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Preface

Algebraic statistics is a rapidly developing field, where ideas from statistics and
algebra meet and stimulate new research directions. Statistics has been relying on
classical asymptotic theory as a basis for statistical inferences. This classical basis
is still very useful. However, when the validity of asymptotic theory is in doubt, for
example, when the sample size is small, statisticians rely more and more on various
computational methods. Similarly, algebra has long been considered as the purest
field of mathematics, far apart from practical computations. However, due mainly
to the development of Gröbner basis technology, algebra is now becoming a field
where computations for practical applications are feasible. It is an interesting trend,
because historically algebra was invented to speed up various calculations.

These two trends meet in the field of algebraic statistics. Algebraic algorithms
are now very useful and essential for some practical statistical computations such as
Markov chain Monte Carlo tests for discrete exponential families, which is the main
topic of this book. On the other hand algebraic structures and computational needs of
statistical models provide new challenging problems to algebraists. Some algebraic
structures are naturally motivated from statistical modeling, but not necessarily from
pure mathematical considerations.

Algebraic statistics has two origins. One origin is the work by Pistone and Wynn
in 1996 on the use of Gröbner bases for studying confounding relations in factorial
designs of experiments. Another origin is the work by Diaconis and Sturmfels in
1998 on the use of Gröbner bases for constructing a connected Markov chain for
performing conditional tests of a discrete exponential family. These two works
opened up the whole new field of algebraic statistics. In this book we take up the
second topic. We give a detailed treatment of results following the seminal work of
Diaconis and Sturmfels. We also briefly consider the first topic in Chap. 15 of this
book.

As a general reference to the first origin of algebraic statistics we mention
Pistone et al. [118]. For the second origin we mention Drton et al. [55], Pachter and
Sturmfels [116], and our review paper [15]. For Japanese people the following two
books are very useful: Hibi [86], and JST CREST Hibi team [93]. The Markov bases
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database (http://markov-bases.de/) provides very useful online material
for studying Markov bases.

Algebraic statistics gave us some exciting opportunities for research and col-
laboration. In particular we enjoyed working with Takayuki Hibi and Hidefumi
Ohsugi, who are the leading researchers on Gröbner bases in Japan. Since 2008
Takayuki Hibi has a project, “Harmony of Gröbner Bases and the Modern Industrial
Society,” in the mathematics program of the Japan Science and Technology Agency.
Algebraic statistics offers a rare ground where algebraists and statisticians can talk
about the same problems, albeit often with different terminologies. This book is
intended for statisticians with minimal backgrounds in algebra. As we ourselves
learned algebraic notions through working on statistical problems, we hope that
this book with many practical statistical problems is useful for statisticians to start
working on algebraic statistics.

In preparing this book we very much benefited from comments of Takayuki Hibi,
Hidehiko Kamiya, Kei Kobayashi, Satoshi Kuriki, Mitsunori Ogawa, Hidefumi
Ohsugi, Toshio Sakata, Tomonari Sei, Kentaro Tanaka, and Ruriko Yoshida.

Finally we acknowledge great editorial help from John Kimmel.

Kagoshima, Japan Satoshi Aoki
Niigata, Japan Hisayuki Hara
Tokyo, Japan Akimichi Takemura
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Part I
Introduction and Some Relevant

Preliminary Material

In Part I of this book we give introductory material on performing exact tests using
Markov basis and a short survey on Gröbner basis.

In Chap. 1, using the example of Fisher’s exact test for the independence model in
two-way contingency tables, we give an introduction to exact tests. We also discuss
conditional independence model for three-way contingency tables.

In Chap. 2 we discuss basic notions of Markov chain and Markov bases. In
particular we explain the Metropolis-Hastings procedure for adjusting transition
probabilities to achieve a desired stationary distribution.

Chapter 3 is a brief summary of results in the theory of Gröbner basis. In this
chapter we collect relevant facts on ideals in polynomial rings and their Gröbner
bases, which are often needed for discussion of Markov bases.

In this book, R,Q,Z,N = {0,1, . . .} stand for the set of reals, rationals, integers
and nonnegative integers, respectively. For a positive integer n, we denote the set of
n-dimensional vectors of elements from R,Q,Z,N, by R

n,Qn,Zn,Nn, respectively.



Chapter 1
Exact Tests for Contingency Tables and Discrete
Exponential Families

1.1 Independence Model of 2×××2 Two-Way
Contingency Tables

The theory of exact tests for discrete exponential families is best explained by
Fisher’s exact test of homogeneity of two binomial populations and the indepen-
dence model of 2× 2 contingency tables. We begin with the test of homogeneity of
two binomial populations. An excellent introduction to contingency tables is given
in [59]. We also refer to Agresti [3] as a survey paper of the exact methods.

Fisher’s exact test can be applied to three different sampling schemes: (i) test of
homogeneity of two binomial populations, (ii) test of independence in multinomial
sampling for 2 × 2 tables, (iii) the main effect model for logarithms of mean
parameters of independent Poisson random variables in 2× 2 tables. We discuss
these three sampling schemes in this order. With this example we confirm that the
same Markov basis can be used for different sampling schemes.

Let X be distributed according to a binomial distribution Bin(n1, p1), where n1 is
the number of trials and p1 is the success probability. Let Y be distributed according
to the binomial distribution Bin(n2, p2). Suppose that X and Y are independent.
We can display X and Y in the following 2× 2 contingency table:

X n1 −X n1

Y n2 −Y n2

t n− t n

where t = X +Y and n = n1 + n2. The hypothesis of homogeneity of two binomial
populations is specified as

H : p1 = p2.

S. Aoki et al., Markov Bases in Algebraic Statistics, Springer Series
in Statistics 199, DOI 10.1007/978-1-4614-3719-2 1,
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The joint probability function of X and Y is written as

p(x,y) =

(
n1

x

)
px

1(1− p1)
n1−x
(

n2

y

)
py

2(1− p2)
n2−y.

Note that here we are using the conventional notational distinction between random
variables X ,Y in capital letters and their values x,y in lower-case letters. However,
for the rest of this book for notational simplicity we do not necessarily stick to this
convention.

Under the null hypothesis H, the joint probability is written as

p(x,y) =

(
n1

x

)(
n2

y

)
px+y

1 (1− p1)
n−(x+y). (1.1)

This joint probability depends on (x,y) through t = x + y. Therefore from the
factorization theorem for sufficient statistics (see Sect. 2.6 of Lehmann and Romano
[98]), T = X +Y is a sufficient statistic under the null hypothesis H. Given T = t,
the conditional distribution of X does not depend on the value of p1 = p2. Hence
by using X as the test statistic, we obtain a testing procedure, whose level does not
depend on the value of p1 = p2; that is, we obtain a similar test (Sect. 4.3 of [98]).

Under H the distribution of T = X +Y is the binomial distribution Bin(n, p1).
Therefore the conditional distribution of X given T = t is calculated as

P(X = x | T = t) =

(n1
x

)( n2
t−x

)
pt

1(1− p1)
n−t(n1+n2

t

)
pt

1(1− p1)n−t
=

(n1
x

)( n2
t−x

)
(n

t

)

=
n1!n2!t!(n− t)!

n!x!(n1 − x)!(t − x)!(n2 − t + x)!
. (1.2)

This is a hypergeometric distribution. Indeed the conditional distribution does not
depend on the value of p1 = p2.

The null hypothesis H is rejected if the value of X is too large or too small.
Because the distribution of X is not symmetric when n1 �= n2, the rejection region
is usually determined by unbiasedness consideration. For optimality of similar
unbiased test see Sect. 4.4 of [98]. This testing procedure is called Fisher’s exact test.
It is an exact test because the significance level is computed from the hypergeometric
distribution. It is also called a conditional test because we use the conditional null
distribution given T = t. In contrast, the usual large-sample test is based on the
large-sample normal approximation to the following “z-statistic”:

z =
p̂1 − p̂2√

p̂1(1− p̂1)
n1

+ p̂2(1− p̂2)
n2

, p̂1 =
X
n1

, p̂2 =
Y
n2

.
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Table 1.1
Cross-classification of belief
in afterlife by gender

Belief in Afterlife

Gender Yes No or Undecided

Females 509 116
Males 398 104

The test based on z is an unconditional test. However, when the sample size is small,
it is desirable to use the exact test (Haberman [68]).

In the case of homogeneity of two binomial populations, we saw that X +Y (total
number of successes) is a sufficient statistic. We could also take n−X −Y (total
number of failures) or even the pair (X +Y,n−X −Y ) as a sufficient statistic. Note
that the pair contains redundancy, but it is still a sufficient statistic, because fixing
(x+ y,n− x− y) is equivalent to fixing x+ y. Furthermore we could also include
n1 and n2 into the sufficient statistic, although these values are fixed in the case of
homogeneity of two binomial populations. Indeed T = (X +Y,n− X −Y,n1,n2)
is a sufficient statistic, because given the value of the vector T the conditional
distribution of X is the hypergeometric distribution in (1.2) and it does not depend
on p1 = p2.

Next we discuss the multinomial sampling scheme. Let xi j, i = 1,2, j = 1,2, be
frequencies of four cells of a 2×2 contingency table. The row sums and the column
sums (i.e., the marginal frequencies) are denoted as xi+,x+ j, i, j = 1,2. The total
sample size is n = x11 + x12 + x21 + x22. The data are displayed as follows.

x11 x12 x1+

x21 x22 x2+

x+1 x+2 n
(1.3)

At this point we mention some customary terminology of contingency tables.
We look at the frequencies in (1.3) as the frequencies of a two-dimensional random
variable Y = (Y1,Y2), such that both Y1 and Y2 take the values 1 or 2. For example, in
Table 1.1 taken from Chap. 2 of [5], Y1 is the gender and Y2 is the belief in afterlife.
The values taken by a variable are often called levels of the variable. For example,
in Table 1.1 two levels of the variable “gender” are “female” and “male”. In this
terminology xi j is the joint frequency such that Y1 takes the level i and Y2 takes the
level j. The row and the column of the contingency table are sometimes called axes
of the table. Then Y1 is the random variable for the first axis and Y2 is the random
variable for the second axis.

Let

pi j ≥ 0, i = 1,2, j = 1,2,
2

∑
i, j=1

pi j = 1

be the probabilities of the cells. In a single multinomial trial, we observe one
of the four cells according to the probabilities. With n independent and identical
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multinomial trials, the joint probability function of XXX = (X11,X12,X21,X22) is
given as

p(xxx) =

(
n

x11,x12,x21,x22

)
px11

11 px12
12 px21

21 px22
22 . (1.4)

As in this example, we use the boldface letter xxx for the vector of frequencies and call
xxx the frequency vector. When necessary, we make the notational distinction between
column vector and row vector. For example, xxx is meant as a column vector when we
write xxx = (x11,x12,x21,x22)

′. We use ′ for denoting the transpose of a vector or a
matrix in this book.

Let pi+ = pi1 + pi2, i = 1,2, denote the marginal probability of the first variable
of the contingency table and similarly let p+ j = p1 j + p2 j, j = 1,2, denote the
marginal probability of the second variable. The hypothesis of independence H in
the multinomial sampling scheme is specified as follows:

H : pi j = pi+p+ j, i = 1,2, j = 1,2. (1.5)

On the other hand, if there is no restriction on the probability vector ppp =
(p11, p12, p21, p22), except that the elements of ppp are nonnegative and sum to one,
we call the model saturated.

Write ri = pi+ and c j = p+ j. Then pi j = ric j under H. Note that in (1.5),

1 =
2

∑
i=1

pi+ =
2

∑
j=1

p+ j.

However, when we write ri = pi+ and c j = p+ j, we can remove the restriction 1 =
r1 + r2 = c1 + c2 and only assume that ri and c j are nonnegative such that the total
probability is 1:

1 =
2

∑
i, j=1

ric j = (r1 + r2)(c1 + c2).

Furthermore we can incorporate the total probability into the normalizing constant
and write the probability as

pi j =
1

(r1 + r2)(c1 + c2)
ric j, i, j = 1,2, (1.6)

where we only assume that ri and c j are nonnegative without any further restrictions.
In this example of 2× 2 tables, the normalizing constant is obvious and the above
discussion may be pedantic. However, for more general models of contingency
tables, it is best to consider the joint probability in the form of (1.6).

Under H, with the normalization 1 = (r1 + r2)(c1 + c2), the joint probability
function p(xxx) is written as
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p(xxx) =

(
n

x11,x12,x21,x22

)
(r1c1)

x11(r1c2)
x12(r2c1)

x21(r2c2)
x22

=

(
n

x11,x12,x21,x22

)
rx1+

1 rx2+
2 cx+1

1 cx+2
2

=

(
n

x11,x12,x21,x22

)
px1+

1+ px2+
2+ px+1

+1 px+2
+2 . (1.7)

Hence the sufficient statistic under H is given as

T = (x1+,x2+,x+1,x+2).

Given T , in the case of the 2× 2 table, there is only one degree of freedom in
xxx. Namely, if x11 is given, then the other values x12,x21,x22 are automatically
determined as

x12 = x1+− x11, x21 = x+1 − x11, x22 = n− x1+− x+1 + x11.

As mentioned above, let us consider (i, j) as the pair of levels of two random
variables Y1 and Y2. Under the null hypothesis H of independence in (1.5), Y1

and Y2 are independent. Suppose that we observe n independent realizations
(y1

1,y
1
2), . . . ,(y

n
1,y

n
2) of (Y1,Y2). Then xi+ is the number of times that Y1 takes the

value i. Hence x1+ is distributed according to the binomial distribution Bin(n, p1+).
Similarly x+1 is distributed according to the binomial distribution Bin(n, p+1).
Furthermore they are independent. Therefore the joint distribution of x1+ and x+1 is
written as

p(x1+,x+1) =

(
n

x1+

)
px1+

1+ px2+
2+

(
n

x+1

)
px+1
+1 px+2

+2 . (1.8)

From (1.7) and (1.8) it follows that the conditional distribution of X11 given the
sufficient statistic is computed as follows.

p(x11 | x1+,x2+,x+1,x+2) =

( n
x11,x12,x21,x22

)
px1+

1+ px2+
2+ px+1

+1 px+2
+2( n

x1+

)
px1+

1+ px2+
2+

( n
x+1

)
px+1
+1 px+2

+2

=

( n
x11,x12,x21,x22

)
( n

x1+

)( n
x+1

) =
x1+!x2+!x+1!x+2!
n!x11!x12!x21!x22!

. (1.9)

This is again a hypergeometric distribution. Equation (1.9) is clearly the same as
(1.2) if we write the row sums and the column sums as n1 = x1+, n2 = x2+, t = x+1,
n− t = x+2. Therefore Fisher’s exact test is the same in this multinomial sampling
scheme as in the case of testing the homogeneity of two binomial populations.

Note that in this scheme n is fixed and x2+ = n− x1+ and x+2 = n− x+1 can be
omitted from the sufficient statistic T = (x1+,x2+,x+1,x+2). However, as in the first
scheme we can allow the redundancy in the sufficient statistic.
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Finally we consider the sampling scheme of Poisson random variables. Let Xi j,
i, j = 1,2, be independently distributed according to the Poisson distribution with
mean λi j. The joint probability of XXX is written as

p(xxx) =
2

∏
i, j=1

λ xi j
i j

xi j!
e−λi j .

Consider the null hypothesis H that λi j can be factored as

H : λi j = ric j, i, j = 1,2,

where ri,c j are nonnegative. Again by writing down the joint probability under the
null hypothesis H, we can easily check that a sufficient statistic under H is given by
T = (x1+,x2+,x+1,x+2), where now the redundancy is only in x+2 = x1+ + x2+−
x+1. Instead of writing out the joint probability, we use the following property of
independent Poisson random variables for verifying that T is a sufficient statistic
under H. Let n = X11+X12+X21+X22. Then n is distributed as the Poisson random
variable with mean μ = ∑2

i, j=1 λi j. Under H, μ = (r1 + r2)(c1 + c2). Given n, the
conditional distribution of (X11,X12,X21,X22) is the multinomial distribution with
cell probabilities pi j = λi j/μ . Under H, the cell probability is written as

pi j =
1

(r1 + r2)(c1 + c2)
ric j, i, j = 1,2,

which is the same as (1.6). From this fact we see that T = (x1+,x2+,x+1,x+2) is a
sufficient statistic under H. Given T , the conditional distribution of xxx is the same as
the multinomial case; that is, X11 follows the hypergeometric distribution in (1.9).

We now note the relation between the cell frequencies and the sufficient statistic.
The column vector of cell frequencies xxx = (x11,x12,x21,x22)

′ and the column vector
of the sufficient statistic (x1+,x2+,x+1,x+2)

′ are related as follows:

⎛
⎜⎜⎝

x1+

x2+

x+1

x+2

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x11

x12

x21

x22

⎞
⎟⎟⎠ . (1.10)

We write this as ttt = Axxx and call the matrix A the configuration for the above three
models.

1.2 2×××2 Contingency Table Models as Discrete
Exponential Family

In the previous section we explained three sampling schemes for 2× 2 contingency
tables and pointed out that they share the same sufficient statistic when redundancies
are allowed. In this section we present the standard formulation of the sampling
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schemes as discrete exponential family models. We confirm that the sufficient
statistics under the null hypothesis correspond to nuisance parameters. Hence fixing
the sufficient statistic has the effect of eliminating the nuisance parameters and the
resulting conditional test is a similar test. Here we only consider the multinomial
scheme of the previous section, because the other cases can be treated in a similar
manner.

A family of joint probability functions p(xxx) = p(xxx;θθθ), θθθ ∈Θ , is said to form an
exponential family (see Sect. 2.7 of [98]) if p(xxx,θθθ ) is written in the following form.

p(xxx;θθθ ) = h(xxx)exp

(
k

∑
j=1

Tj(xxx)φ j(θθθ )−ψ(θθθ)

)
. (1.11)

By the factorization theorem (Sect. 2.6 of [98]), T = (T1(xxx), . . . ,Tk(xxx)) is a sufficient
statistic of this family. Note that p(xxx;θθθ) and ψ(θθθ) depend on θθθ only through φφφ =
(φ1, . . . ,φk) and we can write ψ(φφφ) instead of ψ(θθθ). In Chap. 4 we simply denote
φ j(θθθ ) itself as θ j .

Let pi j, i, j = 1,2, denote the cell probabilities in the multinomial sampling of a
2× 2 contingency table. Now consider the following transformation:

φ1 = log
p12

p22
, φ2 = log

p21

p22
, λ = log

p11 p22

p12 p21
. (1.12)

In the region where the elements of the probability vector ppp = (p11, p12, p21, p22)
are positive, the transformation is one-to-one and the inverse transformation is
written as

p11 =
eφ1+φ2+λ

1+ eφ1 + eφ2 + eφ1+φ2+λ ,

p12 =
eφ1

1+ eφ1 + eφ2 + eφ1+φ2+λ ,

p21 =
eφ2

1+ eφ1 + eφ2 + eφ1+φ2+λ ,

p22 =
1

1+ eφ1 + eφ2 + eφ1+φ2+λ . (1.13)

Substituting this into (1.4) we can write the joint probability function of xxx as

p(xxx) =

(
n

x11,x12,x21,x22

)
exp
(
(x11 + x12)φ1 +(x11 + x21)φ2 + x11λ

−n log(1+ eφ1 + eφ2 + eφ1+φ2+λ )
)
. (1.14)

This is written in the form (1.11) and hence the family of p(xxx) forms an exponential
family. By putting r1 = eφ1 ,r2 = 1,c1 = eφ2 ,c2 = 1 we see that the null hypothesis
of the independence (1.5) is equivalently written as

H : λ = 0.
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Note that λ is the parameter of interest for the null hypothesis and φ1,φ2 are the
nuisance parameters under the null hypothesis. Under the null hypothesis, λ = 0 is
no longer a parameter of the family of distributions and the distributions under the
null hypothesis are parametrized by the nuisance parameters φ1,φ2. In (1.14) the
sufficient statistic corresponding to (φ1,φ2) is

x1+ = x11 + x12, x+1 = x11 + x21.

In (1.11) and (1.14) we considered the joint probability of the frequency vector.
In fact, when we consider a single observation n = 1, then the cell probabilities are
already in the exponential family form. Write

log ppp = (log p11, log p12, log p21, log p22),

ψ(φ1,φ2) = log(1+ eφ1 + eφ2 + eφ1+φ2).

Taking the logarithms of pi j in (1.13) with λ = 0, in a matrix form we can write

log ppp = (φ1,0,φ2,0)

⎛
⎜⎜⎝

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

⎞
⎟⎟⎠−ψ(φ1,φ2)× (1,1,1,1). (1.15)

Note that the matrix on the right-hand side is the configuration A appearing in the
right-hand side of (1.10).

1.3 Independence Model of General Two-Way
Contingency Tables

Generalizing the discussion of the previous section we now consider the indepen-
dence model of general I × J two-way contingency tables. The discussion on three
sampling schemes is entirely the same as in the case of 2× 2 tables. Therefore we
only discuss the multinomial sampling.

Let pi j, i = 1, . . . , I, j = 1, . . . ,J, denote the cell probabilities of an I × J
contingency table. Let pi+ and p+ j denote the marginal probabilities. The null
hypothesis of independence is written as

H : pi j = pi+p+ j, i = 1, . . . , I, j = 1, . . . ,J.

We can also write pi j = ric j without requiring that ris and c js correspond to
probabilities. Let xi j denote the frequency of the cell (i, j). A sufficient statistic
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T under the null hypothesis H is the set of the row sums xi+, i = 1, . . . , I and the
column sums x+ j, j = 1, . . . ,J. Let n denote the total sample size.

Under the null hypothesis the joint probability of xxx = {xi j} is written as

p(xxx) =

(
n

x11, . . . ,xIJ

) I

∏
i=1

J

∏
j=1

(pi+p+ j)
xi j

=

(
n

x11, . . . ,xIJ

) I

∏
i=1

pxi+
i+

J

∏
j=1

p
x+ j
+ j .

Also, under the null hypothesis, as in the case of 2×2 tables, the vector of row sums
{xi+} and the vector of column sums {x+ j} are independently distributed according
to multinomial distributions:

p({xi+}) =
(

n
x1+, . . . ,xI+

)
px1+

1+ · · · pxI+
I+ ,

p({x+ j}) =
(

n
x+1, . . . ,x+J

)
px+1
+1 · · · px+J

+J .

From this fact, the conditional distribution of xxx = {xi j} given the sufficient statistic
ttt is written as

p(xxx | T = ttt) =
p({xi j})

p({xi+})p({x+ j}) =
( n

x11,...,xIJ

)
( n

x1+,...,xI+

)( n
x+1,...,x+J

)

=
∏I

i=1 xi+! ∏J
j=1 x+ j!

n!∏i, j xi j!
. (1.16)

This distribution is often called the multivariate hypergeometric distribution.
However in this book we show many variations of distributions of this type and
we often refer to them simply as hypergeometric distributions.

Given the row sums and the column sums, the degrees of freedom in the
frequency vector xxx is (I − 1)× (J − 1) because the elements of the last row and
the last column are determined uniquely from the other elements. This degrees of
freedom is also the dimension of the parameter of interest when the joint probability
distribution is written in the exponential family form. More precisely let

φ1i = log
piJ

pIJ
, i = 1, . . . , I − 1,

φ2 j = log
pI j

pIJ
, j = 1, . . . ,J− 1,

λi j = log
pi j pIJ

piJ pI j
, i = 1, . . . , I − 1, j = 1, . . . ,J− 1. (1.17)
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Then the null hypothesis is written as

H : λi j = 0, i = 1, . . . , I − 1, j = 1, . . . ,J− 1.

One consequence of the multidimensionality of the parameter of interest is that
there is no unique best choice for a test statistic, even under the requirement of
similarity and unbiasedness.

Let
m̂i j = np̂i j =

xi+x+ j

n

denote the “expected frequency” of the cell (i, j), where p̂i j is the maximum
likelihood estimate (MLE) of pi j. For testing the null hypothesis of independence,
popular test statistics are Pearson’s chi-square test

χ2(xxx) = ∑
i

∑
j

(xi j − m̂i j)
2

m̂i j
≥ cα ⇒ reject H

and the (twice log) likelihood ratio test

G2(xxx) = 2∑
i

∑
j

xi j log
xi j

m̂i j
≥ cα ⇒ reject H,

where cα is the critical value for the respective test statistic. G2(xxx) is actually twice
the logarithm of the likelihood ratio. In the usual asymptotic theory, cα is approx-
imated by the upper α-quantile of the chi-square distribution with (I − 1)(J− 1)
degrees of freedom. In this book we denote the chi-square distribution with m
degrees of freedom by χ2

m.
These two statistics are “omnibus test statistics” in the sense that all possible

alternative hypotheses are roughly equally treated. When some specific deviations
from the null hypothesis are expected, then a more suitable test statistic, which is
sensitive against the deviation, can be used. For performing a test of H, once a
test statistic is chosen, it only remains to evaluate its null distribution. As in the
previous section, in this book we consider exact tests; that is, we are interested in
the distribution of a test statistic under the hypergeometric distribution (1.16).

At this point we investigate the conditional sample space; that is, the set of
contingency tables given the sufficient statistic for I × J case. As in the 2× 2 case,
the relation between the sufficient statistic and the frequency vector is written in a
matrix form. Let ttt = (x1+, . . . ,xI+,x+1, . . . ,x+J)

′ denote the (column) vector of the
sufficient statistic and let xxx = (x11,x12, . . . ,x1J,x21, . . . ,xIJ)

′ denote the frequency
vector. Then

ttt = Axxx, (1.18)

where the configuration A is an (I + J)× IJ matrix consisting of 0s and 1s as in
(1.10).
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An explicit form of A can be given using the Kronecker product notation. For
two matrices, C = {ci j} : m1 ×n1 and D : m2 ×n2, their Kronecker product C⊗D is
an m1m2 × n1n2 matrix of the following block form

C⊗D =

⎛
⎜⎝

c11D . . . c1n1D
...

...
cm11D . . . cm1n1D

⎞
⎟⎠ . (1.19)

Let 111n = (1, . . . ,1)′ denote the n-dimensional vector consisting of 1s and let Em

denote an m×m identity matrix. Then A in (1.18) is written as

A =

(
EI ⊗ 111′J
111′I ⊗EJ

)
.

Alternatively let eee j,n = (0, . . . ,0,1,0, . . . ,0)′ ∈ R
n denote the jth standard basis

vector of R
n. When the dimension n is clear from the context, we simply write

the standard basis vector as eee j instead of eee j,n. Then the columns of A are of the form

(
eeei,I

eee j,J

)
, i = 1, . . . , I, j = 1, . . . ,J. (1.20)

We sometimes denote the stacked vector in (1.20) as

eeei,I ⊕ eee j,J =

(
eeei,I

eee j,J

)
. (1.21)

It is easily checked that the rank of A is

rank A = I+ J− 1.

Hence the dimension of the kernel of A is given as

dim ker A = IJ − (I+ J− 1) = (I− 1)(J− 1).

As mentioned above, this dimension corresponds to the fact that, if we ignore the
requirement of nonnegativity, we can choose the elements of the first I−1 rows and
the first J − 1 columns freely. With the additional requirement of nonnegativity, the
conditional sample space given the sufficient statistic is defined as

Fttt = {xxx ∈ Z
IJ | xxx ≥ 000, ttt = Axxx}, (1.22)

where xxx ≥ 000 means that the elements of xxx are nonnegative. We call Fttt the fiber of ttt
(or also call it the t-fiber). The hypergeometric distribution in (1.16) is a probability
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distribution over the fiber Fttt . When a test statistic φ(xxx) is given, we want to evaluate
the distribution of φ(xxx), where xxx is distributed according to the hypergeometric
distribution over Fttt .

Suppose that φ is chosen such that a larger value of φ indicates more deviation
from the null hypothesis, as in Pearson’s chi-square statistic or the likelihood ratio
statistic. Then testing can be conveniently performed via p-value. Let xxxo denote the
observed contingency table. The p-value of xxxo is defined as

p = P(φ(xxx)≥ φ(xxxo) | H) = ∑
xxx∈Fttt ,φ(xxx)≥φ(xxxo)

p(xxx | ttt = Axxxo,H), (1.23)

which is the probability under the hypergeometric distribution of observing the
value φ(xxx) which is larger than or equal to φ(xxxo). Given the level of significance
α , we reject H if p ≤ α .

There are three methods to evaluate the p-value in (1.23).

1. By enumerating Fttt , ttt = Axxxo, and performing the sum in (1.23) for all xxx ∈ Fttt

such that φ(xxx)≥ φ(xxxo).
2. Directly sampling xxx from the hypergeometric distribution and approximating

(1.23) by Monte Carlo simulation.
3. By sampling xxx by a Markov chain whose stationary distribution is the hypergeo-

metric distribution, that is, by a Markov chain Monte Carlo method.

Clearly the enumeration is the best if it is feasible. However, when the row
sums and the column sums become large, the size of the fiber Fttt becomes large
and the enumeration becomes infeasible. In the case of the independence model
of this section, direct sampling of a frequency vector from the hypergeometric
distribution is easy to carry out. In more complicated models treated later in the
book, though, direct sampling is not easy. On the other hand, there exists a general
theory of constructing a Markov chain having the hypergeometric distribution as the
stationary distribution. Hence the subject of this book is the Markov chain sampling
from the fiber Fttt .

In the next chapter, again employing the independence model of I × J contin-
gency tables, we discuss how to perform Markov chain sampling from the fiber Fttt .

1.4 Conditional Independence Model of Three-Way
Contingency Tables

In this section we discuss the conditional independence model for three-way
contingency tables. It is a relatively simple model in the sense that for each level of
the conditioning variable, the problem reduces to the case of an independence model
of two-way contingency tables for the other variables. However, it is a convenient
model for introducing a notation for general m-way contingency tables in the next
section.
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Consider an I1 × I2 × I3 three-way contingency table xxx. We denote each cell of
the table by a multi-index iii = (i1, i2, i3). For a positive integer J write

[J] = {1, . . . ,J}.
The set of the cells is the following direct product

I = {iii = (i1, i2, i3) | i1 ∈ [I1], i2 ∈ [I2], i3 ∈ [I3]}= [I1]× [I2]× [I3].

With this notation the three-way contingency table, or the frequency vector, is
denoted as

xxx = {x(iii) | iii ∈ I }.
Note that this notation is somewhat heavy and in fact for three-way tables we prefer
to use subscripts i, j,k. The merit of this notation is that it can be used for general
m-way tables.

For a subset D ⊂ {1,2,3} of the variables, let iiiD denote the set of indices in D.
For example,

iii{1,2} = (i1, i2).

Note that iiiD corresponds to the D-marginal cell of the contingency table. The set of
D-marginal cells is denoted by

ID = ∏
k∈D

[Ik]. (1.24)

For example I{1,2} = {(i1, i2) | i1 ∈ [I1], i2 ∈ [I2]}. The D-marginal frequencies of xxx
are written as

xD(iiiD) = ∑
iiiDC∈IDC

x(iiiD, iiiDC), (1.25)

where DC denotes the complement of D. Note that in x(iiiD, iiiDC), for notational
simplicity, the indices in ID are collected to the left. Also we are writing x(iiiD, iiiDC)
instead of x((iiiD, iiiDC )). In the two-way case

xi+ = x{1}(i) = ∑
j

xi j.

For a probability distribution {p(iii), iii ∈ I }, we denote the D-marginal probability
as pD(iiiD). Note that in xD(iiiD) and pD(iiiD), the subset D is indicated twice. If there
is no notational confusion we alternatively write

x(iiiD),xD(iii), p(iiiD) or pD(iii) (1.26)

for simplicity.
We call a D-marginal probability distribution saturated if there is no restriction

on the probability vector {pD(iiiD), iiiD ∈ ID}.
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Let Y1,Y2,Y3 be random variables corresponding to the three axes of the contin-
gency table. We consider the model that Y1 and Y3 are conditionally independent
given the level i2 of Y2. The relevant conditional probabilities are written as

p(i1, i3 | i2) =
p(iii)

p{2}(i2)
, p(i1 | i2) =

p{1,2}(i1, i2)
p{2}(i2)

, p(i3 | i2) =
p{2,3}(i2, i3)

p{2}(i2)
.

In the following we omit subscripts to p and write, for example, p(i1, i2) instead of
p{1,2}(i1, i2). Similarly we write x(i1, i2) instead of x{1,2}(i1, i2). The null hypothesis
of conditional independence is written as

H :
p(iii)
p(i2)

=
p(i1, i2)

p(i2)
× p(i2, i3)

p(i2)
, ∀iii ∈ I , (1.27)

or equivalently as

H : p(iii) =
1

p(i2)
p(i1, i2)p(i2, i3), ∀iii ∈ I . (1.28)

Here we are assuming p(i2) > 0. In the case p(i2) = 0 for a particular level i2, we
have p(iii) = p(i1, i2) = p(i2, i3) = 0 for indices containing this level i2 of Y2. Hence
in this case we understand (1.28) as 0 = 0× 0/0. Let

α(i1, i2) =
p(i1, i2)

p(i2)
, β (i2, i3) = p(i2, i3).

Then the conditional independence model is written as

H : p(iii) = α(i1, i2)β (i2, i3). (1.29)

Note that there is some indeterminacy in specifying α and β . For example we can
include the factor 1/p(i2) into β (i2, i3) instead of into α(i1, i2).

We can show that (1.27), (1.28), and (1.29) are in fact equivalent. Suppose that
p(iii) = p(i1, i2, i3) can be written as p(iii) = α(i1, i2)β (i2, i3). Then

p(i2) = ∑
i1,i3

p(i1, i2, i3) = ∑
i1,i3

α (i1, i2)β (i2, i3) =

(
∑
i1

α(i1, i2)

)(
∑
i3

β (i2, i3)

)
,

p(i1, i2) = ∑
i3

p(i1, i2, i3) = α(i1, i2)∑
i3

β (i2, i3),

p(i2, i3) = ∑
i1

p(i1, i2, i3) =

(
∑
i1

α(i1, i2)

)
β (i2, i3).
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Therefore

p(i1, i2)p(i2, i3)
p(i2)

=
α(i1, i2)β (i2, i3)(∑i′1 α(i′1, i2))(∑i′3 β (i2, i′3))

(∑i′1 α(i′1, i2))(∑i′3 β (i2, i′3))

= α(i1, i2)β (i2, i3)

= p(iii)

and hence (1.28) holds. This shows that the null hypothesis of conditional indepen-
dence can be written in any one of (1.27), (1.28), and (1.29).

Now suppose that we observe a contingency table xxx of sample size n from the
conditional independence model. The joint probability function is written as

p(xxx) =
n!

∏iii∈I x(iii)! ∏
iii∈I

(α(i1, i2)β (i2, i3))x(iii)

=
n!

∏iii∈I x(iii)! ∏
iii{1,2}∈I{1,2}

α(i1, i2)
x(i1,i2) ∏

iii{2,3}∈I{2,3}
β (i2, i3)x(i2,i3). (1.30)

Hence a sufficient statistic T is the set of {1,2}-marginals and {2,3}-marginals of xxx:

T = ({x(iii{1,2}) | iii{1,2} ∈ I{1,2}}, {x(iii{2,3}) | iii{2,3} ∈ I{2,3}}).

In this case the marginal distribution of T is not immediately clear and hence
the conditional probability of xxx given T = ttt is also not immediately clear. However,
without worrying about the marginal distribution of T at this point, we can proceed
as follows. Let A be the configuration relating the frequency vector to the sufficient
statistic: ttt = Axxx. Define Fttt = {xxx≥ 0 | ttt = Axxx} as in (1.22). The terms containing the
parameters α,β on the right-hand side of (1.30) are fixed by the sufficient statistic,
therefore these terms do not appear in the conditional distribution of xxx given ttt. It
follows that the conditional distribution of xxx given ttt is written as

p(xxx | ttt) = c× 1

∏iii∈I x(iii)!
, c =

[
∑

xxx∈Fttt

1

∏iii∈I x(iii)!

]−1

. (1.31)

As in the previous examples, an exact test of the null hypothesis H of conditional
independence can be performed if either we can enumerate the elements of Fttt

or if we can sample from this distribution. Note that we often call (1.31) the
hypergeometric distribution over Fttt .

In general, the normalizing constant c cannot be written explicitly. The Markov
chain sampling discussed in the next chapter can be performed without knowing the
explicit form of the normalizing constant. This is one of the major advantages of
Markov chain Monte Carlo methods.
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It turns out that for the conditional independence model the marginal distribution
of the sufficient statistic T and the normalizing constant c can be written down
explicitly. This is a special case of the result of Sundberg [140] for decomposable
models, which is studied in Chap. 8. In the following section, we explain the
marginal distribution of T . The following section can be skipped, because the
normalizing constant c is not needed for performing Markov chain Monte Carlo
methods.

1.4.1 Normalizing Constant of Hypergeometric Distribution
for the Conditional Independence Model

For illustration let us explicitly write out the configuration for relating the frequency
vector to the sufficient statistic for the case of 2×2×2 tables. We order the elements
of T according to the level of Y2. Then ttt = Axxx is written as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x{1,2}(1,1)
x{1,2}(2,1)
x{2,3}(1,1)
x{2,3}(1,2)
x{1,2}(1,2)
x{1,2}(2,2)
x{2,3}(2,1)
x{2,3}(2,2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

0

0
1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x(1,1,1)
x(1,1,2)
x(2,1,1)
x(2,1,2)
x(1,2,1)
x(1,2,2)
x(2,2,1)
x(2,2,2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1.32)

where the big 0 is the 4×4 zero matrix. Note that the 8×8 matrix on the right-hand
side is a block diagonal with identical blocks. Furthermore, the diagonal block is
the same as on the right-hand side of (1.10). Partition xxx on the right-hand side of
(1.32) into two 4-dimensional subvectors xxx1,xxx2. We call each xxxi2 , i2 = 1,2, the slice
of the contingency table xxx by fixing the level i2 of the second variable. Similarly we
partition ttt on the left-hand side of (1.32) into two 4-dimensional subvectors ttt1, ttt2.
Then clearly

xxx ∈ Fttt ⇔ xxx1 ∈ Fttt1 and xxx2 ∈ Fttt2 , (1.33)

where Fttt1 and Fttt2 are fibers in (1.22) for the independence model of 2 × 2
contingency tables.

We have thus far looked at the 2 × 2 × 2 case. However, it is clear that a
similar result holds for the general I1 × I2 × I3 case. Namely, when we sort the cells
according to the levels of Y2, then the configuration is in a block diagonal form with
identical blocks, which correspond to the configuration of the independence model
for I1 × I3 contingency tables.


