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Preface

Fractional calculus (FC) generalizes integrals and derivatives to non-integer orders.
During the last decade, FC was found to play a fundamental role in the modeling
of a considerable number of phenomena, in particular, the modeling of memory-
dependent phenomena and complex media such as porous media. FC emerged
as an important and efficient tool for the study of dynamical systems where
classical methods reveal strong limitations. This book is devoted to the existence
and uniqueness of solutions for various classes of Darboux problem for hyperbolic
differential equations or inclusions involving the Caputo fractional derivative, the
best fractional derivative of the time. Some equations present delay which may
be finite, infinite, or state-dependent. Others are subject to impulsive effect. The
tools used include classical fixed point theorems as well as sharp (new) ones such
as the one by Dhage on ordered Banach algebras and the fixed point theorem
for contraction multivalued maps due to Covitz and Nadier, as well as some
generalizations of the Gronwall’s lemma. Each chapter concludes with a section
devoted to notes and bibliographical remarks and all abstract results are illustrated
by examples.

The content of this book is new and complements the existing literature in
fractional calculus. It is useful for researchers and graduate students for research,
seminars, and advanced graduate courses, in pure and applied mathematics, engi-
neering, biology, and all other applied sciences.

We owe a great deal to R.P. Agarwal, L. Gérniewicz, J. Henderson, J.J. Nieto,
B.A. Slimani, J.J. Trujillo, A.N. Vityuk, and Y. Zhou for their collaboration
in research related to the problems considered in this book. We express our
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appreciation to Professor George Anastassiou who strongly supported our project.
Finally, we thank the editorial assistance of Springer, especially Elizabeth Loew and
Jacob Gallay.

Saida, Algeria S. Abbas
Sidi Bel-Abbes, Algeria M. Benchohra
Baltimore, Maryland, USA G.M. N’Guérékata
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Chapter 1
Introduction

Fractional calculus is a generalization of the ordinary differentiation and integration
to arbitrary non-integer order. The subject is as old as the differential calculus and
goes back to times when Leibniz and Newton invented differential calculus. One
owes to Leibniz in a letter to L’Hospital, dated September 30, 1695 [181], the
exact birthday of the fractional calculus and the idea of the fractional derivative.
L’Hospital asked the question as to the meaning of d"y/dx" if n = %; ie.,
what if n is fractional? Leibniz replied that d 2x will be equal to x+/dx : x. In
the letters to J. Wallis and J. Bernoulli (in 1697), Leibniz mentioned the possible
approach to fractional-order differentiation in that sense that for non-integer values
; = m"e™. In 1730, Euler
mentioned interpolating between integral orders of a derivative and suggested to

use the following relationship: % = ;}:ﬁ—ﬁ_)l)xm_", where I'(.) is the (Euler’s)

Gamma function defined by I"'(§) = fooo t5=1e7dt, £ > 0. Also for negative or
non-integer (rational) values of n. Taking m = 1 and n = l Euler obtained:

1
Cx = /& = Z-x3. In 1812, Laplace [1820 vol. 3, 85 and 186] defined a
dx2
fractional derivative by means of an integral, and in 1819 there appeared the first
discussion of a derivative of fractional order in a calculus text written by Lacroix
[171]. The first step to generalization of the notion of differentiation for arbitrary

functions was done by Fourier (1822) [125]. After introducing his famous formula

+o00

f) = = / F(2)dz / cos(px — p2dp,

—00
Fourier made a remark that
+o00

d" f(x) = / f(z)dz/cos(px—pz+n2)dp,

dxn

—0o0

S. Abbas et al., Topics in Fractional Differential Equations, Developments 1
in Mathematics 27, DOI 10.1007/978-1-4614-4036-9_1,
© Springer Science+Business Media New York 2012



2 1 Introduction

and this relationship could serve as a definition of the nth order derivative for
non-integer n. In 1823, Abel [38], considered the integral representation

[ S’ (n)
2 4p = i
0/ o dn = Y

for arbitrary o and then wrote

sin(mx)xa : w(xt) dt 1 d“"lﬂ(x).

S0 = A—0=" " T—a) sx
0

The first great theory of fractional derivation is due to Liouville (1832) [185].

I. In his first definition, according to exponential representation of a function

- d'f(x) _ <
fx) = Z cpe®”, he generalized the formula P Z cpa, e,
n=0 n=0

II. Second type of his definition was Fractional Integral

m [e9)
_ 1 el
/@D(x)dx“ = (—l)l‘—l"(,u) x/(t X)) @d(1)dr,

n X
[ L _ )l
/@D(x)dx F(M)_i (x — o) @(r)dr.

III. Third definition includes Fractional derivative

d'F(x)  (=D* © p(p —1)
AT (F(x)—TF(x+h)+TF(x+2h)—---),
d"F(x) 1

—( (x)—%F(x—h)—i—MF()C—%)—W).

dxr A 1.2

But the formula most often used today, called Riemann—Liouville integral, was
given by Riemann (1847). His definition of Fractional Integral is

D™ f(x) = ﬁ / (r = 0" £t + P (0).
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On these historical concepts, one will be able to refer to work of Dugowson
[117]. According to Riemann-Liouville the notion of fractional integral of
order &, o > 0 for a function f(¢), is a natural consequence of the well-known
formula (Cauchy—Dirichlet), which reduces the calculation of the n—fold
primitive of a function f(¢) to a single integral of convolution type.

/(t — )" ' f(v)dr, n € N,

a

1
I f() = =1

vanishes at# = a along with its derivatives of order 1,2, ...,n—1. One requires
S(@)and I, f(1) to be causal functions, that is, vanishing for # < 0. Then one
extends to any positive real value by using the Gamma function, (n — 1)! =
I'(n). So, the left-sided mixed Riemann-Liouville integral of order « of f is
defined by

150 = s [ =0 roae

The operator of fractional derivative D¢ f(¢) can be defined by the Transform
of Laplace integrals, the derivative of order @ < 0 a causal function f(¢) is
given by the Riemann—Liouville integral:

1

zg-—a—l
DYf(t) = S —§)dE. (1.1)
0/ I'(—a)
If @ > 0, we can pose
f —o—1
D* f(t) = PF ﬁ(_a)f(t—é)dé,a>0,a¢N,
0

where PF represents the finite part of the integral (Schwartz). In 1867,
Griinwald and Letnikov joined this definition which is sometimes useful

—a
[ h

oD F(0) = lim B Y (<D =) = Y (=DFOS0). (12)
k=0

k=0

This definition of fractional derivative of a function f(z) based on finite

differences is obtained from the classical definition of integer order deriva-

tive (Griinwald [137]). We can get an idea of the equivalence of defini-

tions (1.1) and (1.2) using the factorial function I'(«) by Gauss: I'(¢) =
klk®

I .
koo a(ar + 1) -~ (@ + k)

A list of mathematicians, who have provided
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important contributions up to the middle of the last century, includes N.Ya. Sonin
(1869), A.V. Letnikov (1872), H. Laurent (1884), P.A. Nekrassov (1888),
A. Krug (1890), J. Hadamard (1892) , O. Heaviside (1892-1912), S. Pincherle
(1902), G.H. Hardy and J.E. Littlewood (1917-1928), H. Weyl (1917), P. Lévy
(1923), A. Marchaud (1927), H.T. Davis (1924-1936), E. L. Post (1930),
A. Zygmund (1935- 1945), E.R. Love (1938-1996), A. Erdélyi (1939-1965),
H. Kober (1940), D.V. Widder (1941), M. Riesz (1949), W. Feller (1952), and
K. Nishimoto (1987-). They considered the Cauchy Integral formula

Q)
(n)
0 =55 2mi / (t— Z)’H’ldt’

and substituted n by v to obtain

x+
S To+D T 0
DSy = / - ar.

_Z)v+1

The Riemann—Liouville definition of fractional calculus is the popular defini-
tion, it is this which shows joining of two previous definitions.

o _ S(de _
DEF(1) = a) < /( l<a<n.

t_.[)oz —n+1"

The Riemann-Liouville derivative has certain disadvantages when trying to
model real-world phenomena with fractional differential equations. Therefore,
we shall introduce a modified fractional differential operator { D;* proposed by
Caputo (1967) first in his work on the theory of viscoelasticity [91] and 2 years
later in his book [92]. Caputo’s definition can be written as

t
cpe _ 1 S (0)dr
Tt Fm—a) ) (t -+l
a

n—1<a<n.

The Mittag-Leffler function is a generalization of the exponential function that
plays an important role in fractional calculus. The function was developed by
the Scandinavian mathematician Mittag-Leffler (1846-1927) [195, 196], who was
a contemporary of Oliver Heaviside(1850—-1925). In 1993, Miller and Ross used
differential operator D as D¥ f(t) = D*'D* ... D% f(1); & = (a1, 0, ...,0,),
in which D% are Riemann—Liouville or Caputo definitions. The idea of fractional
calculus and fractional order differential equations and inclusions has been a
subject of interest not only among mathematicians but also among physicists and
engineers. Indeed, we can find numerous applications in rheology, porous media,
viscoelasticity, electrochemistry, electromagnetism, signal processing, dynamics of
earthquakes, optics, geology, viscoelastic materials, biosciences, bioengineering,
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medicine, economics, probability and statistics, astrophysics, chemical engineering,
physics, splines, tomography, fluid mechanics, electromagnetic waves, nonlinear
control, control of power electronic, converters, chaotic dynamics, polymer science,
proteins, polymer physics, electrochemistry, statistical physics, thermodynamics,
neural networks, etc. [115,133,134,151,187,189,191,208,209,220,229,231,250].
The problem of the existence of solutions of Cauchy-type problems for ordinary
differential equations of fractional order and without delay in spaces of integrable
functions was studied in some works [164, 228]. The similar problem in spaces
of continuous functions was studied in [243]. Recently several papers have been
devoted to the study of hyperbolic partial integer order differential equations and
inclusions with local and nonlocal conditions; see for instance [85-88, 176], the
nonlocal conditions of this type can be applied in the theory of elasticity with better
effect than the initial or Darboux conditions. For similar results with set-valued
right-hand side we refer to [74—76,89,158,213]. During the last 10 years, hyperbolic
ordinary and partial differential equations and inclusions of fractional order have
been intensely studied by many mathematicians; see for instance [4—6,15,244-247].

In recent years, there has been a significant development in fractional calculus
techniques in ordinary and partial functional differential equations and inclusions,
some recent contributions can be seen in the monographs of Anastassiou [52],
Baleanu et al. [61], Diethelm [113], Kaczorek [156], Kilbas et al. [166], Laksh-
mikantham et al. [175], Miller and Ross [192], Podlubny [214], Samko et al. [225],
the papers of Abbas et al. [25, 30, 32, 35, 36], Abbas and Benchohra [5, 6,9, 10],
Agarwal et al. [39, 43, 45, 46], Ahmad and Nieto [47], Ait Dads et al. [49],
Almeida and Torres [50,51], Araya and Lizama [53], Arshad and Lupulescu [54],
Balachandran et al. [59, 60], Baleanu and Vacaru [62], Bazhlekova [64], Belarbi
et al. [66], Benchohra et al. [67-69, 71, 73], Burton [83], Chang and Nieto [94],
Darwish et al. [100], Danca and Diethelm [99], Debbouche [102], Debbouche and
Baleanu [103], Delbosco and Rodino [105], Denton and Vatsala [106], Diagana
et al. [112], Diethelm [114, 115], Dong et al. [116], El-Borai [118, 119], El-Borai
et al. [120, 121], El-Sayed [122-124], Furati and Tatar [131, 132], Henderson
and Ouahab [144, 145], Herzallah et al. [149, 150], Ibrahim [154], Kadem and
Baleanu [157], Kaufmann and Mboumi [163], Kilbas and Marzan [165], Kirane
et al. [167], Kiryakova and Luchko [168], Li et al. [183], Labidi and Tatar [170],
Lakshmikanthan [173], Lakshmikantham and Vatsala [178], Li and N’Guérékata
[182], Luchko [186], Magin et al. [188], Mainardi [189], Moaddy et al. [197],
Mophou [198], Mophou et al. [199-204], Muslih and Agrawal [205], Muslih et al.
[206], Nieto [207], Podlubny et al. [216], Ramrez and Vatsala [217], Razminia et al.
[218], Rivero et al. [219], Sabatier et al. [221], Salem [222-224], Samko et al. [226],
Tarasov [232], Tarasov and Edelman [233], Tenreiro Machado [234-236], Tenreiro
Machado et al. [237-239], Trigeassou et al. [240], Vzquez [241], Wang et al. [248],
Vityuk [242], Vityuk and Golushkov [244], Yu and Gao [249], Zhang [251], Zhou
et al. [253-255], and the references therein.

Applied problems require definitions of fractional derivative allowing the uti-
lization of physically interpretable initial conditions. Caputo’s fractional derivative,
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originally introduced by Caputo [90] and afterwards adopted in the theory of linear
viscoelasticity, satisfies this demand. For a consistent bibliography on this topic,
historical remarks, and examples, we refer to [41,48,49,77,214,215].

The method of upper and lower solutions has been successfully applied to study
the existence of multiple solutions for initial and boundary value problems of the
first-and second-order partial differential equations. This method plays an important
role in the investigation of solutions for differential and partial differential equations
and inclusions. We refer to the monographs by Benchohra et al. [70], the papers
of Abbas and Benchohra [7, 8, 12, 14], Heikkila and Lakshmikantham [143], Ladde
et al. [172], Lakshmikantham and Pandit [176], Lakshmikantham et al. [177], Pandit
[213], and the references cited therein.

The theory of impulsive integer order differential equations and inclusions has
become important in some mathematical models of real processes and phenomena
studied in physics, chemical technology, population dynamics, biotechnology, and
economics. The study of impulsive fractional differential equations and inclusions
was initiated in the 1960s by Milman and Myshkis [193, 194]. At present the
foundations of the general theory are already laid, and many of them are investigated
in detail in the books of Benchohra et al. [70], Lakshmikantham et al. [174],
Samoilenko and Peresyuk [227], and the references therein. There was an intensive
development of the impulse theory, especially in the area of impulsive differential
equations and inclusions with fixed moments. The theory of impulsive differential
equations and inclusions with variable time is relatively less developed due to the
difficulties created by the state-dependent impulses. Some interesting extensions to
impulsive differential equations with variable times have been done by Bajo and Liz
[58], Abbas et al. [2,26,27], Abbas and Benchohra [13], Belarbi and Benchohra
[65], Benchohra et al. [70, 72], Frigon and O’Regan [128-130], Kaul et al. [160],
Kaul and Liu [161, 162], and the references cited therein. In the case of non-integer
order derivative, impulsive differential equations and inclusions have been initiated
in the papers [41,77]. See also [40,48,49].

Functional differential equations with state-dependent delay appear frequently in
applications as model of equations and for this reason the study of these types of
equations has received great attention in the last year; see for instance [140, 141]
and the references therein. The literature related to partial functional differential
equations with state-dependent delay is limited; see for instance [11,37, 148]. The
literature related to ordinary and partial functional differential equations with delay
for which p(t,.) = t or (p1(x, y,.), p2(x,y,.)) = (x,y) is very extensive; see for
instance [5, 6, 139] and the references therein.

Implicit differential equations involving the regularized fractional derivative
were analyzed by many authors, in the last year; see for instance [16, 17, 33, 34,
246,247] and the references therein.

Integral equations are one of the useful mathematical tools in both pure and
applied analysis. This is particularly true of problems in mechanical vibrations
and the related fields of engineering and mathematical physics. There has been
a significant development in ordinary and partial fractional integral equations in
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recent years; see the monographs of Miller and Ross [192], Podlubny [214], Abbas
et al. [18-23,28,29], Banas et al. [63], Darwish et al. [100], Dhage [107-111], and
the references therein.

In this book we are interested by initial value problems (IVP for short) for
partial hyperbolic functional differential equations and inclusions with Caputo’s
fractional derivative and partial hyperbolic implicit differential equations involving
the regularized fractional derivative. Our results may be interpreted as extensions
of previous results of Dawidowski and Kubiaczyk [101], Kamont [158], Kamont
and Kropielnicka [159] obtained for “classical” hyperbolic differential equations
and inclusions with integer order derivative and those of Kilbas and Marzan [165]
considered with fractional derivative and without delay. In fact, in the proof of our
theorems we essentially use several fixed-point techniques. This book is arranged
and organized as follows:

In Chap. 2, we introduce notations, definitions, and some preliminary notions.
In Sect. 2.1, we give some notations from the theory of Banach spaces and Banach
algebras. Section 2.2 is concerned to recall some basic definitions and facts on
partial fractional calculus theory. In Sect. 2.3, we give some properties of set-valued
maps. Section 2.4 is devoted to fixed-points theory, here we give the main theorems
that will be used in the following chapters. In Sect. 2.5, we give some generalizations
of Gronwall’s lemmas for two independent variables and singular kernel.

In Chap. 3, we shall be concerned by fractional order partial functional differ-
ential equations. In Sect. 3.2, we study initial value problem for a class of partial
hyperbolic differential equations. We give two results, one based on Banach fixed-
point theorem and the other based on the nonlinear alternative of Leray—Schauder
type. We present two similar results to nonlocal problems. An example will be
presented in the last illustrating the abstract theory. Section 3.3 is concerned to study
a system of perturbed partial hyperbolic differential equations. We give two results,
one based on Banach fixed-point theorem and other based on a fixed-point theorem
due to Burton and Kirk for the sum of contraction and completely continuous
operators. Also, we give similar results to nonlocal problems and we present an
illustrative example. Section 3.4 is devoted to study initial value problem for partial
neutral functional differential equations. We present some existence results using
Krasnoselskii’s fixed-point theorem. Also we present an example illustrating the
applicability of the imposed conditions. In Sect.3.5, we shall be concerned by
partial hyperbolic differential equations in Banach algebras. We shall prove the
existence of solutions, as well as the existence of extremal solutions. Our approach
is based, for the existence of solutions, on a fixed-point theorem due to Dhage under
Lipschitz and Carathéodory conditions, and for the existence of extremal solutions,
on the concept of upper and lower solutions combined with a fixed-point theorem
on ordered Banach algebras established by Dhage under certain monotonicity
conditions. An example is presented in the last part of this section. In Sect. 3.6, we
investigate the existence of solutions for a class of initial value problem for partial
hyperbolic differential equations by using the lower and upper solutions method
combined with Schauder’s fixed-point theorem. In Sect. 3.7, we study a system of
partial hyperbolic differential equations with infinite delay. We present two results,
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one based on Banach fixed-point theorem and the other based on the nonlinear
alternative of Leray—Schauder type. Section 3.8 is devoted to study the existence and
uniqueness of solutions of some classes of partial functional and neutral functional
hyperbolic differential equations with state-dependent delay. Some examples will
be presented in the last part of this section. In the last section of this paper, we
shall be concerned by global uniqueness results for partial hyperbolic differential
equations. We investigate the global existence and uniqueness of solutions of four
classes of partial hyperbolic differential equations with finite and infinite delays and
we present some illustrative examples.

In Chap. 4, we shall be concerned by functional partial differential inclusions.
In Sect. 4.2, we investigate the existence of solutions of a class of partial hyperbolic
differential inclusions with finite delay. We shall present two existence results, when
the right-hand side is convex as well as nonconvex valued. The first result relies on
the nonlinear alternative of Leray—Schauder type. In the second result, we shall
use the fixed-point theorem for contraction multivalued maps due to Covitz and
Nadler. In Sect. 4.3, we prove a Filippov-type existence result for a class of partial
hyperbolic differential inclusions by applying the contraction principle in the space
of selections of the multifunction instead of the space of solutions. The second result
is about topological structure of the solution set, more exactly, we prove that the
solution set is not empty and compact. Section 4.4 is devoted to an existence result
of solutions for functional differential inclusions. Our proof relies on the nonlinear
alternative of Leray—Schauder combined with lower and upper solutions method.
Section 4.5 deals with the existence of solutions for the initial value problems for
fractional-order hyperbolic and neutral hyperbolic functional differential inclusions
with infinite delay by using the nonlinear alternative of Leray—Schauder type for
multivalued operators. In Sect. 4.6, we investigate the existence of solutions for
a system of integral inclusions of fractional order. Our approach is based on
appropriate fixed-point theorems, namely Bohnenblust—Karlin fixed-point theorem
for the convex case and Covitz-Nadler for the nonconvex case.

In Chap. 5, we shall be concerned with functional impulsive partial hyperbolic
differential equations. Section 5.2 deals with the existence and uniqueness of
solutions of a class of partial hyperbolic differential equations with fixed time
impulses. We present two results, the first one is based on Banach’s contraction
principle and the second one on the nonlinear alternative of Leray—Schauder type.
As an extension to nonlocal problems, we present two similar results. Finally
we present an illustrative example. In Sect. 5.3, we investigate the existence and
uniqueness of solutions of a class of partial hyperbolic differential equations with
variable time impulses. We present two results, the first one is based on Schaefer’s
fixed-point and the second one on Banach’s contraction principle. As an extension
to nonlocal problems, we present two similar results. An example will be presented
in the last illustrating the abstract theory. Section 5.4 deals with the existence
of solutions and extremal solutions to partial hyperbolic differential equations of
fractional order with impulses in Banach algebras under Lipschitz and Carathéodory
conditions and certain monotonicity conditions. Finally we present an illustrative
example. Section 5.5 deals with the existence of solutions to partial functional
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differential equations with impulses at variable times and infinite delay. Our works
will be considered by using the nonlinear alternative of Leray—Schauder type and
we present an illustrative example. Section 5.6 is devoted to study the existence and
uniqueness of solutions of two classes of partial hyperbolic differential equations
with fixed time impulses and state-dependent delay. We present two results for
each of our problems, the first one is based on Banach’s contraction principle and
the second one on the nonlinear alternative of Leray—Schauder type. In Sect. 5.7,
we investigate the existence and uniqueness of solutions of two classes of partial
hyperbolic differential equations with variable time impulses and state-dependent
delay, we present existence results for our problems based on Schaefer’s fixed-
point. In Sect. 5.8, we investigate the existence of solutions for a class of initial
value problem for impulsive partial hyperbolic differential equations by using the
lower and upper solutions method combined with Schauder’s fixed-point theorem.

In Chap. 6, we shall be concerned with impulsive partial hyperbolic functional
differential inclusions. Section 6.2 deals with the existence of solutions of a class
of partial hyperbolic differential inclusions with fixed time impulses. We shall
present existence results when the right-hand side is convex as well as nonconvex
valued. We present three results, the first one is based on the nonlinear alternative of
Leray—Schauder type. In the second result, we shall use the fixed-point theorem for
contraction multivalued maps due to Covitz and Nadler. The third result relies on
the nonlinear alternative of Leray—Schauder type for single-valued map combined
with a selection theorem due to Bressan and Colombo for lower semicontinuous
multivalued operators with closed and decomposable values. In Sect.6.3, we
investigate the existence of solutions of some classes of partial impulsive hyperbolic
differential inclusions at variable times by using the nonlinear alternative of Leray—
Schauder type. In Sect. 6.4, we use the upper and lower solutions method combined
with fixed-point theorem of Bohnnenblust-Karlin for investigating the existence of
solutions of a class of partial hyperbolic differential inclusions at fixed moments of
impulse.

In Chap.7, we shall be concerned with implicit partial hyperbolic differential
equations.In Section 7.2 we investigate the existence and uniqueness of solutions for
implicit partial hyperbolic functional differential equations. We present two results,
the first one is based on Banach’s contraction principle and the second one on
the nonlinear alternative of Leray—Schauder type. Section 7.3 deals with a global
uniqueness result for fractional-order implicit differential equations, we make use
of the nonlinear alternative of Leray—Schauder type for contraction maps on Fréchet
spaces. To illustrate the result an example is provided. In Sect. 7.4, we shall be
concerned with implicit partial hyperbolic differential equations with finite delay,
infinite delay, and with state-dependent delay. We present two results for each of
our problems, the first one is based on Banach’s contraction principle and the second
one on the nonlinear alternative of Leray—Schauder type. We illustrate our results by
some examples. Section 7.5 deals with the existence and uniqueness of solutions of a
class of implicit impulsive partial hyperbolic differential equations. We present two
results for our problem, the first one is based on Banach’s contraction principle and
the second one on the nonlinear alternative of Leray—Schauder type. To illustrate
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the results an example is provided. In Sect. 7.6, we shall be concerned with the
existence and uniqueness of solutions of two classes of partial implicit impulsive
hyperbolic differential equations with fixed time impulses and state-dependent
delay. We present two results for each of our problems, the first one is based on
Banach’s contraction principle and the second one on the nonlinear alternative of
Leray—Schauder type. Also, we present some illustrative examples.

In Chap. 8, we shall be concerned with Riemann—Liouville integral equations
of fractional order. In Sect. 8.2 we study the existence and uniqueness of solutions
of a certain Fredholm-type Riemann—Liouville integral equation of two variables
by using Banach contraction principle. Section 8.3 deals with the existence and
uniqueness of solutions for a system of integral equations of fractional order with
multiple time delay by using some fixed-point theorems. We illustrate our results
with some examples. In Sect. 8.4 we prove an existence result for a nonlinear
quadratic Volterra integral equation of fractional order. Our technique is based
on a fixed-point theorem due to Dhage [109]. Finally, an example illustrating the
main existence result is presented in the last section. Section 8.5 deals with the
existence and global asymptotic stability of solutions of a class of fractional order
functional integral equations by using the Schauder fixed-point theorem. Also, we
obtain some results about the asymptotic stability of solutions of the equation in
question. Finally, we present an example illustrating the applicability of the imposed
conditions. In Sect. 8.6 we prove the existence and local asymptotic attractivity of
solutions for a functional integral equation of Riemann-Liouville fractional order in
Banach algebras, by using a fixed-point theorem of Dhage [109]. Also, we present
an example illustrating the applicability of the imposed conditions.



Chapter 2
Preliminary Background

In this chapter, we introduce notations, definitions, and preliminary facts that will
be used in the remainder of this book.

2.1 Notations and Definitions

Let J := [0,a] x [0,b]; a,b > 0 and p > 0. Denote L”(J,R") the space of
Lebesgue-integrable functions u : J/ — R” with the norm

1
P

a b
lulr = / / luGr. y)lPdydx | .
0 0

where ||.|| denotes a suitable complete norm on R”. Also L'(J,R") is endowed with

norm ||.|| ;1 defined by
a b
lulls = / / uCx. )]l dydx.
0 0

Let L°°(J,R") be the Banach space of measurable functions u : J — R" which
are bounded, equipped with the norm

lle|| oo = inf{c > O : ||u(x, y)|| <c, a.e. (x,y) € J}.

As usual, by AC(J,R") we denote the space of absolutely continuous functions
from J into R”, and C(J,R") is the Banach space of all continuous functions from
J into R” with the norm

[ulloo = sup [u(x,y)].
(x.y)eJ

Also C(J,R) is endowed with norm ||. || defined by |ullooc = sup |u(x, y)|.
(x,y)eJ
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Define a multiplication - by

(w-v)(x,y) = u(x, y)v(x,y), for(x,y) e J.

Then C(J,R) is a Banach algebra with above norm and multiplication.
Ifu e C([—w,a] x [-B,b],R"); a,b,a, B > 0 then for any (x, y) € J define
U(x.y) by
Uy (s, 1) =ulx + s,y +1),

for (s,¢) € [—a, 0] x [, 0]. Here u(, (., .) represents the history of the state from
time (x — o, y — ) up to the present time (x, y).

2.2 Properties of Partial Fractional Calculus

In this section, we introduce notations, definitions, and preliminary lemmas con-
cerning partial fractional calculus theory.

Definition 2.1 ([216, 225]). The Riemann-Liouville fractional integral of order
a € (0, 00) of a function & € L'([0,5],R"); b > 0 is defined by

1 t
I¢h(t) = @ /(r —5)* " h(s)ds.
0

Definition 2.2 ([216,225]). The Riemann-Liouville fractional derivative of order
a € (0, 1] of a function & € L'([0, 5], R") is defined by

d —o
DEh(t) = 5101 h(1)

- ﬁdr /(t — ) *h(s)ds; for almostall z € [0, b].

Definition 2.3 ([216,225]). The Caputo fractional derivative of order « € (0, 1] of
a function 1 € L'([0, b],R") is defined by

o d
“DJh(t) Eh(t)

t

1 d

= m /(t — s)_“ah(s)ds; for almost all ¢ € [0, b].
0
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Definition 2.4 ([166, 225]). Let « € (0,00) and u € L'(J,R"). The partial
Riemann-Liouville integral of order o of u(x, y) with respect to x is defined by
the expression

1 X
Iy u(x,y) = m /(x —5)* (s, y)ds; for almost all (x, y) € J.
0

Analogously, we define the integral

Igu(x,y) = /(y —5)% 'u(x, s)ds; for almost all (x, y) € J.

(@)

Definition 2.5 ([166,225]). Let « € (0,1] and u € L'(J,R"). The Riemann—
Liouville fractional derivative of order o of u(x, y) with respect to x is defined by

d
(Dg ) (x,y) = —Il_“u(x, y); foralmostall (x,y) € J.
Analogously, we define the derivative
d
(Dgyu)(x,y) = —I0 “u(x,y); for almost all (x,y) € J.

Definition 2.6 ([166, 225]). Let « € (0,1] and u € L'(J,R"). The Caputo
fractional derivative of order o of u(x,y) with respect to x is defined by the
expression

ad
“Dgu(x,y) = IOV ™ —u(x, y); for almostall (x, y) € J.
Analogously, we define the derivative
ad
“Dg u(x,y) = 10} o —u(x, y); foralmost all (x,y) € J.

Definition 2.7 ([244]). Letr = (r1,72) € (0,00) x (0,00) and u € L'(J,R").
The left-sided mixed Riemann—Liouville integral of order r of u is defined by

Xy
r _ 1 _ ri—1 _ n\n—1
(Lyu)(x,y) = —F(rl)F(rz) //(x )Ty — )" u(s, t)deds.
0 0
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In particular,
x
(Igu)(x,y) =u(x,y), ([Ju)(x,y) = //u(s,t)dtds; for almost all (x, y) € J,
00

where o = (1, 1).
For instance, Iju exists for all ri,r, > 0, when u € LI(J, R"™). Note also that
when u € C(J,R"), then (/Ju) € C(J,R"); moreover,
(Igw)(x,0) = (Igu)(0,y) = 0; x €[0,a], y €[0,b].

Example 2.8. LetA,w € (—1,00) and r = (r1,r2) € (0,00) x (0, 00), then

fixhy = — LUANIA+0) oy,

— ®+2. for almost all (x, y) € J.
FA+A+rI(1+w+r) Y )

By 1 —r we mean (1 —ry, 1 —r2) € [0,1) x [0, 1). Denote by D7, := %, the

mixed second-order partial derivative.

Definition 2.9 ([244]). Let r € (0,1] x (0,1] and u € L'(J,R"). The
Caputo fractional-order derivative of order r of u is defined by the expression
(‘Dgu)(x,y) = (I;7" D u)(x,y) and the mixed fractional Riemann-Liouville
derivative of order r of u is defined by the expression (Dfu)(x, y) = (D7, 1§~ u)
(x. ¥).

The case 0 = (1, 1) is included and we have
“Dgu)(x,y) = (DJu)(x,y) = (D)%yu)(x, y); for almost all (x, y) € J.
Example 2.10. Let A,w € (—1,00) and r = (r1,12) € (0, 1] x (0, 1], then

B I+ 0)ra+ w) Ay
T4+ A—r)IA+w—r)

y“~"2; for almost all (x, y) € J.

Definition 2.11 ([247]). For a functionu : J — R”, we set

q(-xa y) = u(x, y) - M(X,O) - M(Ov y) + M(0,0)

By the mixed regularized derivative of order r = (r;,r2) € (0,1] x (0,1] of a
function u(x, y), we name the function

Dou(x,y) = Djq(x, y).

The function
Dy u(x, ) = Dl [u(x. y) — u(0, y)],
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is called the partial r; —order regularized derivative of the function u(x, y) : J — R”
with respect to the variable x. Analogously, we define the derivative

Dy yu(x.y) = D, [u(x, y) — u(x,0)].

Leta; € [0,a], z¥ = (a1,0) € J, J. = [a1,a] x[0,b]. Forw € L'(J.,R"), the
expression

x Yy
r — ; _ ri—1 _ -1
I0503) = oo [ [ =977 =0 . aras,
ar 0

is called the left-sided mixed Riemann-Liouville integral of order r of w.
The Caputo fractional-order derivative of order r of w is defined by (° D Z’ wi(x,y) =

(Izl+_ 4 Diy w)(x, y) and the mixed fractional Riemann—Liouville derivative of order
r of w is defined by (D7, w)(x, y) = (Diylzljfrw)(x, »).
Let f,g € L'(J,R").

Lemma 2.12 ([5,6]). A functionu € AC(J,R") such that its mixed derivative D)%y
exists and is integrable on J is a solution of problems

(“Dou)(x,y) = f(x,y): (x,y) € J,
u(x,0) = ¢(x); x €[0,al], u(0,y) =¥(y); y €[0,b],
@(0) = ¥(0),

if and only if u(x, y) satisfies
u(x,y) = p(x,y) + (g f)(x, 9); (x,y) € J,

where
pn(x,y) = @(x) + ¥ (y) — ¢0).

Lemma 2.13 ([35]). A function u € AC(J,R") such that the mixed derivative
ny (u — g) exists and is integrable on J is a solution of problems

CD(;[u(xvy) —g(x,y)] = f(xdf); (x,y) S J?
u(x,0) = ¢(x); x €[0,a], u(0,y) =¥ (y); y €[0,b],
®(0) = ¥ (0),

if and only if u(x, y) satisfies

u(x,y) = p(x,y)+g(x, y)—g(x,0)—g(0, y)+g(0,0)+ 15 (f)(x,y); (x,y) € J.
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Let h € C([xk, Xk+1] X [0,b],R"), z% = (xx,0), 0 = xp < X1 < -++ < X <
Xm+1 = a and

wi(x,y) = u(x,0) + u(x,:r,y) —u(x,:L,O); k=0,...,m.

Lemma 2.14 ([7,8]). A function u € AC([xk, xr+1] x [0,b],R"); k = 0,...,m
whose r-derivative exists on [xy, xr+1] X [0,b], k = 0,...,m is a solution of the
differential equation

(DL u)(x.y) = h(x.y): (x.y) € [xx, xp41] x [0. D],

if and only if u(x, y) satisfies

u(x, y) = pr(x, y) + (I h)(x, y); (x,y) € [xk, xk41] x [0, b].
Let Jo = [0, x1]x[0,b], Jx = (xk, Xk+1]%[0,0]; k =1,...,m, [ : R" - R";
k=0,1,...,mand denote u(x, y) := uo(x,y); (x,y) € J.

Lemma 2.15 ([7,8]). Let h : J — R" be continuous. A function u whose
r-derivative exists on Ji; k = 0,...,m is a solution of the fractional integral
equation

Xy

1) + T / /(x — )"y = 10)> " h(s, 1)deds:
0 0

if (x.y) €[0.x,] x [0, ].

k
(X, y) + > (i y) = Ii(u(x;. 0)))
i=1

u(x,y) =

Xi

k y
+_I‘(r_1)11"_(_r2_) Z / / (xi = )" (y = 6)> " (s, 1)deds
i=1 0

Xj—1

Xy
+m//(x — )" Ny — 1) h(s, t)deds;

Xk O

if (x,y) € (g, x1] X [0,0], k=1,...,m,

if and only if u is a solution of the fractional IVP

‘D u(x,y) =h(x,y); (x,y) €k, k=0,....m.
u(l, ) = ur,y) + Le(uxg, ) y € 0.6 k=1,....m.
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Lemma 2.16 ([2]). Leth : J — R" be continuous. A function u whose r-derivative
exists on Ji; k = 0,...,m is a solution of the fractional integral equation

X

y

wx.y) + m//(x—s)"“l(y—t)"z‘lh(s,t)dtds;
0 0

if (x.y) €[0,x1] x [0, 5],

u(x,y) = o(x) + I (u(xgk, v)) — I (u(xg, 0))
x oy
+m / /(x — )" Ny — )2 h(s, t)deds;

Xk O

if (x,y) € (g, x1] X [0,0], k=1,...,m,

if and only if u is a solution of the fractional IVP

“Diu(x,y) =h(x,y); (x,y)€J; k=0,....m,
u(x,j',y) = Iy (u(xg,y)); vy €[0,b], k=1,...,m.

Let f € C(J,R*), g € L'(J,R) and po(x,y) = f(i%) + ;ﬂ((()y;) — f%(%).

Lemma 2.17 ([32]). A function u € AC(J,R) such that the mixed derivative
D)%y (%) exists and is integrable on J is a solution of problems

“Di(6dh) = 8w ) €,
u(x,0) = ¢(x); x € [0,a], u(0,y) =¥ (y); y €[0,b],
9(0) = v(0),

if and only if u(x, y) satisfies

ux,y) = £ (o) + (I79)(x. 1) ): (x.3) € J.

Let f S C([Xk, -xk+l] X [Os b]sR*)s g € Ll([-xkvxk-l—l] X [Os b]sR), Ik = ()Ck,O),
and
u@,0) uly) u(x.0)
f&x0) - ity fE0)

=0,...,m.

Ho,k(xv y) =

Lemma 2.18 ([3]). A functionu € AC([xg, xr+1] X [0,b],R), k =0,...,m such
that the mixed derivative ny (%) exists and is integrable on [xi, x;+1] %[0, b], k =
0,...,m is a solution of the differential equation

u

"Défk(f)(x,y) = g(x,»); (x,¥) € [xx, Xen1] x [0, 5],
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if and only if u(x, y) satisfies

u(r, ) = £0r, ) (Rox (e 9) + (HLg)(x.3)): (x.9) € Dt Xea] X [0,].

Let pL/ = 1o,0-
Lemma 2.19 ([3]). Let f : J — R*, g : J — R be continuous. A function u
such that the mixed derivative Dﬁy(%) exists and is integrableon Ji.; k = 0,...,m

is a solution of the fractional integral equation

x
4 ; _ oY1y, 21 .
Foe, ) (x, ) + T () O/O/(X )T (y — 1) g(s, t)deds);

if (x, ) € [0,x1] x [0, ],
(LG, y) fwufmj

e (., y) + oY) LR

e ' (x,y) Z( o) Fe.0)

i=l1

! : ([ ri—l1 ro—1
+m ; / O/(Xi —) (y—1) g(s,t)drds

u(x,y) =

x y
1 ri—1 _ rn—I1 .
+m/0f(x—s) (y =) g(s, t)deds];

if (x,y) € (X, Xp41] X [0,b], k =1,...,m,

if and only if u is a solution of the fractional IVP

Dy, (7) (r,y) =gl y); () €Jis k=0,....m,
u(xt.y)=u(xg.y) + L (w(xg.y)): yel0.b; k=1,....m.

2.3 Properties of Set-Valued Maps

Let (X, || - ||) be a Banach space. Denote P(X) = {Y € X : Y # 0}, Pu(X) =
{Y € P(X) : Yclosed}, Py(X) = {Y € P(X) : Y bounded}, P.,(X) = {Y €
P(X):Y compact} 1, and Py (X)) = {Y € P(X) : Y compact and convex}.

Definition 2.20. A multivalued map 7 : X — P(X) is convex (closed) valued if
T (x) is convex (closed) for all x € X. T is bounded on bounded sets if 7 (B) =
UrepT'(x) is boundedin X forall B € Pp(X) (i.e. Sup,ep supyery) ¥l <00). T
is called upper semicontinuous (u.s.c.) on X if for each xo € X, the set T'(x¢)
is a nonempty closed subset of X, and if for each open set N of X containing
T (xo), there exists an open neighborhood Ny of x¢ such that T(Ny) € N. T is



