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Preface

Graphs and networks have been studied extensively in recent decades by
mathematicians, computer scientists, engineers, operations researchers as well
as physicists, biologists, chemists, and even linguists and sociologists. Their
two key elements, vertices and edges, are extremely useful as representations
of a wide spectrum of phenomena ranging from transportation networks,
through topology of atoms to social networks. Furthermore, many problems
modelled with graphs and networks naturally lend themselves to algorithmic
analysis and ultimate solutions with the help of modern high-speed comput-
ers. The shortest path, maximal spanning tree and max-flow/min-cut prob-
lems are just three examples out of a large collection of well-solved important
problems.

Nonetheless, there is also a large collection of graph theoretic and network
optimisation problems that are fundamentally difficult in the sense of be-
longing to the very challenging computational complexity classes such as the
NP-complete and NP-hard classes. Indeed, the famous Hamiltonian cycle
problem (HCP) is known to be NP-complete. The now extensive body of re-
search into the HCP was, perhaps, stimulated by investigations of interesting
instances of that problem by great mathematicians such as Euler in the 18th
and Hamilton in the 19th century, respectively.

The essence of the Hamiltonian cycle problem is contained in the following—
deceptively simple—single sentence statement:

Given a graph, find a cycle that passes through every single vertex exactly
once, or determine that this cannot be achieved.

Such a cycle is called a Hamiltonian cycle. The HCP has become a challenge
that attracts mathematical minds both in its own right and because of its
close relationship to the famous travelling salesman problem (TSP), that calls
for the identification of a Hamiltonian cycle with the lowest cost possible in a
graph where every edge has a known cost associated with “travelling” along
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viii Preface

that edge. An efficient solution of the TSP would have an enormous impact
in operations research, optimisation and computer science. However, from a
mathematical perspective, the underlying difficulty of the TSP is, perhaps,
hidden in the Hamiltonian cycle problem. Hence, in this monograph, we focus
on the Hamiltonian cycle problem.

Arguably, the inherent difficulty of many problems in graph theory and com-
binatorial optimisation stems, precisely, from the discrete nature of the do-
mains in which these problems are posed. Consequently, this monograph is
devoted to a line of research that maps such problems into convex domains
where continuum analysis can be easily carried out. This convexification of
domains is achieved by assigning probabilistic interpretation to the key el-
ements of the original problems even though these problems are deterministic.

While there are other instances of similar ideas being exploited elsewhere,
our approach builds on the innovation introduced in Filar and Krass [49]
where the Hamiltonian cycle problem and the travelling salesman problem
are embedded in a structured singularly perturbed Markov decision process
(MDP). The unifying idea of [49] is to interpret subgraphs traced out by de-
terministic policies (including Hamiltonian cycles, if any) as extreme points
of a convex polyhedron in a space filled with randomised policies.

This approach was continued by Chen and Filar [22] and, independently,
by Feinberg and Shwartz [46] and Feinberg [44]. Further results were ob-
tained by Filar and Liu [51], Andramonov et al. [4], Filar and Lasserre [50],
Ejov et al. [30]–[38] and Borkar et al. [17]–[18]. In addition, three recent
(but not readily accessible) PhD theses by Nguyen [81], Haythorpe [62] and
Eshragh [41] contain some of the most recent results. Thus, there is now an
active group of researchers in various countries interested in this approach
to discrete problems. Majority of these contributions focused on the classi-
cal Hamiltonian cycle problem, but in principle many of the techniques used
could be adapted to other problems of discrete mathematics (as, indeed, was
done by Feinberg [45]).

To indicate the flavour of the results reported in the present monograph,
consider a key observation that led to the recent results presented in Borkar
et al. [17] and [18]: the “natural” convex domain where Hamiltonian cy-
cles should be sought is the set of doubly stochastic matrices induced by a
given graph. This observation is nearly obvious, once we recall the famous
Birkhoff-von Neumann theorem, which states that the set of all N×N doubly
stochastic matrices is the convex hull of permutation matrices. Of course, in
searching for a Hamiltonian cycle of a given graph, we need to restrict our-
selves to the convex hull of only those permutation matrices that correspond
to subgraphs of that graph. Results in Chapter 3 (based on Borkar et al. [17]
and [18]) imply, that after a suitable perturbation and defining the random
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variable τ1 to be the first hitting time of the home vertex 1 (after time 0),
the Hamiltonian cycle problem essentially reduces to “merely” minimising
the variance-like functional E[(τ1 −N)2] over the space of doubly stochastic
matrices. This probabilistic, almost statistical, interpretation enables us to
exploit a wide range of both analytical and algorithmic tools on the HCP.

More generally, this monograph summarises results of both theoretical and
algorithmic investigations. The theoretical aim of this line of research is to
explain the essential difficulty of the Hamiltonian cycle problem in analytic
terms such as a measure of variability, or the size of a gap between certain
optimisation problems, or by the nature of certain singularities. The algo-
rithmic aim of the approach is to construct either exact or heuristic methods
to obtain numerical solutions of the HCP. It is based on the belief that some
classical “static” optimisation problems can be well analysed by embedding
them in suitably constructed Markov decision processes.

In our setting, the theoretical and algorithmic aims are not separate. Indeed,
results on one aim seem to influence progress on the other. For instance, the
optimisation algorithms presented in Chapters 7 and 8 follow directly from
the theoretical developments presented in Chapters 3–5 and have identified
difficulties that some of the theoretical developments reported in Chapters 6,
9 and 10 are trying to resolve.

The general approach constitutes one of the few instances where probabilistic,
continuous optimisation and dynamic control methods are combined to deal
with a hard problem of discrete mathematics. Arguably, simulated annealing
could be seen as a precursor of this approach. However, it should be men-
tioned that relationships between Markov chains and graphs are also of recent
interest to other researchers, notably Aldous and Fill [2] and Hunter [67].

Next we shall, briefly, differentiate between our approach and some of the
best known, well established, approaches to the HCP. We first note that the
present line of research is essentially different from that adopted in the study
of random graphs, where an underlying random mechanism is used to gener-
ate a graph (see, for example, Karp’s seminal paper [69]). In our approach,
the graph to be studied is given and fixed but a controller can choose edges
according to a probability distribution, and with a small probability (due to a
perturbation) an edge may take you to a vertex. Random graphs have played
an important role in the study of Hamiltonicity, a striking result to quote
is that of Robinson and Wormald [92] who show that with high probability
k-regular graphs are Hamiltonian, for k ≥ 3.

Typical general purpose heuristic algorithms can perhaps be classified—we
cite only few representative papers—as rotational transformation algorithms
(Posa [86]), cycle extension algorithms (Bollobas et al. [13]), long path algo-
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rithms (Kocay and Li [71]), low degree vertices algorithms (Broder et al. [20]
and Brunacci [21]),multipath search or pruning algorithms (Christofides [23]).
Of course, much research has been done on algorithms for finding a Hamilto-
nian cycle on various restricted graph classes (see, for example, Parberry [84]).
Clearly, algorithms designed for particular classes of graphs tend to outper-
form the best general purpose algorithms when applied to graphs from these
classes.

In the operations research and optimisation communities, many of the suc-
cessful, now classical, approaches to the HCP and TSP focus on solving a
linear programming relaxation followed by heuristics that prevent the for-
mation of sub-cycles (see, for example, Lawler et al. [76]). In the present
approach, we embed a given graph in a singularly perturbed MDP in such a
way that we can identify Hamiltonian cycles with irreducible Markov chains
and sub-cycles with non-exhaustive ergodic classes. This permits a search for
a Hamiltonian cycle in either (i) the policy space of an MDP, or (ii) the space
of the occupational measures of the MDP that is a polytope with a non-empty
interior. In both cases, the original discrete optimisation problem is converted
to a continuous one. The Branch and Fix, Wedged-MIP and Cross-Entropy
heuristics reported in Chapters 7 and 8 can be seen as belonging to (ii), as
they all exploit properties of the spaces of occupational measures. They are
performing competitively with alternative—general purpose—algorithms on
various test problems including the Knight’s Tour problem on chessboards
of the size up to 32× 32. The Interior Point heuristic discussed in Chapter 8
belongs to (i) and should be properly seen as being still under development.
However, it opens up promising opportunities for a lot of further research,
as it exploits numerically attractive algebraic factorisation properties of irre-
ducible generator matrices of Markov chains.

Indian Institute of Technology, India, Vivek S. Borkar
Flinders University, Australia, Vladimir Ejov
Flinders University, Australia, Jerzy A. Filar
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Chapter 1

Illustrative Graphs

1.1 The Graph That Started It All

Sir William Rowan Hamilton (1805–1865) was a famous mathematician and
physicist, well-known for his vast contribution in various fields such as optics,
classical mechanics and algebra. However, it is a lesser known fact that Sir
William was the inventor of a commercial game, the mathematically gener-
alised version of which later became one of the most difficult graph theoretic
problems. Towards the end of his life, in 1857, Sir William Rowan Hamilton
designed a game called Icosian. Its name derived from a Greek word Icosa,
meaning twenty, the Icosian Game featured twenty connected cities, each
represented by a hole on a wooden pegboard. Deceptively simple, the player
was to visit every city exactly once and return to where he or she started. If
we represent each city in this game by a vertex and each connection between
two cities by an edge, then the resulting map of cities in the Icosian game is
the Dodecahedron graph (Figure 1.1).

Fig. 1.1: The dodecahedral graph [102], which represents the city map of Icosian
game, is the planar projection of a dodecahedron (a polyhedron with twelve faces)

.
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4 1 Illustrative Graphs

A mathematically generalised version of the Icosian game, the Hamiltonian
cycle problem (HCP) can be succinctly stated as:

Given a graph, find a cycle that passes through every single vertex exactly
once, or determine that this cannot be achieved.

Such a cycle is called a Hamiltonian cycle (HC). A graph is said to be Hamil-
tonian if it possesses at least one Hamiltonian cycle, and is otherwise non-
Hamiltonian. There might be, and usually are, multiple Hamiltonian cycles
in a Hamiltonian graph. The dodecahedron graph is Hamiltonian and has
multiple Hamiltonian cycles. The property of a graph possessing a Hamilto-
nian cycle is called Hamiltonicity .

In 1859, Sir William sold the game to an Irish toy manufacturer for 25
British pounds, approximately equivalent to today’s 2770 US dollars. The
Icosian game was later commercially distributed as the Traveller’s Dodecahe-
dron. In 2000, the Clay Mathematics Institute announced their list of seven
Prize Problems, and offered a one million US dollar prize for a solution to
each problem. One listed problem is the long-standing question on the re-
lationship between two complexity classes P and NP (see Cook [26] for the
formal problem description), an answer to which can be found by determining
whether there exists a polynomial-time algorithm to solve the Hamiltonian
cycle problem.

In the even better known travelling salesman problem, where we assign a
cost for each edge in a given graph, the objective is essentially to determine
which Hamiltonian cycle on the graph is the most cost-efficient. Thus, the
Hamiltonian cycle problem is a special case of the travelling salesman prob-
lem, and both are computationally difficult to solve. An efficient solution
to the Hamiltonian cycle problem would help solve the travelling salesman
problem effectively, and therefore would have a great impact in various fields
such as computer science, operations research and cryptology.

1.2 A Sample of Distinctive Graphs

A simple indication of the complexity of the Hamiltonian cycle problem is,
that it is not easy to determine whether or not a graph is Hamiltonian by
inspection even for small-sized problems. For example, it might take several
minutes for a person to determine whether the famous 10-vertex Petersen
graph (Figure 1.2) is Hamiltonian. A larger, but still reasonably small in
terms of computer science instances, problem that has challenged many HCP
algorithms is the 96-vertex Horton graph (Figure 1.3). In both graphs, there
is no Hamiltonian cycle.
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Fig. 1.2: Petersen graph

Fig. 1.3: Horton graph [103]

The dodecahedral graph, the Petersen graph and the Horton graph are all
cubic graphs. A graph is cubic or 3-regular if every vertex in the graph is
connected to exactly three other vertices. In general, a graph is k-regular if
every vertex in the graph is connected to exactly k other vertices. Despite
this regularity constraint which seemingly simplifies things, the Hamiltonian
cycle problem when restricted to cubic graphs retains its full complexity and
hence remains NP-complete [53]. Consequently, cubic graphs are one of the
simplest classes of graphs frequently chosen for analysis, in regards not only
to the Hamiltonian cycle problem but also to many other graph theoretic
problems [57].

In Figure 1.4, we list all 19 connected 10-vertex cubic graphs, 17 of which
are Hamiltonian and two are non-Hamiltonian, including the Petersen graph.
We enumerate these graphs using the graph-generating GENREG software
(Meringer [79]). For the Hamiltonian 10-vertex cubic graphs (numbered 2 to
18), all vertices are drawn in a circle to highlight the Hamiltonicity of these
graphs. Indeed, each of these Hamiltonian graphs has at least one Hamilto-



6 1 Illustrative Graphs

nian cycle that is the circle circumscribing the graph. However, both non-
Hamiltonian graphs (numbered 1 and 19) are drawn with a different vertex
arrangement. This diagrammatic version of the first graph highlights a bridge
connecting two subgraphs, consequently indicating the lack of Hamiltonian
cycles in the graph.

Fig. 1.4: All 19 connected 10-vertex cubic graphs

For any given graph, there are many different graphical representations. A
planar graph is a graph that can be drawn in the plane in such a way that
its edges intersect only at the vertices. A nonplanar graph is a graph that is
not planar. Garey et al. [53] show that, even when restricted to planar cubic
graphs, the Hamiltonian cycle problem is NP-complete.

In addition to the quest for finding an efficient algorithm to solve the Hamil-
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tonian cycle problem for generic graphs, a lot of focus is on determining
whether classes of graphs with certain properties are always Hamiltonian.
Before stating a famous conjecture on a particular class of graphs, we need
to introduce a few definitions. A graph is bipartite if its set of vertices can
be divided in two disjoint subsets such that no pair of vertices in the same
subset are connected to each other. In general, a graph is k-partite if its set
of vertices can be divided into k disjoint subsets such that no two pair of
vertices in same subset are connected to each other. A graph is k-connected
if it remains connected after we remove any set of k − 1 vertices from the
graph. Of course, a cubic graph can be at most 3-connected, since removing
the three vertices adjacent to any vertex isolates it.

Among the aforementioned graphs, the dodecahedral graph is planar and
3-connected; the Petersen graph is nonplanar, 3-partite and 3-connected;
the Horton graph is nonplanar, bipartite and 3-connected. Out of 19 con-
nected 10-vertex cubic graphs in Figure 1.4, only the graph numbered 1 is
1-connected, as the removal of either vertex at the endpoints of the bridge dis-
connects the graph, and this graph is non-Hamiltonian. In fact, it was shown
almost a century ago that every 1-connected graph is non-Hamiltonian [72].
It is easy to verify that 1-connected graphs can be detected in polynomial
time.

A famous, long-standing and still open conjecture on Hamiltonicity of graphs
is the following conjecture, which relates Hamiltonicity to connectivity, reg-
ularity and planarity.

Conjecture 1.1. Barnette’s Conjecture [100]. Every 3-connected bipartite
cubic planar graph is Hamiltonian.

1.3 Co-spectral Graphs

A common way to represent a graph with N vertices is using an N ×N ad-
jacency matrix, of which the (i, j)th entry is 1 if edge (i, j) is present in the
graph and 0 otherwise. Two graphs are co-spectral if their adjacency matrices
share the same set of eigenvalues. In various texts, associated with a graph
eigenvalues could also be the Laplacian matrix or the normalised Laplacian
matrix of the graph (see Chapter 2 for precise definitions of these matrices).

Consider two graphs G and H, and let V (G) and V (H) be the sets of ver-
tices, and E(G) and E(H) be the sets of edges in G and H, respectively. For
brevity, we drop the dependency on graphs and simply write E and V when
no confusion can arise. The graphs G and H isomorphic if there exists a
bijection f : V (G) �→ V (H) such that for every edge (u, v) ∈ E(G), the edge
(f(u), f(v)) ∈ E(H). They are non-isomorphic otherwise. An automorphism
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of a graph G is an isomorphism of G with itself. Isomorphic graphs are co-
spectral. Cvetkovic [27] shows that there exist non-isomorphic graphs that
are co-spectral, and van Dam and Haemers [28] discuss the types of graphs
that are uniquely determined by their spectrum. More directly related to the
Hamiltonian cycle problem, Filar et al. [47] construct two 20-vertex cubic,
isomorphic and co-spectral graphs, one of which is Hamiltonian and the other
non-Hamiltonian.

This indicates that we cannot rely on the spectrum of a graph alone to deter-
mine whether the graph is Hamiltonian or not. However, the eigenvalues and
consequently the determinant of the adjacency matrix of a graph still contain
a lot of useful insights that could help us with determining Hamiltonicity. For
example, in an N -vertex Hamiltonian graph, it is well-known that the char-
acteristic polynomial of an adjacency matrix of a subgraph corresponding to
any Hamiltonian cycle on the graph is λN − 1. Moreover, Ejov et al. [32]
show that, for a given N -vertex Hamiltonian graph, any Hamiltonian cycle
is equivalent to a solution of the following system of polynomial equations:

xij(1− xij) = 0 for all (i, j) ∈ E,∑
j

xij − 1 = 0 for all i ∈ V,

∑
i

xij − 1 = 0 for all j ∈ V,

det(λI−X)− λN + 1 = 0,

where detA denotes the determinant of a matrix A, I is an N ×N identity
matrix, and X is the modified adjacency matrix , defined to be the adjacency
matrix with every non-zero (i, j)th entry replaced by the variable xij , for all
i, j ∈ V .

In Chapter 2, we discuss a few motivating numerical observations about
eigenvalues and determinants of subgraphs that lead to theoretical results
presented in the subsequent chapters.



Chapter 2

Intriguing Properties

2.1 Preliminaries and Notation

In this book, all graphs are connected and undirected, unless otherwise stated.
We follow the graph terminology and conventions from Harary [59], where the
reader can find an excellent introduction to graph theory. Consider a graph
G = (V (G), E(G)) = (V,E), where V is the set of vertices of G, |V | = N ,
and E is the set of edges of G. A graph with N vertices is said to be a graph
of order N . As the graph G is undirected, for every edge (i, j) ∈ E there
exists an opposite edge (j, i) ∈ E, where i �= j. A loop is an edge (i, i) joining
a vertex to itself. We do not consider multi-edges , which are distinct edges
that connect the same pair of vertices, and we use the terms edge and arc
interchangeably.

Subgraphs and Regularity Consider a graph G′, and let V (G′) be the
set of its vertices and E(G′) be the set of its edges. Then G′ is a subgraph
of G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). A subgraph G′ is a spanning sub-
graph if V (G′) = V (G). From now on, the term subgraph refers to a spanning
subgraph, unless otherwise stated. A vertex j is a neighbour of i, or vertex j
is adjacent to i, if there exists an edge between them, that is, (i, j) ∈ E(G).
A vertex v has a degree d if it has d neighbours, and we write deg(v) = d. A
graph is k-regular if every vertex i ∈ V has the same degree k, and a cubic
graph is a 3-regular graph.

Walks, Paths and Cycles A walk is a sequence of vertices (v0, v1, . . . , vn)
where each edge (vi, vi+1) ∈ E for i = 0, . . . , n−1. A walk is said to be closed
if v0 = vn, and open otherwise. A walk is a path if all vertices in the sequence
are distinct, that is, vi �= vj for all i �= j. A path is a cycle if it is closed. The
length of a walk, a path or a cycle is the number of edges on the walk, the
path or the cycle, respectively. The girth of a graph is the length of a shortest
cycle on the graph, excluding cycles of length two. On the other hand, the
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circumference of a graph is the length of a longest cycle on the graph. The
circumference of a Hamiltonian graph of order N is N , as any Hamiltonian
cycle is a longest cycle of the graph.

Example 2.1 We give examples of an open walk (Figure 2.1), an open path
(Figure 2.2) and a cycle (Figure 2.3).

4

1 2

3

Fig. 2.1: An open walk (1, 2, 3, 4, 2, 1, 4)

4

1 2

3

Fig. 2.2: An open path (1, 3, 2, 4)

4

1 2

3

Fig. 2.3: A cycle (1, 3, 2, 4, 1)

Adjacency Matrices The adjacency matrix A = [aij ] of a graph G has
elements

aij =

{
1 for (i, j) ∈ E,

0 otherwise.


