boltzmann.

There exists an effect analogous to (5) in flat spacetime. An observer
linearly accelerated with acceleration a experiences a temperature

TDU =
�a

2πkBc
≈ 4.05× 10−23 a

[cm
s2

]
K , (7)

the ‘Unruh’ or ‘Davies–Unruh’ temperature. The analogy to (5) is more than
obvious. An experimental confirmation of (7) is envisaged with higher-power,
short-pulse lasers [3].
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The fact that black holes behave like thermodynamical systems has led
to speculations that the gravitational field might not be fundamental, but is
instead an effective macroscopic variable like in hydrodynamics, see e.g. [4]
for a discussion. If this were true, the search for a quantum theory of the
gravitational field would be misleading, since one never attempts to quantize
effective (e.g. hydrodynamic) variables. So far, however, no concrete ‘hydro-
dynamic’ theory of gravity leading to a new prediction has been formulated.

The third, and highest, level is full quantum gravity. At present, there
exist various approaches about which no consensus is in sight. The most
conservative class of approaches is quantum general relativity, that is, the
direct application of quantization rules to GR. Methodologically, one distin-
guishes between covariant and canonical approaches. A more radical approach
is string theory (or M-theory), which starts with the assumption that a quan-
tum description of gravity can only be obtained within a unified quantum
theory of all interactions. Out of these approaches have grown many other
ones, most of them building on discrete structures. Among them are quan-
tum topology, causal sets, group field theory, spin-foam models, and models
implementing non-commutative geometry. In the following, I shall restrict
myself to quantum general relativity and to string theory. More details on
discrete approaches can be found in [5] and in other contributions to this
volume.

3. Covariant quantum gravity

The first, and historically oldest, approach is covariant perturbation theory.
For this purpose one expands the four-dimensional metric gμν around a clas-
sical background given by ḡμν ,

gμν = ḡμν +

√
32πG

c4
fμν , (8)

where fμν denotes the perturbation. This is similar to the treatment of weak
gravitational waves in GR. Associated with fμν is a massless ‘particle’ of spin
2, the graviton. The strongest observational constraint on the mass of the
graviton comes from investigating gravity over the size of galaxy clusters and
leads to mg � 10−29 eV, cf. [6] for a discussion of this and other constraints.
This mass limit would correspond to a Compton wavelength of 2× 1022 m.

One can now insert the expansion (8) into the Einstein–Hilbert action
and develop Feynman rules as usual. This can be done [1], but compared
to Yang–Mills theories an important difference occurs: perturbative quan-
tum gravity is non-renormalizable, that is, one would need infinitely many
parameters to absorb the divergences. As has been shown by explicit cal-
culations, the expected divergences indeed occur from two loops on. Recent
progress in this direction was made in the context of N = 8 supergravity
[7], see also [8]. N = 8 supergravity, which has maximal supersymmetry, is
finite up to four loops, as was shown by an explicit calculation using powerful
new methods. There are arguments that it is finite even at five and six loops
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and perhaps up to eight loops. If this is true, the question will arise whether
there exists a hitherto unknown symmetry that prevents the occurrence of
divergences at all.

Independent of this situation, one must emphasize that there exist theo-
ries at the non-perturbative level that are perturbatively non-renormalizable.
One example is the non-linear σ model for dimension D > 2, which exhibits
a non-trivial UV fixed point at some coupling gc (‘phase transition’). An
expansion in D − 2 and use of renormalization-group (RG) techniques gives
information about the behaviour in the vicinity of the non-trivial fixed point.
The specific heat exponent of superfluid helium as described by this model
was measured in a space shuttle experiment, and the results are in accordance
with the calculations; the details are described, for example, in [9].

Another covariant approach that makes heavy use of RG techniques
is asymptotic safety. A theory is called asymptotically safe if all essential
coupling parameters gi of the theory approach for k → ∞ a non-trivial (i.e.
non-vanishing) fixed point. This approach has recently attracted a lot of
attention, see, for example, [9, 10] and the references therein. The paper
[10] puts particular emphasis on the role of background independence in this
approach.

Most modern covariant approaches make use of path integrals. Formally,
one has to integrate over all four-dimensional metrics,

Z[g] =

∫
Dgμν(x) eiS[gμν(x)]/� ,

and, if needed, non-gravitational fields. The expression is formal, since for
a rigorous definition one would have to specify the details of the measure
and the regularization procedure. Except for general manipulations, the path
integral has therefore been used mainly in a semiclassical expansion or for
discretized approaches. An example for the first is Hawking’s use of the Eu-
clidean path integral in quantum cosmology, while examples for the second
application are Regge calculus and dynamical triangulation. In dynamical tri-
angulation, for example, one decomposes spacetime into simplices whose edge
lengths remain fixed. The sum in the path integral is then performed over
all possible combinations with equilateral simplices, and heavy use of Monte-
Carlo simulations is made, see, for example [11] for a review. Among the many
interesting results of this approach, I want to mention here the fact that the
(expected) four-dimensionality of spacetime emerges at macroscopic scales,
but that spacetime appears two-dimensional at small scales. Surprisingly,
this microscopic two-dimensionality is also a result of the asymptotic-safety
approach.

In spite of being perturbatively non-renormalizable, quantum general
relativity can be used in the limit of small energies as an effective field theory.
One can obtain, for example, one-loop corrections to non-relativistic poten-
tials from the scattering amplitude by calculating the non-analytic terms in
the momentum transfer. In this way one can find one-loop corrections to the
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Newton potential [12],

V (r) = −Gm1m2

r

(
1 + 3

G(m1 +m2)

rc2
+

41

10π

G�

r2c3

)
,

as well as to the Coulomb potential [13],

V (r) =
Q1Q2

r

(
1 + 3

G(m1 +m2)

rc2
+

6

π

G�

r2c3

)
+ . . . ,

The first correction terms, which do not contain �, describe, in fact, effects of
classical GR. The quantum gravitational corrections themselves are too small
to be measurable in the laboratory, but they are at least definite predictions
from quantum gravity.

4. Canonical quantum gravity

Canonical quantum gravity starts from a Hamiltonian formulation for GR
and uses quantization rules to arrive at a wave functional Ψ that depends on
the configuration space of the theory [1]. A central feature of all canonical
theories is the presence of constraints,

ĤΨ = 0 , (9)

where (9) stands for both the Hamiltonian and the diffeomorphism (momen-
tum) constraints, which arise as a consequence of the presence of redundancies
(‘coordinate freedom’) in GR. The various canonical versions of GR can be
distinguished by the choice of canonical variables. The main approaches are

Geometrodynamics. The canonical variables are the 3-dimensional metric
hab and a linear combination pcd of the components of the extrinsic
curvature.

Connection dynamics. The canonical variables are a connection Ai
a and a

coloured electric field Ea
i .

Loop dynamics. The canonical variables are a holonomy constructed from
Ai

a and the flux of Ea
i through a two-dimensional surface.

I shall give a brief review of the first and the third approach.

4.1. Quantum geometrodynamics

Quantum geometrodynamics is a very conservative approach [14]. One ar-
rives inevitably at the relevant equations if one proceeds analogously to
Schrödinger in 1926. In that year Schrödinger found his famous equation
by looking for a wave equation that leads to the Hamilton–Jacobi equation
in the (as we now say) semiclassical limit. As already discussed by Peres
in 1962, the Hamilton–Jacobi equation(s)1 for GR reads (here presented for

1The second equation states that S be invariant under infinitesimal three-dimensional
coordinate transformations.
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simplicity in the vacuum case)

16πGGabcd
δS

δhab

δS

δhcd
−
√
h

16πG
( (3)R− 2Λ) = 0 , (10)

Da
δS

δhab
= 0 , (11)

where Gabcd is a local function of the three-metric and is called ‘DeWitt
metric’, since it plays the role of a metric on the space of all three-metrics.

The task is now to find a functional wave equation that yields the
Hamilton–Jacobi equation(s) in the semiclassical limit given by

Ψ[hab] = C[hab] exp

(
i

�
S[hab]

)
,

where the variation of the prefactor C with respect to the three-metric is
much smaller than the corresponding variation of S. From (10) one then
finds the Wheeler–DeWitt equation (Hamiltonian constraint)

ĤΨ ≡
(
−16πG�2Gabcd

δ2

δhabδhcd
− (16πG)−1

√
h
(
(3)R− 2Λ

))
Ψ = 0, (12)

and from (11) the quantum diffeomorphism (momentum) constraints

D̂aΨ ≡ −2∇b
�

i

δΨ

δhab
= 0 . (13)

The latter equations guarantee that the wave functional Ψ is independent of
infinitesimal three-dimensional coordinate transformations.

A detailed discussion of this equation and its applications can be found
in [1]. We emphasize here only a central conceptual issue: the wave functional
does not depend on any external time parameter. This is a direct consequence
of the quantization procedure, which treats the three-metric and the extrin-
sic curvature (which can be imagined as the ‘velocity’ of the three-metric) as
canonically conjugated, similar to position and momentum in quantum me-
chanics. By its local hyperbolic form, however, one can introduce an intrinsic
timelike variable that is constructed out of the three-metric itself; in simple
quantum cosmological models, the role of intrinsic time is played by the scale
factor a of the Universe.

By its very construction, it is obvious that one can recover quantum
field theory in an external spacetime from (12) and (13) in an appropriate
limit [1]. The corresponding approximation scheme is similar to the Born–
Oppenheimer approximation in molecular physics. In this way one finds the
equations (10) and (11) together with a functional Schrödinger equation for
non-gravitational fields on the background defined by the Hamilton–Jacobi
equation. The time parameter in this Schrödinger equation is a many-fingered
time and emerges from the chosen solution S.

The next order in this Born–Oppenheimer approximation gives correc-
tions to the Hamiltonian Ĥm that occurs in the Schrödinger equation for the
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non-gravitational fields. They are of the form

Ĥm → Ĥm +
1

m2
P

(various terms) ,

see [1] for details. From this one can calculate, for example, the quantum
gravitational correction to the trace anomaly in de Sitter space. The result
is [15]

δε ≈ − 2G�2H6
dS

3(1440)2π3c8
.

A more recent example is the calculation of a possible contribution to the
CMB anisotropy spectrum [16]. The terms lead to an enhancement of power
at small scales; from the non-observation of such an enhancement one can
then get a weak upper limit on the Hubble parameter of inflation, HdS � 1017

GeV.

One may ask whether there is a connection between the canonical and
the covariant approach. Such a connection exists at least at a formal level:
the path integral satisfies the Wheeler–DeWitt equation and the diffeomor-
phism constraints. At the one-loop level, this connection was shown in a more
explicit manner. This means that the full path integral with the Einstein–
Hilbert action (if defined rigorously) should be equivalent to the constraint
equations of canonical quantum gravity.

4.2. Loop quantum gravity

An alternative and inequivalent version of canonical quantum gravity is loop
quantum gravity [17]. The development started with the introduction of
Ashtekar’s New Variables in 1986, which are defined as follows. The new
momentum variable is the densitized version of the triad,

Ea
i (x) :=

√
h(x)eai (x) ,

and the new configuration variable is the connection defined by

GAi
a(x) := Γi

a(x) + βKi
a(x) ,

where Γi
a(x) is the spin connection, and Ki

a(x) is related to the extrinsic cur-
vature. The variable β is called the Barbero–Immirzi parameter and consti-
tutes an ambiguity of the theory; its meaning is still mysterious. The variables
are canonically conjugated,

{Ai
a(x), E

b
j (y)} = 8πβδijδ

b
aδ(x, y) ,

and define the connection representation mentioned above.

In loop gravity, one uses instead the following variables derived from
them. The new configuration variable is the holonomy around a loop (giving
the theory its name),

U [A,α] := P exp

(
G

∫
α

A

)
,



Quantum Gravity: Whence, Whither? 9

and the new momentum variable is the densitized triad flux through the
surface S enclosed by the loop,

Ei[S] :=
∫
S
dσa Ea

i .

In the quantum theory, these variables obey canonical commutation rules. It
was possible to prove a theorem analogous to the Stone–von Neumann theo-
rem in quantum mechanics [18]: under some mild assumption, the holonomy–
flux representation is unique. The kinematical structure of loop quantum
gravity is thus essentially unique. As in quantum geometrodynamics, one
finds a Hamiltonian constraint and a diffeomorphism constraint, although
their explicit forms are different from there. In addition, a new constraint
appears in connection with the use of triads instead of metrics (‘Gauss con-
straint’).

A thorough presentation of the many formal developments of loop quan-
tum gravity can be found in [17], see also [19] for a critical review. A main
feature is certainly the discrete spectrum of geometric operators. One can
associate, for example, an operator Â with the surface area of a classical two-
dimensional surface S. Within the well-defined and essentially unique Hilbert
space structure at the kinematical level one can find the spectrum

Â(S)ΨS [A] = 8πβl2P
∑

P∈S∩S

√
jP (jP + 1)ΨS [A] ,

where the jP denote integer multiples of 1/2, and P denotes an intersection
point between the fundamental discrete structures of the theory (the ‘spin
networks’) and S. Area is thus quantized and occurs as a multiple of a fun-
damental quantum of area proportional to l2P. It must be emphasized that
this (and related) results are found at the kinematical level, that is, before
all quantum constraints are solved. It is thus an open problem whether they
survive the solution of the constraints, which would be needed in order to
guarantee physical meaning. Moreover, in contrast to quantum geometro-
dynamics, it is not yet clear whether loop quantum gravity has the correct
semiclassical limit.

5. String theory

String theory is fundamentally different from the approaches described above.
The aim is not to perform a direct quantization of GR, but to construct
a quantum theory of all interactions (a ‘theory of everything’) from where
quantum gravity can be recovered in an appropriate limit. The inclusion of
gravity in string theory is, in fact, unavoidable, since no consistent theory
can be constructed without the presence of the graviton.

String theory has many important features such as the presence of gauge
invariance, supersymmetry, and higher dimensions. Its structure is thus much
more rigid than that of quantum GR which allows but does not demand
these features. The hope with string theory is that perturbation theory is
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finite at all orders, although the sum diverges. The theory contains only three
fundamental dimensionful constants, �, c, ls, where ls is the string length. The
expectation is (or was) that all other parameters (couplings, masses, . . . ) can
be derived from these constants, once the path from the higher-dimensional
(10- or 11-dimensional) spacetime to four dimensions is found. Whether this
goal can ever be reached is far from clear. It is even claimed that there are so
many possibilities available that a sensible selection can only be made on the
basis of the anthropic principle. This is the idea of the ‘string landscape’ in
which at least 10500 ‘vacua’ corresponding to a possible world are supposed
to exist, cf. [20]. If this were true, much of the original motivation for string
theory would have gone.

Since string theory contains GR in some limit, the above arguments
that lead to the Wheeler–DeWitt equation remain true, that is, this equation
should also follow as an approximate equation in string theory if one is away
from the Planck (or string) scale. The disappearance of external time should
thus also hold in string theory, but has not yet been made explicit.

It is not the place here to give a discussion of string theory. An ac-
cessible introduction is, for example, [21]; some recent developments can be
found in [5] as well as in many other sources. In fact, current research fo-
cuses on issues such as AdS/CFT correspondence and holographic principle,
which are motivated by string theory but go far beyond it [22]. Roughly, this
correspondence states that non-perturbative string theory in a background
spacetime that is asymptotically anti-de Sitter (AdS) is dual to a conformal
field theory (CFT) defined in a flat spacetime of one less dimension, a con-
jecture made by Maldacena in 1998. This is often considered as a mostly
background-independent definition of string theory, since information about
the background metric enters only through boundary conditions at infinity.2

AdS/CFT correspondence is considered to be a realization of the holo-
graphic principle which states that all the information needed for the de-
scription of a spacetime region is already contained in its boundary. If the
Maldacena conjecture is true, laws including gravity in three space dimensions
will be equivalent to laws excluding gravity in two dimensions. In a sense,
space has then vanished, too. It is, however, not clear whether this equiva-
lence is a statement about the reality of Nature or only (as I suspect) about
the formal properties of two descriptions describing a world with gravity.

6. Black holes and cosmology

As we have seen, effects of quantum gravity in the laboratory are expected
to be too small to be observable. The main applications of quantum gravity
should thus be found in the astrophysical realm – in cosmology and the
physics of black holes.

2But it is also claimed that string field theory is the only truly background-independent
approach to string theory, see the article by Taylor in [5].
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As for black holes, at least two questions should be answered by quan-
tum gravity. First, it should provide a statistical description of the Beken-
stein–Hawking entropy (6). And second, it should be able to describe the
final stage of black-hole evaporation when the semiclassical approximation
used by Hawking breaks down.

The first problem should be easier to tackle because its solution should
be possible for black holes of arbitrary size, that is, also for situations where
the quantum effects of the final evaporation are negligible. In fact, preliminary
results have been found in all of the above approaches and can be summarized
as follows:

Loop quantum gravity. The microscopic degrees of freedom are the spin
networks; SBH only follows for a specific choice of the Barbero–Immirzi
parameter β: β = 0.237532 . . . [23].

String theory. The microscopic degrees of freedom are the ‘D-branes’; SBH

follows for special (extremal or near-extremal) black holes. More gen-
erally, the result follows for black holes characterized by a near-horizon
region with an AdS3-factor [24].

Quantum geometrodynamics. One can find S ∝ A in various models,
for example the LTB model describing a self-gravitating spherically-
symmetric dust cloud [25].

A crucial feature is the choice of the correct state counting [26]. One must
treat the fundamental degrees of freedom either as distinguishable (e.g. loop
quantum gravity) or indistinguishable (e.g. string theory) in order to repro-
duce (6).

The second problem (final evaporation phase) is much more difficult,
since the full quantum theory of gravity is in principle needed. At the level of
the Wheeler–DeWitt equation, one can consider oversimplified models such
as the one presented in [27], but whether the results have anything in common
with the results of the full theory is open.

The second field of application is cosmology. Again, it is not the place
here to give an introduction to quantum cosmology and its many applications,
see, for example, [1, 28] and the references therein. Most work in this field is
done in the context of canonical quantum gravity. For example, the Wheeler–
DeWitt equation assumes the following form for a Friedmann universe with
scale factor a and homogeneous scalar field φ,

1

2

(
G�2

a2
∂

∂a

(
a
∂

∂a

)
− �2

a3
∂2

∂φ2
−G−1a+G−1Λa

3

3
+m2a3φ2

)
ψ(a, φ) = 0 .

In loop quantum cosmology, the Wheeler–DeWitt equation is replaced by a
difference equation [29]. Important issues include the possibility of singularity
avoidance, the semiclassical limit including decoherence, the justification of
an inflationary phase in the early Universe, the possibility of observational
confirmation, and the origin of the arrow of time.
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[16] C. Kiefer and M. Krämer, Quantum gravitational contributions to the CMB
anisotropy spectrum. arXiv:1103.4967v1 [gr-qc].

[17] T. Thiemann, Modern canonical quantum general relativity. Cambridge Uni-
versity Press, Cambridge, 2007.

[18] C. Fleischhack, Representations of the Weyl algebra in quantum geometry,
Commun. Math. Phys. 285, 67–140 (2009); J. Lewandowski et al., Uniqueness
of diffeomorphism invariant states on holonomy-flux algebras, Commun. Math.
Phys. 267, 703–733 (2006).



Quantum Gravity: Whence, Whither? 13

[19] H. Nicolai, K. Peeters, and M. Zamaklar, Loop quantum gravity: an outside
view, Class. Quantum Grav. 22, R193–R247 (2005).

[20] Universe or multiverse?, edited by B. Carr (Cambridge University Press, Cam-
bridge, 2007).

[21] B. Zwiebach, A first course in string theory, 2nd Edition. Cambridge University
Press, Cambridge, 2009.

[22] O. Aharony et al., Large N field theories, string theory and gravity, Phys. Rep.
323, 183–386 (2000).

[23] M. Domagala and J. Lewandowski, Black-hole entropy from quantum geome-
try, Class. Quantum Grav. 21, 5233–5243 (2004); K. A. Meissner, Black-hole
entropy in loop quantum gravity, Class. Quantum Grav. 21, 5245–5251 (2004).

[24] A. Strominger, Black hole entropy from near-horizon microstates, JHEP 02
(1998) 009.

[25] C. Vaz, S. Gutti, C. Kiefer, and T. P. Singh, Quantum gravitational collapse
and Hawking radiation in 2+1 dimensions, Phys. Rev. D 76, 124021 (2007).

[26] C. Kiefer and G. Kolland, Gibbs’ paradox and black-hole entropy, Gen. Relativ.
Gravit. 40, 1327–1339 (2008).

[27] C. Kiefer, J. Marto, and P. V. Moniz, Indefinite oscillators and black-hole
evaporation, Annalen der Physik 18, 722–735 (2009).

[28] M. Bojowald, C. Kiefer, and P. V. Moniz, Quantum cosmology for the 21st
century: a debate. arXiv:1005.2471 [gr-qc] (2010).

[29] M. Bojowald, Canonical gravity and applications. Cambridge University Press,
Cambridge, 2011.

Claus Kiefer
Institut für Theoretische Physik
Universität zu Köln
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Local Covariance and Background
Independence

Klaus Fredenhagen and Katarzyna Rejzner

Abstract. One of the many conceptual difficulties in the development of
quantum gravity is the role of a background geometry for the structure
of quantum field theory. To some extent the problem can be solved by
the principle of local covariance. The principle of local covariance was
originally imposed in order to restrict the renormalization freedom for
quantum field theories on generic spacetimes. It turned out that it can
also be used to implement the request of background independence.
Locally covariant fields then arise as background-independent entities.
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Keywords. Local covariance principle, quantum gravity, background in-
dependence, algebraic quantum field theory.

1. Introduction

The formulation of a theory of quantum gravity is one of the most impor-
tant unsolved problems in physics. It faces not only technical but, above all,
conceptual problems. The main one arises from the fact that, in quantum
physics, space and time are a priori structures which enter the definition of
the theory as well as its interpretation in a crucial way. On the other hand,
in general relativity, spacetime is a dynamical object, determined by classical
observables. To solve this apparent discrepancy, radical new approaches were
developed. Among these the best-known are string theory and loop quan-
tum gravity. Up to now all these approaches meet the same problem: It is
extremely difficult to establish the connection to actual physics.

Instead of following the standard approaches to quantum gravity we
propose a more conservative one. We concentrate on the situation when the
influence of the gravitational field is weak. This idealization is justified in a
large scope of physical situations. Under this assumption one can approach
the problem of quantum gravity from the field-theoretic side. In the first step
we consider spacetime to be a given Lorentzian manifold, on which quantum
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fields live. In the second step gravitation is quantized around a given back-
ground. This is where the technical problems start. The resulting theory is
nonrenormalizable, in the sense that infinitely many counterterms arise in the
process of renormalization. Furthermore, the causal structure of the theory is
determined by the background metric. Before discussing these difficulties we
want to point out that also the first step is by no means trivial. Namely, the
standard formalism of quantum field theory is based on the symmetries of
Minkowski space. Its generalization even to the most symmetric spacetimes
(de Sitter, anti-de Sitter) poses problems. There is no vacuum, no particles,
no S-matrix, etc. A solution to these difficulties is provided by concepts of
algebraic quantum field theory and methods from microlocal analysis.

One starts with generalizing the Haag-Kastler axioms to generic space-
times. We consider algebras A(O) of observables which can be measured
within the spacetime region O, satisfying the axioms of isotony, locality (com-
mutativity at spacelike distances) and covariance. Stability is formulated as
the existence of a vacuum state (spectrum condition). The existence of a dy-
namical law (field equation) is understood as fulfilling the timeslice axiom
(primitive causality) which says that the algebra of a timeslice is already
the algebra of the full spacetime. This algebraic framework, when applied to
generic Lorentzian manifolds, still meets a difficulty. The causal structure is
well defined, but the absence of nontrivial symmetries raises the question:
What is the meaning of repeating an experiment? This is a crucial point if
one wants to keep the probability interpretation of quantum theory. A related
issue is the need of a generally covariant version of the spectrum condition.
These problems can be solved within locally covariant quantum field theory,
a new framework for QFT on generic spacetimes proposed in [8].

2. Locally covariant quantum field theory

The framework of locally covariant quantum field theory was developed in
[8, 17, 18]. The idea is to construct the theory simultaneously on all space-
times (of a given class) in a coherent way. Let M be a globally hyperbolic,
oriented, time-oriented Lorentzian 4d spacetime. Global hyperbolicity means
that M is diffeomorphic to R×Σ, where Σ is a Cauchy surface of M. Between
spacetimes one considers a class of admissible embeddings. An embedding
χ : N → M is called admissible if it is isometric, time-orientation and orien-
tation preserving, and causally convex in the following sense: If γ is a causal
curve in M with endpoints p, q ∈ χ(N), then γ = χ ◦ γ′ with a causal curve
γ′ in N. A locally covariant QFT is defined by assigning to spacetimes M

corresponding unital C∗-algebras A(M). This assignment has to fulfill a set
of axioms, which generalize the Haag-Kastler axioms:

1. M �→ A(M) unital C∗-algebra (local observables).
2. If χ : N → M is an admissible embedding, then αχ : A(N) → A(M) is

a unit-preserving C∗-homomorphism (subsystems).


