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Preface

The papers in this volume were presented at the Numerical Methods for Finance
Conference 2011, which was held at the University of Limerick, Ireland. All of the
papers, with the exception of those of the keynote speakers, have been subjected to
a rigorous refereeing procedure by the Editorial Committee. There is one additional
paper, which was presented and accepted for publication in, but was accidentally
omitted from, the published proceedings of the 2006 conference.

The aim of the conference series Numerical Methods for Finance is to attract
leading international researchers from both academia and industry to discuss new
research advances in, and applications of, numerical methods relevant to the solution
of real problems in finance. This is a topic of practical importance because many
of the mathematical models in quantitative finance cannot be treated analyti-
cally, and therefore must be solved numerically. Frequently this requires intensive
computation on large grids of computers. In some respects, the development of
numerical methods has kept pace with the development of computing hardware;
however, many complex and high-dimensional problems are beyond the scope of
even the most powerful contemporary computer clusters. Therefore, new numerical
algorithms are required, which are fast, accurate and efficient for such problems.
A wide range of topics and applications are presented in this volume. These
offer both academic and practitioner appeal, reflecting the broad scope of the
conference.

The 2011 conference was held under the joint auspices of the Institute for
Numerical Computation and Analysis, Dublin, and the Kemmy Business School,
University of Limerick. It is a pleasure to thank all members of the various
committees who helped with the onerous burdens placed on them by the local
organisers. The vital and generous support of the sponsors is also acknowledged
with much gratitude. The dedicated work of all reviewers in the pre-conference
review process and the post-conference proceedings review process is greatly
appreciated. Finally, it was the participants who made this conference a lively,
friendly and technically stimulating event. Particular thanks are extended to the
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keynote speakers who encouraged and facilitated the fascinating discussions and
debates that emerged. It is to be hoped that participants will return to future
conferences in the series.

Dublin, Ireland Mark Cummins
Dublin, Ireland John J. H. Miller
Limerick, Ireland Finbarr Murphy



About the Editors

Mark Cummins is a Lecturer in Finance at the Dublin City University Business
School. He holds a PhD in Quantitative Finance, with specialism in the application
of integral transforms and the fast Fourier transform (FFT) for derivatives valua-
tion and risk management. Mark has previous industry experience working as a
Quantitative Analyst within the Global Risk function for BP Oil International Ltd.,
London. Mark has a keen interest in a broad range of energy modelling, derivatives,
risk management and trading topics. He also has a growing interest in the area of
sustainable energy finance, with particular focus on the carbon markets. Linked to
Mark’s industry experience, he holds a further interest in the area of model risk and
model validation.

Finbarr Murphy is a Lecturer in Quantitative Finance at the University of
Limerick, Ireland. Finbarr’s key teaching and research interests lie in the field of
credit risk and derivatives and more recently, in carbon finance. His research is
focused on the application of generalised Lévy Processes and their application in
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On Weak Predictor–Corrector Schemes
for Jump-Diffusion Processes in Finance

Nicola Bruti-Liberati† and Eckhard Platen

Abstract Event-driven uncertainties such as corporate defaults, operational
failures, or central bank announcements are important elements in the modeling
of financial quantities. Therefore, stochastic differential equations (SDEs) of jump-
diffusion type are often used in finance. We consider in this paper weak discrete
time approximations of jump-diffusion SDEs which are appropriate for problems
such as derivative pricing and the evaluation of risk measures. We present regular
and jump-adapted predictor–corrector schemes with first and second order of weak
convergence. The regular schemes are constructed on regular time discretizations
that do not include jump times, while the jump-adapted schemes are based on time
discretizations that include all jump times. A numerical analysis of the accuracy of
these schemes when applied to the jump-diffusion Merton model is provided.

1 Introduction

Several empirical studies indicate that the dynamics of financial quantities exhibit
jumps, see [2, 7, 16, 17]. Announcements by central banks, for instance, create
jumps in the evolution of interest rates. Moreover, events such as corporate defaults
and operational failures have a strong impact on financial quantities. These events
cannot be properly modeled by pure diffusion processes. Therefore, several financial
models are specified in terms of jump diffusions via their corresponding stochastic
differential equations (SDEs), see [3, 8, 10, 20, 23].
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2 N. Bruti-Liberati and E. Platen

The class of jump-diffusion SDEs that admits explicit solutions is rather limited.
Therefore, it is important to develop discrete time approximations. An important
application of these methods arises in the pricing and hedging of interest rate
derivatives under the LIBOR market model. Since the arbitrage-free dynamics of
the LIBOR rates are specified by nonlinear multidimensional SDEs, Monte Carlo
simulation with discrete time approximations is the typical technique used for
pricing and hedging. Recently, LIBOR market models with jumps have appeared in
the literature, see [10,28]. Here, efficient schemes for SDEs with jumps are needed.

Discrete time approximations of SDEs can be divided into the classes of strong
and weak schemes. In the current paper, we study weak schemes which provide
an approximation of the probability measure and are suitable for problems such as
derivative pricing, the evaluation of moments, risk measures, and expected utilities.
Strong schemes, instead, provide pathwise approximations which are appropriate
for scenario simulation, filtering, and hedge simulation, see [19, 27].

A discrete time approximation YΔ converges weakly with order β to X at time

T , if for each g ∈ C
2(β+1)
P (Rd ,R) there exist a positive constant C, independent of

Δ , and a positive and finite number Δ0 > 0, such that

εw(Δ) := |E(g(XT ))−E(g(YΔ
T ))| ≤CΔβ , (1)

for each Δ ∈ (0,Δ0). Here, we denote by C
2(β+1)
P (Rd ,R) the space of 2(β + 1)

continuously differentiable functions which, together with their partial derivatives
of order up to 2(β + 1), have polynomial growth. This means that for any g ∈
C

2(β+1)
P (Rd ,R) there exist constants K > 0 and r ∈ {1,2, . . .}, depending on g,

such that

|∂ j
y g(y)| ≤ K(1+ |y|2r),

for all y ∈ R
d and any partial derivative ∂ j

y g(y) of order j ≤ 2(β + 1).
In the case of pure diffusion SDEs, there is a substantial body of research on

discrete time approximations, see [19]. The literature on weak approximations of
jump-diffusion SDEs, instead, is rather limited, see [11–13,21,22,24]. In this paper,
we propose several new weak predictor–corrector schemes for jump-diffusion SDEs
with first and second order of weak convergence.

For pure diffusion SDEs arising in applications to LIBOR market models,
specific weak predictor–corrector schemes have been proposed and analyzed in
[15, 18]. These authors show that for the numerical approximation of the nonlinear
dynamics of discrete forward rates, predictor–corrector schemes outperform the
simpler Euler scheme and allow the use of a single time step within reasonable
accuracy. The weak predictor–corrector schemes proposed in the current paper can
be applied to pricing and hedging of complex interest rate derivatives under LIBOR
market models with jumps.

The paper is organized as follows. Sect. 2 introduces the class of jump-diffusion
SDEs under consideration. In Sect. 3, we propose several weak predictor–corrector
schemes for SDEs with jumps. These are divided into regular predictor–corrector
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schemes and jump-adapted predictor–corrector schemes. Finally, we present in
Sect. 4 a numerical study of these schemes applied to the jump-diffusion Merton
model.

2 Model Dynamics

The continuous uncertainty is modeled with an A -adapted m-dimensional standard
Wiener process denoted by W = {Wt = (W 1

t , . . . ,W
m

t )�, t ∈ [0,T ]}, while the
event-driven uncertainty is represented by an A -adapted r-dimensional compound
Poisson process denoted by J = {Jt = (J1

t , . . . ,J
r
t )

�, t ∈ [0,T ]}. Each component
Jk

t , for k ∈ {1,2, . . . ,r}, of the r-dimensional compound Poisson process J = {Jt =
(J1

t , . . . ,J
r
t )

�, t ∈ [0,T ]} is defined by

Jk
t =

Nk
t

∑
i=1

ξ k
i ,

where N1, . . . ,Nr are r independent standard Poisson processes with constant inten-
sities λ 1, . . . ,λ r, respectively. Let us note that each component of the compound
Poisson process Jk generates a sequence of pairs {(τk

i ,ξ k
i ), i ∈ {1,2, . . . , Nk

T}} of
jump times and marks. We will denote with Fk(·) the distribution function of the
marks ξ k

i , for i ∈ {1,2, . . . ,Nk
T }, generated by the kth Poisson process Nk.

We consider the dynamics of the underlying d-dimensional factors specified with
the jump-diffusion SDE

dXt = a(t,Xt)dt + b(t,Xt)dWt + c(t,Xt−)dJt , (2)

for t ∈ [0,T ], with X0 ∈ R
d . Here a(t,x) is a d-dimensional vector of real-valued

functions on [0,T ] × R
d , while b(t,x) and c(t,x) are a d × m-matrix of real-

valued functions on [0,T ]×R
d and a d × r-matrix of real-valued functions on

[0,T ]×R
d , respectively. Moreover, we denote by Zt− = lims⇑t Zs the almost sure

left-hand limit of Z = {Zs,s ∈ [0,T ]} at time t. Let us note that in the following
we adopt a superscript to denote vector components, which means, for instance,
a = (a1, . . . ,ad)�. Moreover, we write bi and ci to denote the ith column of matrixes
b and c, respectively.

We assume that the coefficient functions a, b, and c satisfy the usual linear
growth and Lipschitz conditions sufficient for the existence and uniqueness of a
strong solution of Eq. (2), see [25]. Moreover, when we will indicate the orders of
weak convergence of the approximations to be presented in Sect. 3 we will assume
that smoothness and integrability conditions similar to those required in [19] for
pure diffusion SDEs are satisfied. The specific conditions along with a proof of the
convergence theorem will be given in forthcoming work.
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If we choose multiplicative coefficients in the one-dimensional case with one
Wiener and one Poisson process, d = m = r = 1, then we obtain the SDE

dXt = Xt− (μdt +σdWt + dJt) , (3)

which describes the jump-diffusion Merton model, see [23]. For this linear SDE, we
have the explicit solution

Xt = X0 e(μ−
1
2σ

2)t+σWt
Nt

∏
i=1

(1+ ξi), (4)

which we will use in Sect. 4 for a numerical study. In [23] (1+ ξi) = eζi is the ith
outcome of a log-normal random variable with ζi ∼ N (ρ ,ς). If instead (1+ ξi)
is drawn from a log-Laplace random variable we recover the Kou model, see [20].
Moreover, a simple degenerate case arises when (1+ ξi) is a positive constant.

Other important examples of jump-diffusion dynamics of the form Eq. (2) arise
in LIBOR market models. [28], for instance, consider a LIBOR market model with
jumps for pricing short-term interest rate derivatives. Given a set of equidistant
tenor dates T1, . . . ,Td+1, with Ti+1 − Ti = δ for i ∈ {1, . . . ,d}, the components of
the vector Xt = (X1

t , . . . ,X
d
t )

� represent discrete forward rates at time t maturing
at tenor dates T1, . . . ,Td , respectively. Moreover, they consider one driving Wiener
process, m= 1, and two driving Poisson processes, r = 2. The diffusion coefficient is
specified as b(t,x) = σx, with σ a d-dimensional vector of positive numbers, and the
jump coefficient c(t,x) = βx, where β is a d × 2-matrix with β i,1 > 0 and β i,2 < 0,
for i ∈ {1, . . . ,d}. In this way the first jump process generates upward jumps, while
the second jump process creates downward jumps. Moreover, the marks are set
to ξi = 1 so that the two driving jump processes are standard Poisson processes.
A no-arbitrage restriction on the evolution of forward rates under the Td+1-forward
measure, see [3] and [10], imposes a particular form on the nonlinear drift coefficient
a(t,x) whose ith component is given by

ai(t,x) = −
{

d

∑
j=i+1

δx j

1+ δx jσ
j +λ 1

d

∏
j=i+1

(
1+β j,1 δx j

1+ δx j

)

+ λ 2
d

∏
j=i+1

(
1+β j,2 δx j

1+ δx j

)}
. (5)

A complex nonlinear drift coefficient, as that in Eq. (5), is a typical feature of
LIBOR market models. Therefore, it makes the application of numerical techniques
essential in the pricing of complex interest rate derivatives.

To recover some empirical features observed in the market, it is sometimes
important to consider a jump behavior more general than that driving the SDE,
Eq. (2). By considering jump-diffusion SDEs driven by a Poisson random measure
it is possible to introduce, for instance, state-dependent intensities. The numerical
schemes to be presented can be naturally extended to the case with Poisson random
measures.
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3 Weak Predictor–Corrector Schemes

In this section, we present several discrete time weak approximations of the jump-
diffusion SDE, Eq. (2). First, we consider regular schemes based on regular time
discretizations which do not include jump times of the Poisson processes. Then we
present jump-adapted schemes constructed on time discretizations which include all
jump times.

3.1 Regular Weak Predictor–Corrector Schemes

We consider an equidistant time discretization 0 = t0 < t1 < · · · < tn̄ = T , with
tn = nΔ and step size Δ = T

n̄ , for n ∈ {0,1, . . . , n̄} and n̄ ∈ {1,2, . . .}. We denote
a corresponding discrete time approximation of the solution X of the SDE, Eq. (2),
by YΔ = {YΔ

n , n ∈ {0,1, . . . , n̄}}.
Before introducing advanced predictor–corrector schemes, we present the Euler

scheme which is given by

Yn+1 = Yn + aΔ +
m

∑
j=1

b jΔW j
n +

r

∑
k=1

ckξ̂ k
nΔpk

n, (6)

for n∈ {0,1, . . . , n̄−1}, with initial value Y0 =X0. For ease of notation, we omit here
and in the following the dependence on time and state variables in the coefficients
of the scheme, this means we simply write a for a(tn,Yn), etc.

In Eq. (6) we denote by ΔW j
n =W j

tn+1
−W j

tn ∼ N (0,Δ) the nth increment of the
jth Wiener process W j and by Δpk

n = Nk
tn+1

−Nk
tn ∼ Poiss(λ kΔ) the nth increment of

the kth Poisson process Nk with intensity λ k. Moreover, ξ̂ k
n is the nth independent

outcome of a random variable with given probability distribution function Fk(·).
The Euler scheme achieves, in general, weak order of convergence β = 1.

It is possible to replace the Gaussian and Poisson random variables ΔW j
n and Δpk

n
with simpler multipoint distributed random variables that satisfy certain moment-
matching conditions. For instance, if we use in Eq. (6) the two-point distributed
random variables ΔŴ j

n and Δp̂k
n, where

P(ΔŴ j
n =±

√
Δ) =

1
2
, (7)

for j ∈ {1, . . . ,m}, and

P

(
Δp̂k

n =
1
2
(1+ 2λ kΔ ±

√
1+ 4λ kΔ )

)
=

1+ 4λ kΔ ∓√
1+ 4λ kΔ

2(1+ 4λ kΔ)
, (8)
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for k ∈ {1, . . . ,r}, then we obtain the simplified Euler scheme which still achieves
weak order of convergence β = 1. Let us note that this scheme can be implemented
in a highly efficient manner by resorting to random bit generators and hardware
accelerators, as shown for pure diffusion SDEs in [5, 6].

As indicated in [14] for pure diffusion SDEs and in [12, 13] for jump-diffusion
SDEs, explicit schemes have narrower regions of numerical stability than corre-
sponding implicit schemes. For this reason, implicit schemes for diffusion and
jump-diffusion SDEs have been proposed. Despite their better numerical stability
properties, implicit schemes carry, in general, an additional computational burden
since they usually require the solution of an algebraic equation at each time step.
Therefore, in choosing between an explicit and an implicit scheme one faces a trade-
off between computational efficiency and numerical stability.

Predictor–corrector schemes are designed to retain the numerical stability proper-
ties of similar implicit schemes, while avoiding the additional computational effort
required for solving an algebraic equation in each time step. This is achieved with
the following procedure implemented at each time step: at first, an explicit scheme
is generated, the so-called predictor, and afterward a de facto implicit scheme is
used as corrector. The corrector is made explicit by using the predicted value Ȳn+1,
instead of Yn+1. The orders of weak convergence of the predictor–corrector schemes
to be presented can be obtained by applying the Wagner–Platen expansion for jump-
diffusion SDEs, see [26]. We refer to [4, 27] for the weak convergence of explicit
and implicit approximations for SDEs with jumps.

The weak order one predictor–corrector scheme has corrector

Yn+1 = Yn +
1
2
{a(tn+1,Ȳn+1)+ a}Δ +

m

∑
j=1

b jΔW j
n +

r

∑
k=1

ck ξ̂ k
n Δpk

n, (9)

and predictor

Ȳn+1 = Yn + aΔ+
m

∑
j=1

b jΔW j
n +

r

∑
k=1

ck, ξ̂ k
nΔpk

n. (10)

The predictor–corrector scheme, Eqs. (9)–(10), achieves first order of weak con-
vergence. Also in this case, we can use the two-point distributed random variables
Eqs. (7) and (8) without affecting the order of weak convergence of the scheme.
Let us note that the difference Zn+1 := Ȳn+1 −Yn+1 between the predicted and
the corrected value provides an indication of the local error. This can be used to
implement more advanced schemes with step-size control based on Zn+1.

A more general family of weak order one predictor–corrector schemes is given
by the corrector

Yn+1 = Yn + {θ ā(tn+1,Ȳn+1)+ (1−θ ) ā}Δ

+
m

∑
j=1

{
η b j(tn+1,Ȳn+1)+ (1−η)b j}ΔW j

n +
r

∑
k=1

ck ξ̂ k
n Δpk

n, (11)
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for θ ,η ∈ [0,1], where

ā = a−η
m

∑
j=1

d

∑
i=1

bi, j ∂b j

∂xi , (12)

and the predictor is as in Eq. (10). Here, one can tune the degree of implicitness
in the drift coefficient and in the diffusion coefficient by changing the parameters
θ ,η ∈ [0,1], respectively. Note that when the degree of implicitness η is different
from zero, it is important to use bounded random variables as ΔŴ j

n and Δp̂k
n in

an implicit scheme. These prevent the effect of possible divisions by zero in the
algorithm, see [19]. For a predictor–corrector method, this can be computationally
advantageous, but it is no longer required. One can still use the Gaussian and Poisson
random variables, ΔW j

n and Δpk
n, in the above scheme as in Eq. (11).

By using the Wagner–Platen expansion for jump-diffusion SDEs, it is possible
to derive higher-order regular weak predictor–corrector schemes. However, these
schemes are quite complex as they involve the generation of multiple stochastic
integrals with respect to time, Wiener processes, and Poisson processes.

3.2 Jump-Adapted Weak Predictor–Corrector Schemes

As introduced in [26], let us consider a jump-adapted time discretization 0 =
t0 < t1 < · · · < tM = T constructed as follows. First, as in Sect. 3.1, we choose
an equidistant time discretization 0 = t̄0 < t̄1 < · · · < t̄n̄ = T , with t̄n = nΔ , for
n ∈ {1, . . . , n̄}, and step size Δ = T

n̄ . Then we simulate all jump times τk
i , for

i ∈ {1,2, . . . ,Nk
T } and k ∈ {1, . . . ,r}, generated by the r Poisson processes, and

superimpose these on the equidistant time discretization. The resulting jump-
adapted time discretization includes all jump times τk

i of the r Poisson processes and
all equidistant time points t̄1, . . . , t̄n. Its maximum step size is then guaranteed to be
not greater than Δ = T

n̄ . Note that the number M + 1 of points in the jump-adapted
time discretization is random and, thus, changes in each simulation. It equals the
total number of jumps τk

i of the r Poisson processes plus n̄ + 1. Therefore, the
average number of grid points and, thus, of operations of jump-adapted schemes
is for large intensity almost proportional to the total intensity λ̄ =∑r

k=1λ k, which is
defined as the sum of the intensities of the r Poisson processes.

From now on for convenience, we use the notation Ytn = Yn and denote by
Ytn+1− = lims⇑tn+1 Ys the almost sure left-hand limit of Y at time tn+1.

Within a jump-adapted time discretization, by construction jumps arise only at
discretization times and we can separate the diffusion part of the dynamics from the
jump part. Therefore, the jump-adapted Euler scheme is given by

Ytn+1− = Ytn + aΔtn +
m

∑
j=1

b jΔW i
tn , (13)
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and

Ytn+1 = Ytn+1−+
r

∑
k=1

ck(tn+1−,Ytn+1−)ΔJk
tn+1

, (14)

for n ∈ {0, . . . ,M− 1}, where Δtn = tn+1 − tn and ΔW j
tn =W j

tn+1
−W j

tn ∼ N (0,Δtn).
Here, ΔJk

tn+1
equals ξ k

Nk
tn+1

if tn+1 is a jump time of the kth Poisson process or zero

otherwise. The solution X follows a diffusion process between discretization points
and is approximated by Eq. (13). If we encounter a jump time as discretization time,
then the jump impact is simulated by Eq. (14). The jump-adapted Euler scheme has
first order of weak convergence. By replacing the Gaussian random variable ΔW j

tn in
Eq. (13) with the two-point random variable

P(ΔŴ j
tn =±√Δtn) =

1
2
, (15)

for j ∈ {1, . . . ,m}, we obtain the jump-adapted simplified Euler scheme which still
achieves first order of weak convergence.

The jump-adapted weak order one predictor–corrector scheme is given by the
corrector

Ytn+1− = Ytn +
1
2

{
a(tn+1−,Ȳtn+1−)+ a

}
Δ +

m

∑
j=1

b jΔW j
tn , (16)

the predictor

Ȳtn+1− = Ytn + aΔtn +
m

∑
j=1

b jΔW j
tn , (17)

and Eq. (14). This scheme achieves the same first order of weak convergence of the
jump-adapted Euler scheme. Thanks to the quasi-implicitness in the drift it has,
in general, better numerical stability properties. Also in this case, it is possible
to replace the Gaussian random variables in Eqs. (16) and (17) with the two-point
random variables in Eq. (15).

A more general family of jump-adapted weak order one predictor–corrector
schemes is given by the corrector

Ytn+1− = Ytn +
{
θ ā(tn+1−,Ȳtn+1−)+ (1−θ )ā

}
Δ

+
m

∑
j=1

{
η b j(tn+1−,Ȳtn+1−)+ (1−η)b j}ΔW j

n , (18)

for θ ,η ∈ [0,1]. Here ā is defined as in Eq. (12) and the predictor as in Eq. (17) again
together with a relation as in Eq. (14). This scheme achieves in general first order of
weak convergence. Also in this case one can use the two-point random variables as
in Eq. (15).
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Within the class of jump-adapted schemes, we can derive higher-order weak
predictor–corrector schemes which do not involve multiple stochastic integrals with
respect to the Poisson processes. By using a second order weak implicit scheme as
corrector and a second order weak explicit scheme as predictor, we obtain the jump-
adapted weak order two predictor–corrector scheme. It is given by the corrector

Ytn+1− = Ytn +
1
2

{
a(tn+1−,Ȳtn+1−)+ a

}
Δtn +Ψtn , (19)

with

Ψtn =
m

∑
j=1

{
b j +

1
2

L0b jΔtn

}
ΔW j

tn +
1
2

m

∑
j1, j2=1

Lj1 b j2
(
ΔW j1

tn ΔW j2
tn +V j1, j2

tn

)
, (20)

the predictor

Ȳtn+1− = Ytn + aΔtn +Ψtn +
1
2

L0a(Δtn)
2 +

1
2

m

∑
j=1

LjaΔW j
tnΔtn , (21)

and a relation as in Eq. (14). The differential operator L0 is defined by

L0 :=
∂
∂ t

+
d

∑
i=1

ai(t,x)
∂
∂xi +

1
2

d

∑
i,k=1

m

∑
j=1

bi, j(t,x)bk, j(t,x)
∂ 2

∂xi∂x j , (22)

and the operator Lj by

Lj :=
d

∑
i=1

bi, j(t,x)
∂
∂xi , (23)

for j ∈ {1, . . . ,m}. The random variables V j1, j2
tn are two-point distributed with

P(V j1, j2
tn =±√Δtn) =

1
2
, (24)

for j2 ∈ {1, . . . , j1 − 1}, where

V j1, j1
tn =−Δtn , (25)

and

V j1, j2
tn =−V j2, j1

tn (26)

for j2 ∈ { j1 + 1, . . . ,m} and j1 ∈ {1, . . . ,m}. The Gaussian random variable ΔW k
tn

can be replaced by the three-point random variable ΔW̃ k
tn defined by

P(ΔW̃ k
tn =±√3Δtn) =

1
6
, P(ΔW̃ k

tn = 0) =
2
3
, (27)

for k ∈ {1, . . . ,m}.


