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The CEO’s of Ranks and Cranks

Freeman Dyson Frank Garvan

Oliver Atkin H.P.F. Swinnerton-Dyer



I felt the joy of an explorer who suddenly discov-
ers the key to the language lying hidden in the
hieroglyphs which are beautiful in themselves.

–Rabindranath Tagore, The Religion of Man



Preface

This is the third of five volumes that the authors plan to write in their exami-
nation of all the claims made by S. Ramanujan in The Lost Notebook and Other
Unpublished Papers, which was published by Narosa in 1988. This publication
contains the “Lost Notebook,” which was discovered by the first author in
the spring of 1976 at the library of Trinity College, Cambridge. Also included
therein are other partial manuscripts, fragments, and letters that Ramanujan
wrote to G.H. Hardy from nursing homes during 1917–1919. Our third volume
contains ten chapters and focuses on some of the most important and influen-
tial material in The Lost Notebook and Other Unpublished Papers. At center
stage is the partition function p(n). In particular, three chapters are devoted
to ranks and cranks of partitions. Ramanujan’s handwritten manuscript on
the partition and tau functions is also examined.
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1

Introduction

This is the third volume devoted to Ramanujan’s lost notebook and to partial
manuscripts, fragments, and letters published with the lost notebook [283].
The centerpiece of this volume is the partition function p(n). Featured in this
book are congruences for p(n), ranks and cranks of partitions, the Ramanujan
τ -function, the Rogers–Ramanujan functions, and the unpublished portion of
Ramanujan’s paper on highly composite numbers [274].

The first three chapters are devoted to ranks and cranks of partitions. In
1944, F. Dyson [127] defined the rank of a partition to be the largest part
minus the number of parts. If N(m, t, n) denotes the number of partitions of
n with rank congruent to m modulo t, then Dyson conjectured that

N(k, 5, 5n+ 4) =
p(5n+ 4)

5
, 0 ≤ k ≤ 4, (1.0.1)

and

N(k, 7, 7n+ 5) =
p(7n+ 5)

7
, 0 ≤ k ≤ 6. (1.0.2)

Thus, if (1.0.1) and (1.0.2) were true, the partitions counted by p(5n+4) and
p(7n + 5) would fall into five and seven equinumerous classes, respectively,
thus providing combinatorial explanations and proofs for Ramanujan’s famous
congruences p(5n + 4) ≡ 0 (mod 5) and p(7n + 5) ≡ 0 (mod 7). Dyson’s
conjectures were first proved by A.O.L. Atkin and H.P.F. Swinnerton-Dyer
[28] in 1954.

Dyson observed that the corresponding analogue to (1.0.1) and (1.0.2)
does not hold for the third famous Ramanujan congruence p(11n + 6) ≡ 0
(mod 11), and so he conjectured the existence of a statistic that he called
the crank that would combinatorially explain this congruence. In his doctoral
dissertation [144], F.G. Garvan defined a crank for vector partitions, which
became the forerunner of the true crank, which was discovered by Andrews and
Garvan [17] during the afternoon of June 6, 1987, at Illinois Street Residence
Hall, a student dormitory at the University of Illinois, following a meeting on
June 1–5 to commemorate the centenary of Ramanujan’s birth.

G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook: Part III,
DOI 10.1007/978-1-4614-3810-6 1,
c© Springer Science+Business Media New York 2012
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2 1 Introduction

Although Ramanujan did not record any written text about ranks and
cranks in his lost notebook [283], he did record theorems about their generat-
ing functions. Chapter 2 is devoted to the five and seven-dissections of each of
these two generating functions. Cranks are the exclusive topic of Chapter 3,
where dissections for the generating function for cranks are studied, but now
in the context of congruences. A particular formula found in the lost notebook
and proved in Chapter 4 is employed in our proofs in Chapter 3. As we argue
in the following two paragraphs, it is likely that Ramanujan was working on
cranks up to four days before his death on April 26, 1920.

In January 1984, the second author, Berndt, was privileged to have a very
pleasant and exceptionally informative conversation with Ramanujan’s widow,
Janaki. In particular, this author asked her about the extent of papers that
her late husband possessed at his death, and remarked that the only papers
that have been passed down to us are those constituting the lost notebook of
138 pages. She claimed that Ramanujan had many more than 138 pages in his
possession at his death. She related that as her husband “did his sums,” he
would deposit his papers in a large leather trunk beneath his bed, and that the
number of pages in this trunk certainly exceeded 138. She told Berndt that
during her husband’s funeral, certain people, whom she named but whom we
do not name here, came to her home and stole most of Ramanujan’s papers
and never returned them. She later donated those papers that were not stolen
to the University of Madras. These papers certainly contain, or possibly are
identical to, the lost notebook.

It is our contention that Ramanujan kept at least two stacks of papers while
doing mathematics in his last year. In one pile, he put primarily those pages
containing the statements of his theorems, and in another stack or stacks he
put papers containing his calculations and proofs. The one stack of papers con-
taining the lost notebook was likely in a different place and missed by those
taking his other papers. (Of course, it is certainly possible that more than
one pile of papers contained statements of results that Ramanujan wanted
to save.) Undoubtedly, Ramanujan produced scores of pages containing cal-
culations, scratch work, and proofs, but the approximately twenty pages of
scratch work in the lost notebook apparently pertain more to cranks than to
any other topic. Our guess is that when Ramanujan ceased research four days
prior to his death, he was thinking about cranks. His power series expansions,
factorizations, preliminary tables, and scratch work were part of his deliber-
ations and had not yet been put in a secondary pile of papers. Thus, these
sheets were found with the papers that had been set aside for special keeping
and so unofficially became part of his lost notebook. In particular, pages 58–89
in the lost notebook likely include some pages that Ramanujan intended to
keep in his principal stack, but most of this work probably would have been
relegated to a secondary pile if Ramanujan had lived longer. Further remarks
can be found in [64].

Ramanujan’s famous manuscript on the partition and tau functions is ex-
amined in Chapter 5. This chapter is a substantially revised and extended
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version of the original publication by the second author and K. Ono [67] ap-
pearing in a volume honoring the first author on his 60th birthday. Difficult
decisions in the presentation of this manuscript were necessary. As readers
peruse the manuscript, it will become immediately clear that Ramanujan left
out many details, and that the frequency of omitted details increases as the
manuscript progresses. Often, especially in beginning sections, it is not difficult
to insert missing details. Thus, to augment readability, we have inserted such
details in square brackets, so that readers can easily separate Ramanujan’s
exposition from that of the authors. However, other claims require consider-
ably more amplification or are completely lacking in details. It was decided
that such claims should be either proved or discussed in an appendix. Thus,
further decisions needed to be made: Should all of the necessary arguments be
presented, or should readers be referred to papers where complete proofs can
be given. If details for all of Ramanujan’s claims were to be supplied, because
of the increased number of pages, this volume might necessarily be devoted
only to this manuscript.

G.H. Hardy [280] extracted a portion of Ramanujan’s manuscript and
added several details in giving proofs of his aforementioned famous congru-
ences for the partition function, namely,

p(5n+4) ≡ 0 (mod 5), p(7n+5) ≡ 0 (mod 7), p(11n+6) ≡ 0 (mod 11).
(1.0.3)

Thus, we feel that it is unnecessary to give any further commentary on these
passages here; readers can proceed to [280] or [281, 232–238] for complete
proofs. From the remarkable recent work of S. Ahlgren and M. Boylan [5], we
now know that (1.0.3) are the only congruences for p(n) in which the prime
moduli of the congruences match the moduli of the arithmetic progressions in
the arguments. We remark that we are also following the practice of Hardy,
who placed additional details in square brackets, so that readers could see
precisely what Ramanujan had recorded and what he had not.

These congruences (1.0.3) are the first cases of the infinite families of
congruences

p(5kn+ δ5,k) ≡ 0 (mod 5k), (1.0.4)

p(7kn+ δ7,k) ≡ 0 (mod 7[k/2]+1), (1.0.5)

p(11kn+ δ11,k) ≡ 0 (mod 11k),

where δp,k :≡ 1/24 (mod pk). In Ramanujan’s manuscript, he actually gives a
complete proof of (1.0.4), but many of the details are omitted. These details
were supplied by G.N. Watson [336], who unfortunately did not mention that
his proof had its genesis in Ramanujan’s unpublished manuscript. Ramanujan
also began a proof of (1.0.5), but he did not finish it. If he had done so, then
he would have seen that his original conjecture was incorrect and needed to
be corrected as given in (1.0.5). Since proofs of (1.0.4) and (1.0.5) can now
be found in several sources (which we relate in Chapter 5), there is no need
to give proofs here.
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It was surprising for us to learn that Ramanujan had also found congru-
ences for p(n) for the moduli 13, 17, 19, and 23 and had formulated a general
conjecture about congruences for any prime modulus. However, unlike (1.0.3),
these congruences do not give divisibility of p(n) in any arithmetic progres-
sions. In his doctoral dissertation, J.M. Rushforth [305] supplied all of the
missing details for Ramanujan’s congruences modulo 13, 17, 19, and 23. Since
Rushforth’s work has never been published and since his proofs are motivated
by those found by Ramanujan, we have decided to publish them here for the
first time. In fact, almost all of Rushforth’s thesis is devoted to Ramanujan’s
unpublished manuscript on p(n) and τ(n), and so we have extracted from it
further proofs of results claimed by Ramanujan in this famous manuscript.
Ramanujan’s general conjecture on congruences for prime moduli was inde-
pendently corrected, proved, and generalized in two distinct directions by
H.H. Chan and J.-P. Serre and by Ahlgren and Boylan [5]. The proof by
Chan and Serre is given here for the first time.

Many of the results in Ramanujan’s manuscript are now more efficiently
proved using the theory of modular forms. Indeed, much of this manuscript
has given impetus for further work not only on p(n) but also on the Fourier
coefficients of other modular forms. Some of this work is briefly described in
Chapter 5, but except for the proof by Chan and Serre, we have not employed
the theory of modular forms in proofs within our commentary on Ramanujan’s
manuscript.

A series of Ramanujan’s claims in the p(n)/τ(n) manuscript are wrong.
Rushforth first noted and examined these mistakes in his thesis [305]. However,
P. Moree has made a thorough examination of all these erroneous claims and
corrected them in a particularly illuminating paper [228].

Lastly, we remark that the p(n)/τ(n) manuscript is found on pages 133–
177, 238–243 of [283], with the latter portion, designated as Part II, in the
handwriting of Watson. In fact, the original version of Part II in Ramanujan’s
own handwriting can be found in the library at Trinity College. One might
therefore ask why Narosa published a facsimile of Watson’s handwritten copy
instead of Ramanujan’s own version. There are two possible explanations.
First, Watson’s copy is closely written, while Ramanujan’s more sprawling
version would have required more pages in the published edition [283]. Second,
the editors might not have been aware of Ramanujan’s original manuscript in
his own handwriting.

Having given an extensive account on our approach to the p(n)/τ(n)
manuscript in Chapter 5, we turn to other chapters.

Chapter 6 is devoted to six entries on page 189 of the lost notebook [283],
all of which are related to the content of Chapter 5, and to entries on page 182,
which are related to Ramanujan’s paper on congruences for p(n) [276] and of
course also to Chapter 5. In particular, we give proofs of two of Ramanu-
jan’s most famous identities, immediately yielding the first two congruences
in (1.0.3). On page 182, we also see that Ramanujan briefly examined congru-
ences for pr(n), where pr(n) is defined by
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(q; q)r∞ =

∞∑

n=0

pr(n)q
n, |q| < 1.

Apparently, page 182 is page 5 from a manuscript, but unfortunately all of the
remaining pages of this manuscript are likely lost forever. We have decided
also to discuss in Chapter 6 various scattered, miscellaneous entries on p(n).
Most of this mélange can be found in Ramanujan’s famous paper with Hardy
establishing their asymptotic series for p(n) [167].

In Chapter 7, we examine nine congruences that make up page 178 in the
lost notebook. These congruences are on generalized tau functions and are in
the spirit of Ramanujan’s famous congruences for τ(n) discussed in Chapter 5.

The Rogers–Ramanujan functions are the focus of Chapter 8, wherein
Ramanujan’s 40 famous identities for these functions are examined. Having
been sent some, or possibly all, of the 40 identities in a letter from Ramanujan,
L.J. Rogers [304] proved eight of them, with Watson [333] later providing
proofs for six further identities as well as giving different proofs of two of the
identities proved by Rogers. For several years after Ramanujan’s death, the list
of 40 identities was in the hands of Watson, who made a handwritten copy for
himself, and it is this copy that is published in [283]. Fortunately, he did not
discard the list in Ramanujan’s handwriting, which now resides in the library
at Trinity College, Cambridge. Approximately ten years after Watson’s death,
B.J. Birch [75] found Watson’s copy in the library at Oxford University and
published it in 1975, thus bringing it to the mathematical public for the first
time. D. Bressoud [81] and A.J.F. Biagioli [74] subsequently proved several
further identities from the list.

Our account of the 40 identities in Chapter 8 is primarily taken from a
Memoir [65] by Berndt, G. Choi, Y.-S. Choi, H. Hahn, B.P. Yeap, A.J. Yee,
H. Yesilyurt, and J. Yi. The goal of these authors was to provide proofs for
as many of these identities as possible that were in the spirit of Ramanujan’s
mathematics. In doing so, they borrowed some proofs from Rogers, Watson,
and Bressoud, while supplying many new proofs as well. After the publication
of [65] in which proofs of 35 of the 40 identities were given in the spirit of
Ramanujan, Yesilyurt [347], [348] devised ingenious and difficult proofs of
the remaining five identities, and so these papers [347], [348] are the second
primary source on which Chapter 8 is constructed.

Chapter 9 is devoted to one general theorem on certain sums of positive
integral powers of theta functions, and five examples in illustration. Many
offered original ideas about the entries in this chapter; in particular, Heng
Huat Chan and Hamza Yesilyurt deserve special thanks. Ramanujan’s pri-
mary theorem has inspired several generalizations, but it seems likely that
Ramanujan’s approach has not yet been discovered.

In 1915, the London Mathematical Society published Ramanujan’s paper
on highly composite numbers [274], [281, 78–128]. However, this is only part
of the paper that Ramanujan submitted. The London Mathematical Soci-
ety was in poor financial condition at that time, and to diminish expenses,
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they did not publish all of Ramanujan’s paper. Fortunately, the remainder
of the paper has not been lost and resides in the library at Trinity College,
Cambridge. In its original handwritten form, it was photocopied along with
Ramanujan’s lost notebook in 1988 [283]. J.-L. Nicolas and G. Robin prepared
an annotated version of the paper for the first volume of the Ramanujan Jour-
nal in 1997 [284]. In particular, they inserted text where gaps occurred, and
at the end of the paper, they provided extensive commentary on research in
the field of highly composite numbers accomplished since the publication of
Ramanujan’s original paper [274]. Chapter 10 contains this previously unpub-
lished manuscript of Ramanujan on highly composite numbers, as completed
by Nicolas and Robin, and a moderately revised and extended version of the
commentary originally written by Nicolas and Robin.

The first author is grateful to Frank Garvan, whose ideas and insights
permeate Chapter 2. The second author thanks Heng Huat Chan, Song Heng
Chan, and Wen-Chin Liaw for their collaboration on the papers [62] and [63],
from which Chapters 3 and 4 were prepared. The last section of the former
paper, which corresponds to Section 3.8 of Chapter 3, is due to Garvan, whom
we thank for the many valuable remarks and suggestions on ranks and cranks
that he made to the authors of [62] and [63]. Atul Dixit read Chapters 2 and
9 in detail and offered several corrections and suggestions.

We thank Paul Bateman, Heng Huat Chan, Frank Garvan, Michael
Hirschhorn, Pieter Moree, Robert A. Rankin, and Jean-Pierre Serre for helpful
comments on Chapter 5. We are particularly grateful to Hirschhorn for read-
ing several versions of Chapter 5 and providing insights that we would not
have otherwise observed. In particular, the argument given in square brackets
near the beginning of Section 5.21 is his. He showed us that Ramanujan’s
conjecture on the value of cλ at the beginning of Section 5.23 is correct. He
also provided the meaning of the four mysterious numbers that Ramanujan
recorded at the end of Section 5.21, but which we moved to a more proper
place at the end of Section 5.24. Lastly, he provided references that Ono and
the second author had overlooked in our earlier version [67] of the p(n)/τ(n)
manuscript.

We are grateful to the late Professor W.N. Everitt, the School of Math-
ematics, and the Library at the University of Birmingham for supplying us
with a copy of Rushforth’s dissertation and for permission to use material
from it in this volume.

Our account of Chapter 6 originates primarily from two papers by the
second author that he coauthored, the first with Ae Ja Yee and Jinhee Yi,
and the second with Chadwick Gugg and Sun Kim. We thank all of them for
their kind collaboration. One particular entry on page 331 that we discuss in
Chapter 6 was particularly puzzling, and we are grateful to L. Bruce Richmond
for helpful correspondence.

The authors thank Heng Huat Chan for informing us that the results on
page 189 of the lost notebook were briefly discussed by K.G. Ramanathan
[273, pp. 154–155], and for discussion on one of the incorrect entries on page
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189. We are also pleased to thank Scott Ahlgren for his proof of another entry
on page 189.

Chapter 7 is entirely due to Dennis Eichhorn, who completed this work as
part of a research assistantship under the second author at the University of
Illinois.

The second author is greatly indebted to his coauthors, G. Choi, Y.-S. Choi,
H. Hahn, B.P. Yeap, A.J. Yee, H. Yesilyurt, and J. Yi, of the Memoir [65],
which has been revised for Chapter 8 in this volume.

Chapter 9 has been significantly enhanced by correspondence that the
second author had with Hamza Yesilyurt, who provided material from his
forthcoming paper with A. Berkovich and Garvan [53].

It is our great pleasure to thank J.-L. Nicolas and G. Robin for their initial
preparation of Chapter 10 and in particular for their insightful comments
accompanying it. We thank K.S. Williams for providing several references for
our commentary on Chapter 10.

We are indebted to J.P. Massias for calculating largely composite numbers
and finding the meaning of the table appearing in [283, p. 280].

Heng Huat Chan, Atul Dixit, Byungchan Kim, Pieter Moree, Jaebum
Sohn, and Michael Somos read in detail large portions of the manuscript
for this volume and provided many useful comments and corrections.

David Kramer, who is likely the most careful and knowledgeable copy
editor in the mathematics publishing realm, uncovered many errors and in-
consistencies, and we thank him for his usually superb copy editing of our
book. We are also indebted to Springer’s TEXexpert, Rajiv Monsurate, for
considerable advice.

We thank the librarian and staff at Trinity College Library, Cambridge,
for providing the authors with copies of the lost notebook and several other
manuscripts by Ramanujan.

The first author thanks the National Science Foundation for support while
this book was being prepared. The second author thanks the National Security
Agency for summer support. The second author is particularly grateful to the
Sloan Foundation for a grant that relieved him of teaching duties for the 2011–
2012 academic year and enabled him to complete the writing of this volume
with his coauthor.



2

Ranks and Cranks, Part I

2.1 Introduction

This somewhat lengthy chapter concerns some of the most important formulas
from the lost notebook [283], which are contained in only a few lines. We first
introduce some standard notation that will be used throughout this chapter
(and most of this book). Secondly, we record the two formulas listed at the
top of page 20 (one of which is repeated in the middle of page 18). After
stating these formulas, we provide history demonstrating that these entries
are the genesis of some of the most important developments in the theory of
partitions during the twentieth and twenty-first centuries. Next, we offer two
further claims found in the lost notebook. Lastly, we provide proofs for all
four claims.

For each nonnegative integer n, set

(a)n := (a; q)n :=

n−1∏

k=0

(1−aqk), (a)∞ := (a; q)∞ := lim
n→∞

(a; q)n, |q| < 1.

Also, set
(a1, . . . , am; q)n := (a1; q)n · · · (am; q)n

and
(a1, . . . , am; q)∞ := (a1; q)∞ · · · (am; q)∞. (2.1.1)

Ramanujan’s general theta function f(a, b) is defined by

f(a, b) :=

∞∑

n=−∞
an(n+1)/2bn(n−1)/2, |ab| < 1. (2.1.2)

It satisfies the well-known Jacobi triple product identity [60, p. 10, Theorem
1.3.3], [12, p. 21, Theorem 2.8]

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞. (2.1.3)

G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook: Part III,
DOI 10.1007/978-1-4614-3810-6 2,
c© Springer Science+Business Media New York 2012

9

http://dx.doi.org/10.1007/978-1-4614-3810-6_2
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Also recall that [55, p. 34, Entry 18(iv)] for any integer n,

f(a, b) = an(n+1)/2bn(n−1)/2f(a(ab)n, b(ab)−n). (2.1.4)

We now state the first of the two aforementioned remarkable entries from
the lost notebook.

Entry 2.1.1 (pp. 18, 20). Let ζ5 be a primitive fifth root of unity, and let

F5(q) :=
(q; q)∞

(ζ5q; q)∞(ζ−1
5 q; q)∞

. (2.1.5)

Then

F5(q) = A(q5)− (ζ5 + ζ−1
5 )2qB(q5)

+ (ζ25 + ζ−2
5 )q2C(q5)− (ζ5 + ζ−1

5 )q3D(q5), (2.1.6)

where

A(q) :=
(q5; q5)∞G2(q)

H(q)
, (2.1.7)

B(q) := (q5; q5)∞G(q), (2.1.8)

C(q) := (q5; q5)∞H(q), (2.1.9)

D(q) :=
(q5; q5)∞H2(q)

G(q)
, (2.1.10)

with

G(q) :=
1

(q; q5)∞(q4; q5)∞
(2.1.11)

and

H(q) :=
1

(q2; q5)∞(q3; q5)∞
. (2.1.12)

We remark that by the famous Rogers–Ramanujan identities [15, Chap-
ter 10],

G(q) =

∞∑

n=0

qn
2

(q; q)n
and H(q) =

∞∑

n=0

qn(n+1)

(q; q)n
.

The identity (2.1.6) is an example of a dissection. Since this and the fol-
lowing chapter are devoted to dissections, we offer below their definition.

Definition 2.1.1. Let P (q) denote any power series in q. Then the t-dissection
of P is given by

P (q) =:

t−1∑

k=0

qkPk(q
t). (2.1.13)
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Note that (2.1.6) provides a 5-dissection for F5(q), i.e., (2.1.6) separates
F5(q) into power series according to the residue classes modulo 5 of their
powers. In analogy with (2.1.6), we see that (2.1.17) in the next entry provides
a 5-dissection for f5(q).

Of the dissections offered by Ramanujan in his lost notebook, some, such
as (2.1.6), are given as equalities in terms of roots of unity; others are given as
congruences in terms of a variable a. In Chapter 3, we establish Ramanujan’s
dissections in terms of congruences, while in this chapter we prove 5- and
7-dissections in the form of equalities for each of the rank and crank gener-
ating functions, whose representations are given, respectively, in (2.1.24) and
(2.1.27) below. The precise definitions of the rank and crank of a partition will
be given after we record the second of the two aforementioned fundamental
identities.

In order to explicate our remark about congruences in the preceding para-
graph, following Ramanujan in his lost notebook, we define the more general
function

Fa(q) :=
(q; q)∞

(aq; q)∞(q/a; q)∞
. (2.1.14)

(Note that the notation (2.1.14) conflicts with that of (2.1.5); the right-hand
side of (2.1.5) would be Fζ5(q) in the notation (2.1.14).) Set

An := an + a−n and Sn :=

n∑

k=−n

ak.

Then [62, p. 105, Theorem 5.1]

Fa(q) ≡ A(q5) + (A1 − 1)qB(q5) +A2q
2C(q5)−A1q

3D(q5) (modS2).
(2.1.15)

Thus, we have replaced the primitive root ζ5 by the general variable a. The
congruence (2.1.15) is then a generalization of (2.1.6), because if we set a = ζ5
in (2.1.15), the congruence is transformed into an identity. An advantage of
(2.1.15) over (2.1.6) is that we can put a = 1 in (2.1.15) and so immediately
deduce the Ramanujan congruence

p(5n+ 4) ≡ 0 (mod 5),

where p(n) is the number of partitions of n. Although (2.1.15) appears to
be more general than (2.1.6), in fact, it is not. It is shown in [62, pp. 118–
119] that (2.1.15) can be derived from (2.1.6). In Section 3.8 of the following
chapter we reproduce that argument, which is due to F.G. Garvan.

Entry 2.1.2 (p. 20). Let ζ5 be a primitive fifth root of unity, and let

f5(q) =

∞∑

n=0

qn
2

(ζ5q; q)n
(
ζ−1
5 q; q

)
n

. (2.1.16)
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Then

f5(q) = A(q5) +
(
ζ5 + ζ−1

5 − 2
)
φ(q5) + qB(q5) +

(
ζ5 + ζ−1

5

)
q2C(q5)

−
(
ζ5 + ζ−1

5

)
q3
{
D(q5)−

(
ζ25 + ζ−2

5 − 2
) ψ(q5)

q5

}
, (2.1.17)

where A(q), B(q), C(q), and D(q) are given in (2.1.7)–(2.1.10), and where

φ(q) :=

∞∑

n=0

φnq
n := −1 +

∞∑

n=0

q5n
2

(q; q5)n+1(q4; q5)n
(2.1.18)

and
ψ(q)

q
:= −1

q
+

∞∑

n=0

ψnq
n :=

∞∑

n=0

q5n
2−1

(q2; q5)n+1(q3; q5)n
. (2.1.19)

Corollaries of the preceding entry appear in the middle of page 184 in the lost
notebook. Since their proofs are immediate consequences of Entry 2.1.2, we
offer them here.

Entry 2.1.3 (p. 184). Write

∞∑

n=0

λnq
n =

∞∑

n=0

qn
2

(1 +
√
5+1
2 q + q2) · · · (1 +

√
5+1
2 qn + q2n)

. (2.1.20)

Then,

∞∑

n=0

λ5n+1q
n =

(q5; q5)∞
(q; q5)∞(q4; q5)∞

= (q5; q5)∞G(q), (2.1.21)

∞∑

n=0

λ5n+2q
n = −

√
5 + 1

2

(q5; q5)∞
(q2; q5)∞(q3; q5)∞

= −
√
5 + 1

2
(q5; q5)∞H(q),

(2.1.22)

λ5n−1 is identically zero. (2.1.23)

Proof. In the definition (2.1.16), set ζ5 = e4πi/5; therefore, ζ5+ζ−1
5 = −

√
5+1
2 .

Using then the notation (2.1.20), equate coefficients of q5n+1 on both sides
of (2.1.17). Divide both sides by q and lastly replace q5 by q in the resulting
identity to establish (2.1.21). Similarly, to prove (2.1.22), equate coefficients
of q5n+2 on both sides of (2.1.17). Divide both sides by q2 and replace q5 by q.
Finally, we note that the dissection (2.1.17) does not have any powers of the
form q5n−1, and so (2.1.23) is immediate. ��

Before presenting the third and fourth entries for this chapter, as remarked
above, it is appropriate to say something about these results, which lay hidden
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during one of the most interesting developments in the theory of partitions
during the twentieth century.

In 1944, F. Dyson [127] published a paper filled with fascinating conjec-
tures from the theory of partitions. Namely, Dyson began by defining the
rank of a partition to be the largest part minus the number of parts. Dyson’s
objective was to provide a purely combinatorial description of Ramanujan’s
theorem that 5 divides p(5n + 4). In particular, Dyson conjectured that the
partitions of 5n+4 classified by their rank modulo 5 did, indeed, produce five
sets of equal cardinality, namely p(5n + 4)/5. He was also led to conjecture
that the partitions of 7n + 5, classified by rank, split into seven sets each of
cardinality p(7n+5)/7. This would prove the second Ramanujan congruence,
namely, that 7 divides p(7n + 5). He also conjectured a generating function
for ranks. If N(m,n) denotes the number of partitions of n with rank m, then
Dyson’s observations make clear he knew that

∞∑

n=0

∞∑

m=−∞
N(m,n)zmqn =

∞∑

n=0

qn
2

(zq; q)n(z−1q; q)n
. (2.1.24)

Observe that if we take z = 1 in (2.1.24), then (2.1.24) reduces to the well-
known generating function for p(n),

∞∑

n=0

p(n)qn =

∞∑

n=0

qn
2

(q; q)2n
,

which is due to Euler. If we set z = −1 in (2.1.24), we obtain Ramanujan’s
mock theta function f(q).

Unfortunately, it turned out that the Ramanujan congruence

p(11n+ 6) ≡ 0 (mod 11) (2.1.25)

was not explicable in the same way that worked for p(5n+ 4) and p(7n+ 5).
So Dyson conjectured the existence of an unknown parameter of partitions,
which he whimsically called “the crank,” to explain (2.1.25).

In 1954, A.O.L. Atkin and H.P.F. Swinnerton-Dyer [28] proved all of
Dyson’s conjectures; however, the crank remained undiscovered.

The real breakthrough in this study was made by Garvan in his Ph.D. the-
sis [146] at Pennsylvania State University in 1986. Garvan’s thesis is primarily
devoted to the Entries 2.1.1 and 2.1.2 given above. Observe that Entry 2.1.2
is devoted to a special case of the generating function (2.1.24) for ranks. Not
only was Garvan able to prove these two entries, but he also deduced all of the
Atkin and Swinnerton-Dyer results for the modulus 5 from Entry 2.1.2. As
for Entry 2.1.1, Garvan defined a “vector crank,” which did provide a combi-
natorial explanation for 11 dividing p(11n+6), but did this via certain triples
of partitions, i.e., vector partitions. Subsequently, Garvan and Andrews [17]
found the actual crank. Namely, for any given partition π, let 	(π) denote
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the largest part of π, ω(π) the number of ones appearing in π, and μ(π) the
number of parts of π larger than ω(π). Then the crank, c(π), is given by

c(π) =

{
l(π), if ω(π) = 0,

μ(π)− ω(π), if ω(π) > 0.
(2.1.26)

For n > 1, let M(m,n) denote the number of partitions of n with crank m,
while for n ≤ 1 we set

M(m,n) =

⎧
⎪⎨

⎪⎩

−1, if (m,n) = (0, 1),

1, if (m,n) = (0, 0), (1, 1), (−1, 1),

0, otherwise.

The generating function for M(m,n) is given by

∞∑

m=−∞

∞∑

n=0

M(m,n)amqn =
(q; q)∞

(aq; q)∞(q/a; q)∞
. (2.1.27)

As shown by Andrews and Garvan [17], the combinatorial equivalent of
(2.1.27) is given by (2.1.26). Note that if we set a = 1 in (2.1.27), we ob-
tain Euler’s original generating function for p(n),

∞∑

n=0

p(n)qn =
1

(q; q)∞
.

Observe that Entry 2.1.1 provides an identity for a special instance of the
generating function for cranks.

Thus, although Ramanujan did not record combinatorial definitions of the
rank and crank in his lost notebook (in fact, there are hardly any words at
all in the lost notebook), he had discovered their generating functions. From
the entries on ranks and cranks in this and the following two chapters, it
is clear that Ramanujan placed considerable importance on these ideas, and
it is regrettable indeed that we do not know Ramanujan’s motivations and
thoughts on these two fundamental concepts in the theory of partitions.

We finally record the last two results to be included in this chapter. Actu-
ally in each entry below, Ramanujan gives only the left-hand side or hints at it.
However, the analogies with Entries 2.1.1 and 2.1.2 are so clear that we have
filled in what was clearly intended for the right-hand sides. For Entry 2.1.4,
Garvan has supplied the right-hand side in [146, p. 62].

Entry 2.1.4 (p. 19). Let ζ7 be a primitive seventh root of unity, and let

F7(q) :=
(q; q)∞

(ζ7q; q)∞(ζ−1
7 q; q)∞

. (2.1.28)

Then
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F7(q) = (q7; q7)∞

{
X2(q7) +

(
ζ7 + ζ−1

7 − 1
)
qX(q7)Y (q7) (2.1.29)

+
(
ζ27 + ζ−2

7

)
q2Y 2(q7) +

(
ζ37 + ζ−3

7 + 1
)
q3X(q7)Z(q7)

−
(
ζ7 + ζ−1

7

)
q4Y (q7)Z(q7)−

(
ζ27 + ζ−2

7 + 1
)
q6Z2(q7)

}
,

where

X(q) :=

∞∏

n=1
n �≡0,±3 (mod 7)

(1− qn)−1, (2.1.30)

Y (q) :=

∞∏

n=1
n �≡0,±2 (mod 7)

(1− qn)−1, (2.1.31)

Z(q) :=

∞∏

n=1
n �≡0,±1 (mod 7)

(1− qn)−1. (2.1.32)

There are series representations for X(q), Y (q), and Z(q) that yield analogues
of the Rogers-Ramanujan identities forG(q) andH(q) [12, p. 117, Exercise 10].

In order to state the last major entry of this chapter, we need considerable
notation. First, introducing the notation of Atkin and Swinnerton-Dyer [28,
p. 94], we let

Σ(z, ζ, q) =

∞∑

n=−∞

(−1)nζnq3n(n+1)/2

1− zqn
. (2.1.33)

Furthermore, to simplify future considerations, in particular to state and prove
Entry 2.1.5 below, we make the conventions

P7(a) :=
(
q7a, q49−7a; q49

)
∞ (a �= 0), (2.1.34)

P7(0) :=
(
q49; q49

)
∞ , (2.1.35)

Σ7(a, b) := Σ
(
q7a, q7b, q49

)
(a �= 0), (2.1.36)

Σ7(0, b) :=

∞∑

n=−∞
n �=0

(−1)nq147n(n+1)/2+7bn

1− q49n
. (2.1.37)

We note in passing that by (2.1.30)–(2.1.32),

P7(1) =
(q7; q7)∞Z(q7)

(q49; q49)∞
, (2.1.38)

P7(2) =
(q7; q7)∞Y (q7)

(q49; q49)∞
, (2.1.39)

P7(3) =
(q7; q7)∞X(q7)

(q49; q49)∞
. (2.1.40)

Finally, we are ready to supply the right-hand side for the analogue of
Entry 2.1.2 for the modulus 7.
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Entry 2.1.5 (p. 19). Let ζ7 be a primitive seventh root of unity, and let

f7(q) :=
∞∑

n=0

qn
2

(ζ7q; q)n(ζ
−1
7 q; q)n

. (2.1.41)

Then

f7(q) =
(
2− ζ7 − ζ−1

7

) (
1−A7(q

7) + q7Q1(q
7)
)
+A7(q

7)

+ qT1(q
7) + q2

{(
ζ7 + ζ−1

7

)
B7(q

7) + q14Q3(q
7)(ζ7 + ζ−1

7 − ζ−2
7 − ζ27

}

+ q3T2(q
7)
(
1 + ζ27 + ζ−2

7

)
− q4

(
ζ27 + ζ−2

7

)
T3(q

7)

+ q6
{
q7Q2(q

7)
(
ζ27 + ζ−2

7 − ζ37 − ζ−3
7

)
− C7(q

7)
(
1 + ζ37 + ζ−3

7

)}
,

(2.1.42)

where

A7(q) :=
(q7, q3, q4; q7)∞
(q, q2, q5, q6; q7)∞

, (2.1.43)

B7(q) :=
(q7, q2, q5; q7)∞
(q, q3, q4, q6; q7)∞

, (2.1.44)

C7(q) :=
(q7, q, q6; q7)∞

(q2, q3, q4, q5; q7)∞
, (2.1.45)

and for m = 1, 2, 3,

Qm(q7) :=
Σ7(m, 0)

P7(0)
(2.1.46)

and

Tm(q7) :=
P7(0)

P7(m)
. (2.1.47)

We remark that the functions Qm(q7) in (2.1.46) can be expressed in terms
of the generating function for ranks. By a result of Garvan [146, p. 68, Lemma
(7.9)], for |q| < |z| < 1/|q| and z �= 1,

−1 +
1

1− z

∞∑

n=0

qn
2

(zq; q)n(q/z; q)n
=

z

(q; q)∞

∞∑

n=−∞

(−1)nq3n(n+1)/2

1− zqn
.

Hence, after modest rearrangement, we find that

Σ7(m, 0) =
(q49; q49)∞

q7m

{
−1 +

∞∑

n=0

q49n
2

(q7m; q49)n+1(q49−7m; q49)n

}
.

Throughout this chapter our work will follow closely the marvelous papers
by Atkin and Swinnerton-Dyer [28] and Garvan [146].
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2.2 Proof of Entry 2.1.1

Here we shall follow the elegant proof given by Garvan [146]. Throughout this
section ζ5 is a primitive fifth root of unity. We begin with the observation
[146, p. 58, Lemma (3.9)]

1

(ζ5q; q)∞(ζ−1
5 q; q)∞

= G(q5) + q(ζ5 + ζ−1
5 )H(q5), (2.2.1)

where G(q) is defined in (2.1.11) and H(q) is defined in (2.1.12). We prove
the identity (2.2.1). Using the Jacobi triple product identity (2.1.3) twice, we
find that

1

(ζ5q; q)∞(ζ−1
5 q; q)∞

=
(q, ζ25q, ζ

−2
5 ; q)∞

(q, ζ5q, ζ
−1
5 q, ζ25q, ζ

−2
5 ; q)∞

=
(q, ζ25q, ζ

−2
5 ; q)∞

(1− ζ−2
5 )(q5; q5)∞

=
1

(1− ζ−2
5 )(q5; q5)∞

∞∑

n=−∞
(−1)nζ2n5 q(n

2+n)/2

=
1

(1− ζ−2
5 )(q5; q5)∞

2∑

ν=−2

∞∑

m=−∞
(−1)5m+νζ10m+2ν

5 q(5m+ν)(5m+ν+1)/2

=
1

(1− ζ−2
5 )(q5; q5)∞

2∑

ν=−2

(−1)νζ2ν5 qν(ν+1)/2
∞∑

m=−∞
(−1)mq(25m

2+(10ν+5)m)/2

=
1

(1− ζ−2
5 )

2∑

ν=−2

(−1)νζ2ν5 qν(ν+1)/2 f(−q15+5ν ,−q10−5ν)

(q5; q5)∞

=
1

(1− ζ−2
5 )

2∑

ν=−2

(−1)νζ2ν5 qν(ν+1)/2

(
q15+5ν , q10−5ν , q25; q25

)
∞

(q5; q5)∞
.

Now, by (2.1.11) and (2.1.12),

(
q15+5ν , q10−5ν , q25; q25

)
∞

(q5; q5)∞
=

⎧
⎪⎨

⎪⎩

G(q5), if ν = 0,−1,

H(q5), if ν = 1,−2,

0, if ν = 2.

Hence,

1

(ζ5q; q)∞(ζ−1
5 q; q)∞

=
1

(1− ζ−2
5 )

G(q5)
(
1− ζ−2

5

)

+
1

(1− ζ−2
5 )

H(q5)
(
−ζ25q + ζ−4

5 q
)

= G(q5) + q
(
ζ5 + ζ−1

5

)
H(q5),
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which is (2.2.1).
Next, we continue to follow Garvan in [146, p. 60, Lemma 3.18] and so

employ the identity

(q; q)∞ = (q25; q25)∞

(
G(q5)

H(q5)
− q − q2

H(q5)

G(q5)

)
, (2.2.2)

which is one of the famous identities for the Rogers–Ramanujan continued
fraction [15, p. 11, equation (1.1.10)]

1

1 +

q

1 +

q2

1 +

q3

1 + · · · =
H(q)

G(q)
.

We now multiply together (2.2.1) and (2.2.2) to obtain

(q; q)∞

(ζ5q; q)∞(ζ−1
5 q; q)∞

=
(
G(q5) + q(ζ5 + ζ−1

5 )H(q5)
)

× (q25; q25)∞

(
G(q5)

H(q5)
− q − q2

H(q5)

G(q5)

)

= (q25; q25)∞

{
G2(q5)

H(q5)
+ q

(
−1 + ζ5 + ζ−1

5

)
G(q5)

+ q2
(
−1− (ζ5 + ζ−1

5 )
)
H(q5) + q3

(
−(ζ5 + ζ−1

5 )
) H2(q5)

G(q5)

}

= A(q5)− q(ζ5 + ζ−1
5 )2B(q5)

+ q2
(
ζ25 + ζ−2

5

)
C(q5)−

(
ζ5 + ζ−1

5

)
q3D(q5),

and Entry 2.1.1 is proved.

2.3 Background for Entries 2.1.2 and 2.1.4

As was mentioned in Section 2.1, Atkin and Swinnerton-Dyer [28] proved the
conjectures of Dyson [127]. Garvan [146] proved that their work for the modu-
lus 5 was in fact equivalent to Entry 2.1.2. Our proof here relies completely on
Garvan’s observation. We will modify the work of Atkin and Swinnerton-Dyer
to the extent that we will eschew using their Lemma 2, which we state below.

Lemma 2.3.1. Let f(z) be a single-valued analytic function of z, except possi-
bly for a finite number of poles, in every region 0 ≤ z1 ≤ |z| ≤ z2; and suppose
that for some constants A and w with 0 < |w| < 1, and some (positive, zero,
or negative) integer n, we have

f(zw) = Aznf(z)

identically in z. Then either f(z) has exactly n more poles than zeros in

|w| ≤ |z| ≤ 1,

or f(z) vanishes identically.
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While this is a beautiful, powerful, and useful result, it is unlikely to have
been the type of result that Ramanujan would have utilized.

The principal idea is to transform (2.1.16), (2.1.18), and (2.1.19) into cer-
tain bilateral series, which are called higher-level Appell series [355]. In par-
ticular, see Lemma 2.4.1 and the functions (2.1.33) and (2.3.11), which we
define and develop in the next several pages.

The next identity does not appear in the lost notebook. However, it is ef-
fectively a generalization of Entries 12.4.4 (as restated in (12.4.15)) and 12.5.3
(as restated in (12.5.14)) in our first book [15, pp. 276, 283]. Consequently, it
is a partial fraction decomposition of precisely the sort that Ramanujan often
considered.

Lemma 2.3.2. [28, p. 94, Lemma 7] For Σ(z, ζ, q) defined by (2.1.33),

ζ3Σ(zζ, ζ3, q) +Σ(zζ−1, ζ−3, q)− ζ
(ζ2, q/ζ2; q)∞
(ζ, q/ζ; q)∞

Σ(z, 1, q)

=
(ζ, q/ζ, ζ2, q/ζ2, q, q; q)∞

(z/ζ, qζ/z, z, q/z, zζ, q/(zζ); q)∞
. (2.3.1)

This formula was first proved by G.N. Watson [335], and we shall follow
his proof. M. Jackson [185] has given a third proof from the theory of q-
hypergeometric series, and S.H. Chan [105] has established a considerable
generalization of Lemma 2.3.2.

Proof. Let us fix a positive integer N and consider the partial fraction decom-
position with respect to z of the rational function

FN (z) :=
(ζ, q/ζ, ζ2, q/ζ2, q, q; q)N

(z/ζ, qζ/z, z, q/z, zζ, q/(zζ); q)N
. (2.3.2)

This function has simple poles at z = ζqm, qm, and ζ−1qm for −(N − 1) ≤
m ≤ N . Hence, we see that

FN (z) :=

N−1∑

m=−N

Am(N)

1− zζqm
+

N−1∑

m=−N

Bm(N)

1− zqm/ζ
+

N−1∑

m=−N

Cm(N)

1− zqm
. (2.3.3)

Now for any integer m, algebraic simplification reveals that

(xq−m, q1+m/x; q)N = (−1)mq−m(m+1)/2xm(q/x; q)N+m(x; q)N−m. (2.3.4)

First, after three applications of (2.3.4), with x = ζ−2, ζ−1, 1, respectively, we
find that

Am(N) = lim
z→ζ−1q−m

(1− zζqm)FN (z) =
(−1)mq3m(m+1)/2ζ3m+3

(q/ζ2; q)N−m−1(ζ2; q)N+m+1

× (ζ, q/ζ, ζ2, q/ζ2, q, q; q)N
(q/ζ; q)N−m−1(ζ; q)N+m+1(q; q)N−m−1(q; q)N+m

, (2.3.5)
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and
lim

N→∞
Am(N) = (−1)mq3m(m+1)/2ζ3m+3. (2.3.6)

Second, applying (2.3.4) three times once again, but now with x = 1, ζ, ζ2,
respectively, we find that

Bm(N) = lim
z→ζq−m

(1− zζ−1qm)FN (z) (2.3.7)

=
(−1)mq3m(m+1)/2ζ−3m(ζ, q/ζ, ζ2, q/ζ2, q, q; q)N

(ζ; q)N−m(q/ζ; q)N+m(ζ2; q)N−m(q/ζ2; q)N+m(q; q)N−m−1(q; q)N+m
,

and
lim

N→∞
Bm(N) = (−1)mq3m(m+1)/2ζ−3m. (2.3.8)

Third, applying (2.3.4) with x = ζ−1, 1, ζ, respectively, we find that

Cm(N) = lim
z→q−m

(1− zqm)FN (z) (2.3.9)

=
−ζ(−1)mq3m(m+1)/2(ζ, q/ζ, ζ2, q/ζ2, q, q; q)N

(ζ; q)N−m(q/ζ; q)N+m(ζ; q)N+m+1(q/ζ; q)N−m−1(q; q)N−m−1(q; q)N+m
,

and

lim
N→∞

Cm(N) =
−ζ(ζ2, q/ζ2; q)∞(−1)mq3m(m+1)/2

(ζ, q/ζ; q)∞
. (2.3.10)

We can now easily deduce (2.3.1). Clearly FN (z) converges uniformly to
the right-hand side of (2.3.1) as N → ∞.

Equations (2.3.6), (2.3.8), and (2.3.10) when applied to (2.3.3) yield the
left-hand side of (2.3.1), provided we are allowed to take the limit N → ∞
inside the summation signs, and indeed this interchange of limit and summa-
tion is legitimate because the convergence is uniformly independent of m, and
the resulting series, after letting N → ∞, is convergent as long as |q| < 1 and
z is restricted away from the poles. Thus (2.3.1) is proved. ��

Following Atkin and Swinnerton-Dyer [28, p. 96], we now define

g(z, q) := z
(z2, q/z2; q)∞
(z, q/z; q)∞

Σ(z, 1, q)− z3Σ(z2, z3, q) (2.3.11)

−
∞∑

n=−∞
n �=0

(−1)nz−3nq3n(n+1)/2

1− qn
. (2.3.12)

Now the definition of g(z, q) is motivated as follows. We would like to set
ζ = z in (2.3.1); however, this would produce an undefined term at n = 0 in∑

(1, z−3, q) in (2.3.1). Note that g(z, q) is the negative of the left-hand side
of (2.3.1), with ζ = z and the one offending term at n = 0 in

∑
(1, z−3, q)

removed. Thus,
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g(z, q) = lim
ζ→z

(
1

1− z/ζ
− (ζ, q/ζ, ζ2, q/ζ2, q, q; q)∞

(z/ζ, qζ/z, z, q/z, zζ, q/(zζ); q)∞

)
. (2.3.13)

It is now a straightforward exercise to prove the next lemma, which is the
second half of Lemma 8 in [28, p. 96].

Lemma 2.3.3. We have

g(z, q) + g(q/z, q) = 1. (2.3.14)

Proof. We proceed as follows:

g(z, q) + g(q/z, q) = lim
ζ→z

(
1

1− z/ζ
− (ζ, q/ζ, ζ2, q/ζ2, q, q; q)∞

(z/ζ, qζ/z, z, q/z, zζ, q/(zζ); q)∞

)

+ lim
ζ→q/z

(
1

1− q/(zζ)
− (ζ, q/ζ, ζ2, q/ζ2, q, q; q)∞

(q/(zζ), zζ, q/z, z, qζ/z, z/ζ; q)∞

)

= lim
ζ→z

(
1

1− z/ζ
− (ζ, q/ζ, ζ2, q/ζ2, q, q; q)∞

(z/ζ, qζ/z, z, q/z, zζ, q/(zζ); q)∞

+
1

1− ζ/z
+

(ζ, q/ζ, ζ2, q/ζ2, q, q; q)∞
(z/ζ, qζ/z, z, q/z, zζ, q/(zζ); q)∞

)

= lim
ζ→z

(
1

1− z/ζ
+

1

1− ζ/z

)

= 1,

where in the antepenultimate line we replaced ζ by q/ζ in the second limit
and algebraically simplified the second infinite product into the first product
with opposite sign. This then completes the proof of (2.3.14). ��

Our next objective is to establish a second component of Lemma 8 of Atkin
and Swinnerton-Dyer [28, p. 96].

Lemma 2.3.4. We have

g(z, q) + g(z−1, q) = −2. (2.3.15)

Proof. Replacing ζ by 1/ζ in the second equality below, we find that

g(z, q) + g(z−1, q)

= lim
ζ→z

(
1

1− z/ζ
+

(ζ, q/ζ, ζ2, q/ζ2, q, q; q)∞
(z/ζ, qζ/z, z, q/z, zζ, q/(zζ); q)∞

)

+ lim
ζ→1/z

(
1

1− 1/(zζ)
− (ζ, q/ζ, ζ2, q/ζ2, q, q; q)∞

(1/(zζ), qζz, 1/z, qz, ζ/z, qz/ζ; q)∞

)

= lim
ζ→z

(
1

1− z/ζ
− (ζ, q/ζ, ζ2, q/ζ2, q, q; q)∞

(z/ζ, qζ/z, z, q/z, zζ, q/(zζ); q)∞


