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Preface

Twenty years ago, the first Statistical Challenges in Modern Astronomy (SCMA)
conference was held at Penn State University. Serving as a gathering of two
scholarly communities with common interests, SCMA meetings have been held
every 5 years for cross-disciplinary discussions of methodological issues arising
in astronomical research. These are the proceedings of the fifth SCMA conference
held in June 2011. While some of the topics are the similar as those in the 1991
meeting, the level of sophistication and accomplishment has enormously increased.
Astronomers and statisticians worldwide have developed collaborations to address
some of the most challenging and important problems facing astronomy today.
These involve data mining enormous datasets from widefield surveys obtained
with major new telescope systems, fitting of cosmological and other astrophysical
models to complex datasets, and studying the temporal behaviors of innumerable
variable objects in the sky. Bayesian inference has gained considerable momentum
in astrophysical model fitting. These advanced methods are gaining attention outside
of the world of expert astrostatisticians, as the broad astronomical community
realize that twenty-first century science goals can not be achieved with nineteenth
and twentieth century statistical methods. At SCMA V, both young and experienced
astrostatisticians presented work and engaged in discussions on how these problems
can be best addressed.

The proceedings are divided into six sections; most invited talks are followed
by invited commentaries by scholars in the other field. The volume begins with
five talks on Statistics in Cosmology demonstrating significant recent accom-
plishments in this most-important field of astronomy and astrophysics. Modern
accomplishments of modern quantitative cosmology rely heavily on sophisticated
statistical analysis of large datasets. Topics reviewed include likelihood-free es-
timation of quasar luminosity functions (Schaefer and Freeman), estimation of
galaxy photometric redshifts and quantification of voids in galaxy Large-Scale
Structure (Wandelt), inference based on comparing data to cosmological simulations
(Higdon), likelihood estimation of gravitational lensing of the cosmic microwave
background (CMB) radiation (Anderes), and application of needlets to cosmic
microwave background studies (Marinucci).
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The second section provides a sampling of the growing applications of Bayesian
Analysis Across Astronomy. Here we have both invited reviews by senior re-
searchers, and a sampling of the many works by younger researchers. The reviews
discuss Bayesian models constructed to model galaxy star formation histories
(Weinberg), model selection within the consensus ΛCDM cosmological model
family (Trotta), and measurement errors in astronomical regression and density
estimation problems (Kelly). The shorter talks treat asteroseismology (Benomar),
event detection in time series (Blocker and Protopapas), reverberation mapping in
active galactic nuclei (Brewer), modeling of Poisson images (Guglielmetti et al.),
treatment of instrument calibration errors (Kashyap et al.), modeling of Type Ia
supernova data (Mandel), and faint source flux estimation (Switzer et al.). Advanced
methods for hierarchical modeling and Monte Carlo Markov Chain computational
techniques are discussed in many of these talks and associated commentaries.

The third section of the proceedings address the use of modern techniques
techniques of Data Mining and Astroinformatics for the analysis of massive datasets
emerging from many new observatories. Compressive sensing, an extension of
wavelet analysis, is very promising for many problems (Starck). Diffusion maps
can treat non-linear structures in high-dimensional datasets (Lee and Freeman).
Nearest neighbor techniques are used for outlier detection in megadatasets (Borne
and Vedachalam). Bayesian approaches can help cross-identification of sources
between astronomical catalogs (Budavári). Likelihood-based data compression can
assist parameter estimation in large datasets (Jimenez).

The fourth section considers challenges arising in astronomical Image and Time
Series Analysis. Techniques of mathematical morphology are applied to classifying
sunspots (Stenning et al.). Realistic images are simulated using knowledge of
celestial populations and telescope characteristics (Connolly et al.). Structure
recognition algorithms are discussed for three-dimensional astronomical datacubes
(Rosolowsky). The problem of locating faint transient sources in multiepoch image
datasets is addressed by controlling the False Discovery Rate (Clements et al.).
Wavelets are a valuable tool for modeling irregularly spaced time series (Mondal
and Percival).

The fifth section provides perspectives on The Future of Astrostatistics. The field
is gaining a presence in international organizations (Hilbe). The public domain R
statistical computing environment is a very promising new software environment to
implement existing and develop new statistical analyses for astronomical research
(Tierney). A Panel Discussion discusses various aspects of astrostatistical practice
and research for the coming decade (van Dyk, Feigelson, Loredo, Scargle). The final
section of the proceedings gives brief presentations of the contributed posters. Many
fascinating problems and sophisticated statistical methods are described.

The work of many individuals and organizations contributed to the success of the
SCMA V conference. The invited speakers and cross-disciplinary commentators
were the central pillar of the conference, and we are grateful for their presenta-
tions and manuscripts. Staff in the Departments of Statistics and Astronomy and
Astrophysics provided administrative support. Funding support for the conference
was provided by the two departments, Penn State’s Eberly College of Science,
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and the National Science Foundation through grant AST-1113001. Finally, we are
appreciative of our families’ support during the many phases of this conference
organization.

Pennsylvania State University, PA, USA Eric D. Feigelson
Pennsylvania State University, PA, USA G. Jogesh Babu
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Chapter 1
Likelihood-Free Inference in Cosmology:
Potential for the Estimation of Luminosity
Functions

Chad M. Schafer and Peter E. Freeman

Abstract Statistical inference of cosmological quantities of interest is complicated
by significant observational limitations, including heteroscedastic measurement
error and irregular selection effects. These observational difficulties exacerbate
challenges posed by the often-complex relationship between estimands and the
distribution of observables; indeed, in some situations it is only possible to simulate
realizations of observations under various assumed cosmological theories. When
faced with these challenges, one is naturally led to consider utilizing repeated
simulations of the full data generation process, and then comparing observed
and simulated data sets to constrain the parameters. In such a scenario, one
would not have a likelihood function relating the parameters to the observable
data. This paper will present an overview of methods that allow a likelihood-free
approach to inference, with emphasis on approximate Bayesian computation, a
class of procedures originally motivated by similar inference problems in population
genetics.

1.1 Introduction

The ever-increasing efforts to build catalogs of astronomical objects, and to measure
key properties of these objects, is, in large part, motivated by the goal of inferring
unknown constants that characterize the Universe. This paper seeks to present an
example of such a problem, and to describe some of the features of the data and
their collection that complicates what is otherwise a standard statistical inference
problem. To an outsider of this field, it can be surprising the extent to which
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Table 1.1 Examples of key cosmological parameters

Parameter Description In Fig. 1.1a

Ωm Ratio of total matter density to that needed for a flat Universe 0.266
ΩΛ Similar to Ωm, but for dark energy density 0.734
H0 Hubble constant: the current expansion rate of the Universe 71.0 km/s/Mpc
a Estimates based on WMAP7 [2]
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Fig. 1.1 Power spectrum, a function of cosmological parameters, of fluctuations in the tempera-
ture of photons that comprise the cosmic microwave background (CMB). The parameter values are
fixed to those shown in Table 1.1

many questions regarding the nature of Universe have been boiled down to the
estimation of a relatively small number of cosmological parameters. Table 1.1 gives
some examples of these physical constants. Carefully-derived cosmological theory
posits relationships between these parameters and the distribution of observables. In
(relatively) simple situations, the distribution of the data is of a “standard” form, and
the likelihood function can be derived. This allows for utilization of well-established
methods of inference, including finding maximum likelihood estimates or exploring
the posterior distribution of these parameters given the observed data.

One of the most important inference problems that fits into this framework is the
estimation of cosmological parameters using fluctuations in the temperature of pho-
tons that comprise the cosmic microwave background (CMB). These photons are
remnants of the time, only 300,000 years after the Big Bang, when the temperature
of the Universe had cooled sufficiently for light to travel freely. The slight variation
in the temperature of these photons encodes important information regarding the
nature of the early Universe; the amount of correlation on different angular scales
has been characterized as a function of cosmological parameters. Figure 1.1 shows
the power spectrum that describes the Gaussian process on the sphere used to model
the process; this power spectrum corresponds to the parameter values shown in
Table 1.1. A succession of experiments has observed this background radiation to
greater precision, and hence has achieved stronger constraints on the unknowns. The
estimates in Table 1.1 are based on the recent WMAP 7 data release [2].
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The relationship between the cosmological parameters and the power spectrum
of the CMB fluctuations is complex: It is highly nonlinear, and there are strong
degeneracies between some the parameters. The complexity of this relationship
presents its own challenges. Bayesian methods dominate in cosmology, and MCMC
is feasible in this situation; one only needs to make small steps in the cosmological
parameter space, and the parameter vectors are mapped into the corresponding
power spectrum, which in turn defines the likelihood function for the data. Schafer
and Stark [3] presents a Monte Carlo method for constructing confidence regions
of optimal expected size that is specifically motivated by this type of situation.
Yet, both of these methods rely upon knowledge of the likelihood function of the
data. Increasingly, we are faced with situations in which this is not a reasonable
assumption. This may be because the distribution of the data is inherently complex,
or it may be because of data corrupted by irregular truncation effects and/or
heteroscedastic measurement error with complex dependence structure.

This paper describes likelihood-free approaches to inference, in particular,
approximate Bayesian computation (ABC). The term “likelihood-free” is not
intended to imply that a likelihood function does not exist in these applications;
instead, it is the case that the likelihood function is too complex to admit a form that
can be evaluated reliably for different values of the parameters of interest. These
procedures will instead be built upon repeated simulation of the data-generating
process (allowing for the incorporation of any complex computer models, data
contamination, or selection effects) and then comparing simulated with observed
data. Implementation of these approaches presents their own set of challenges.
The difficulty of deriving an appropriate likelihood function is replaced with that
of finding an approximate sufficient statistic for the parameter of interest. There
are also computational challenges to implementing these procedures, but these can
be mitigated via the design of efficient algorithms. This paper will present a brief
introduction to some techniques and directions for addressing these challenges.

Another objective of this paper is to allow a reader familiar with statistical
inference, but not with astronomy, the chance to learn some background on
a relatively simple cosmological inference problem that possesses some of the
aforementioned challenges. In the next section we will present two examples, with
background information. The first is a stylized example of estimating cosmological
parameters using observations of Type Ia supernovae. This example serves largely to
introduce important concepts and methods. The second is the problem of estimating
a bivariate luminosity function, the distribution of astronomical objects of interest
as a function of their distance and the amount of light they emit. We will utilize the
quasar catalog of [4] to motivate a promising approach to estimating the bivariate
luminosity function which relies upon forward simulation of the full data generation
process.
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1.2 Examples and Astronomical Background

In this section we will present two examples of statistical inference using
astronomical data. The first is relatively simple and will serve only to demonstrate
basic likelihood-free techniques. The second application possesses the type of
complications that motivate the consideration of these approaches. Both of these
build upon the same astronomical background, including the following key
quantities described below.

Key Quantities in the Examples

1. Redshift (often denoted z)—Because the Universe is expanding, light
emitted by an astronomical object is shifted to longer wavelengths prior
to reaching the observer: the ratio of the wavelength at which the light is
observed to the wavelength when emitted equals 1+z. Since the magnitude
of this shift increases as a function of the time since the light was emitted,
redshift is often taken as a (nonlinear) proxy for time (or distance). For the
current epoch, z = 0; for quasars, z ≤ 7; and for the CMB, the most distant
structure yet observed in the Universe, z ≈ 1089.

2. Apparent magnitude (m)—The brightness of the object as measured by
the observer. Magnitudes are measured on a logarithmic scale such that
decreasing the magnitude by five corresponds to changing the brightness
by a factor of 100. The root of the magnitude system was the classification
of stars by the Greek astronomer Hipparchus, who used one for the
brightest stars and six for the faintest.

3. Absolute magnitude (M)—The apparent magnitude of that an object
would have if it were located 10 pc (or about 32 light-years) from Earth.
The relationship between m and M in a flat Universe can be written as

M = m− (1+ z)
c H0

∫ z

0

(
Ωm(1+ u)3 +ΩΛ

)−0.5
du, (1.1)

where c is the speed of light, and H0, Ωm, and ΩΛ are among the
cosmological parameters shown in Table 1.1.

Equation 1.1 establishes a relationship between a measurable property of astro-
nomical objects (the apparent magnitude), and a scientifically useful quantity (the
absolute magnitude). Note how this transformation depends not only on the redshift
of the object, but on the values of unknown physical constants. In the examples that
follow, this expression will be utilized in different ways. In the first case, Type Ia


