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PREFACE

Proteins do not act in isolation. They interact with lipids, nucleic acids, carbohydrates, 
small molecules and ions. And of course they interact with proteins—either like proteins 
(self-association/homo-oligomerization) or different proteins (heterologous association/
hetero-oligomerization). Protein-protein interactions lie at the heart of essentially all 
biological processes and large-scale efforts to map and characterize protein-protein 
interaction networks have formed a major research focus in the post-genomic era. This 
volume has a strong focus on homo-oligomerization, which is surprisingly common. 
However, protein function is so often linked to both homo- and hetero-oligomerization 
and many heterologous interactions likely evolved from homologous interaction, so this 
volume also covers many aspects of hetero-oligomerization. 

Chapter 1, by Matthews and Sunde, is a fairly general overview of protein dimerization 
and oligomerization, covering the prevalence of homodimers and higher-order oligomers 
of well characterized proteins, possible origins of self-association, and some of the many 
functional advantages conferred by homodimers and higher order oligomers. 

Traditionally, “dimerization” refers to the coming together of two similar subunits, 
but is often used more loosely to refer to any type of protein association—often because 
the stoichiometry of association is unknown. In Chapter 2, Gell, Grant and Mackay 
outline many of the key experimental approaches that can be used to detect protein-protein 
interactions and characterise the nature of protein dimerization and oligomerization. In 
Chapter 3, Jones describes what is known about protein association from analysis of 
structures, and how this information can be harnessed to predict and further analyze 
protein dimers and oligomers. 

Enzymes form one of the best characterised class of proteins, and one in which 
homo-oligomerization is particularly prevalent. In Chapter 4, Mackenzie and Clarke 
describe the caspase system, which provides many examples of the different ways in 
which enzyme activity can be regulated by protein oligomerization. In Chapter 5, Griffin 
and Gerrard focus on the relationships between oligomeric state and enzyme function, 
including engineering approaches in which manipulation of oligomeric state has been 
used to regulate function.
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Interactions between proteins and nucleic acids are essential to many aspects of cell 
function. In Chapter 6, Wilce, Vivian and Wilce provide a comprehensive overview of 
the contributions of protein dimer and oligomer formation to nucleic acid binding, while 
in Chapter 7, Funnell and Crossley focus on the roles that protein homo- and hetero-
oligomers play in the regulation of transcription.

Many membrane channel proteins form oligomers, and in Chapter 8, Clarke and 
Gulbis describe, using potassium channels as an example, the intimate relationships 
between oligomerization and ion channel function.

One interesting mode of protein oligomerization is domain swapping—the exchange 
of elements of structure between like subunits. In Chapter 9, Rousseau, Schymkowitz and 
Itzhaki explain the implications of domain swapping in for protein folding and function, 
and how the same phenomenon may be involved in misfolding events.

Finally, in Chapter 10, Itzhaki and Lowe provide an overview of repeat proteins, 
pseudo-multimeric proteins that keep their subunits firmly in place by effectively 
positioning subunits on the same polypeptide chain.

Jacqueline M. Matthews, PhD
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CHAPTER 1

DIMERS, OLIGOMERS, EVERYWHERE

Jacqueline M. Matthews*,1 and Margaret Sunde1,2

1School of Molecular Bioscience, University of Sydney, Sydney, Australia; 2Discipline of Pharmacology,  
University of Sydney, Sydney, Australia 
*Corresponding Author: Jacqueline M. Matthews—Email: jacqui.matthews@sydney.edu.au

Abstract: The specific self-association of proteins to form homodimers and higher order 
oligomers is an extremely common event in biological systems. In this chapter we 
review the prevalence of protein oligomerization and discuss the likely origins of this 
phenomenon. We also outline many of the functional advantages conferred by the 
dimerization or oligomerization of a wide range of different proteins and in a variety 
of biological roles, that are likely to have placed a selective pressure on biological 
systems to evolve and maintain homodimerization/oligomerization interfaces.

INTRODUCTION

Proteins rarely act alone. They commonly bind other biomolecules, including other proteins, 
to generate a biological response. A large percentage of proteins appear to self-associate to 
form dimers or higher-order oligomers. Dimerization and oligomerization can confer several 
different structural and functional advantages to proteins, including improved stability, 
regulation of activity and increased complexity.1 Here, we consider how the phenomenon 
of specific self-association of proteins may have arisen and why homodimerization and 
homo-oligomerization of proteins remain a common feature of biological systems.

THE PREVALENCE OF PROTEIN HOMODIMERS 

AND HOMO-OLIGOMERS

Many proteins self-associate to form homodimers or higher order homo-oligomers 
(e.g., Fig. 1).1 Anecdotally, self-association appears to be very common but it is often 

Protein Dimerization and Oligomerization in Biology, edited by Jacqueline M. Matthews. 
©2012 Landes Bioscience and Springer Science+Business Media.
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hard to quantify, partly because the stoichiometry of self-association for many proteins 
has not been characterized by robust biophysical methods, such as those outlined in 
the accompanying chapter by Gell, Grant and Mackay. Fortunately, however, several 
databases exist that are highly populated by very well characterized proteins, allowing 
us to gauge the prevalence of homodimers and higher order homo-oligomers.

The Brenda enzyme database (http://www.brenda.uni-koeln.de/) contains entries 
for tens of thousands of enzymes originating from all domains of life, about a third of 
which (�11,000 entries in July 2011) report a defined subunit composition. For this 
subset of enzymes, homodimers and higher order homo-oligomers by far outnumber 
monomers (Table 1). Not all entries have the same type of annotation so the absolute 
numbers vary according to how the search is carried out, but the proportions of 
monomer to dimer (and higher order oligomers) are all similar. Overall, monomers 
comprise about a quarter to a third of enzymes with a defined subunit composition and 
dimers plus higher order oligomers are at least twice as prevalent as monomers. Of 
these oligomers, dimers are most prevalent (36–38%) followed by tetramers (19%). 
Numbers of entries decrease rapidly as the oligomeric subunit number increases and 
enzymes with an odd number of subunits are less prevalent than those with an even 
number. Note that hetero-oligomers are a relatively poorly represented group. The 
database appears to be dominated by enzymes from bacterial species, but the proportions 
are similar for human enzymes, with the minor exception that dimers appear to be 

Figure 1. The Transthyretin (TTR):retinol binding protein (RBP) complex consists of a homotetramer 
and two heterodimers. The association of transthyretin monomers (coloured black and white) generates 
a homotetramer with a large central channel. The thyroid hormone thyroxine, represented as a black 
hexamer, binds within this channel. In addition, the tranthyretin tetramer forms a heterocomplex with 
two molecules of retinol binding protein (coloured in grey), which bind on either side of the tetramer. 
The binding site for retinol in each RBP molecule is indicated with a black line. (PDB 2WQA).
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particularly highly represented, apparently at the expense of higher order oligomers 
from tetramers upwards.

The Protein Data Bank (PDB) provides a compilation of highly characterized proteins 
from a much wider variety of different classes, although we note that these data are heavily 
biased towards soluble proteins and homomeric samples (e.g., note the relatively low 
number of protein hetero-oligomers; Table 2). Deposited structures are highly represented 
by monomers, but as at least as many proteins form dimers or higher order oligomers. 
Note that assignment of the biologically relevant oligomeric state from crystal structures 
is not trivial. It has been estimated that for 20% of dimers in the PDB the chance of 
misrepresentation is as high as 50%.2 Examination of the nature and size of interfaces in 
crystallized complexes will reflect only the enthalpic component of complex formation 
and not the entropy loss on formation of the complex. Although weak interactions may be 
manifest in highly concentrated crystallization conditions, they may also be displaced by 
crystal packing contacts that result in a more favorable global energy. Several automated 
analysis procedures have been developed to analyze the complexes observed in crystals but 
complementary noncrystallographic studies should always be used to support identification 
of biologically significant macromolecular complexes.

In addition to the databases that report highly characterized oligomers, high-throughput 
studies of protein-protein interaction networks from eukaryotic organisms indicate a 
statistical bias towards homo-oligomeric interactions; 25–200 times more homomeric 
interactions were identified than could be expected if homodimers and higher order 
homo-oligomers randomly appeared in the course of the evolution.3

Table 1. Subunit composition of enzymes

Enzymes From All Species Human Enzymes

Subunit 
Name1

Number of 
Like Subunits2

Subunit 
Name1

Number of 
Like  Subunits2

Monomer 4847 (25%) 3641 (33%) 419 (23%) 270 (35%)

Dimer 7553 (38%) 4000 (36%) 864 (47%) 351 (45%)

Trimer 880 (4%) 382 (3%) 95 (5%) 24 (3%)

Tetramer 3719 (19%) 2075 (19%) 290 (16%) 105 (13%)

Pentamer 88 (0.4%) 42 (0.4%) 2 (0.1%) 2 (0.3%)

Hexamer 845 (4%) 449 (4%) 50 (3%) 19 (2%)

Higher order oligomers 1162 (6%)3 415 (4%)4 55 (3%)3 10 (1%)4

Hetero 620 (3%) 67 (4%)

Total 19714 11004 1842 781

These numbers were generated through the “Search Subunits” module of the Brenda database in July 2011.
1. Subunit names as indicated were entered as the main search function. Note that this will capture 
both homo and heterooligomers, but heterooligomers appear to comprise a small proportion of entries.
2. The “Number of like subunits” is the output after entering “N *” (where N � 1 for monomer, 2 for 
dimer etc) in the Commentary window, which for many enzymes lists the number of copies of subunits. 
This search should exclude most hetero-oligomers, but will also exclude entries for which the subunit 
composition is not specified in this format (or at all in the Commentary window).
3. Subunit name: heptamer through to tetraeicosamer and poly.
4. Commentary window “N *” where N � 7–24,30,36,48,60.
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THE EVOLUTION OF PROTEIN DIMERS

Origins of Protein Self-Association

The tendency of many proteins to self-associate is a property well known to 
structural biologists. Indeed, for many proteins self-association is a major problem at the 
concentrations required for NMR spectroscopy, X-ray crystallography and techniques 
such as small angle scattering methodologies (e.g., ref. 4). Modeling of protein-like 
surfaces show they have a statistically higher affinity for self attraction compared with 
the propensity for attraction between different proteins.5 These statistical propensities are 
likely to produce self-self or similar interfaces of very low affinity, but it is reasonable to 
assume that any such interfaces that confer a functional advantage to an organism could 
evolve into higher affinity interfaces that mediate specific oligomer formation. Indeed, 
dimer interfaces have a high degree of conservation in evolutionarily related proteins.6

From Simple Homo-Oligomers to Complex Systems

In prokaryotes multi-protein complexes tend to have a simpler composition than 
in eukayotes. For example, the catalytic core units of proteasomes are made up of two 
rings of alpha and two rings of beta subunits, with each ring containing seven subunits. 
In bacteria and archaea there is a single type of alpha and a single type of beta subunit, 
but in eukaryotes there are seven different types each of alpha or beta subunits (Fig. 2).7,8 

Table 2. Subunit composition in protein structures. Searches specified only structures 
that contained proteins [Macomolecule Type: Contains Protein—Yes; other options—
Ignore]; and queried the [Number of Chains (Biological Assembly)] option such that 
monomer refers to 1, dimer to 2 etc. A 95% sequence identity cutoff was used to reduce 
the numbers of mutant proteins.

One Protein  
Entity Only1

Any Number  
of Protein Entities2

Monomer 14636 14689

Dimer or larger 16780 21098

Heterooligomers3 - 3569

Break down of nonmonomeric structures
Dimer 9219 10728

Trimer 2052 2561

Tetramer 3274 4151

Pentamer 133 266

Hexamer 1014 1339

Higher order oligomers4 1088 2053

1. [Number of Entities: Entity type—Protein; between 1 and 1 (column 1)].
2. [Number of Entities: Entity type—Protein; between 1 and 106 (column 2)].
3. For heterodimers [Number of Entities: Entity type—Protein; between 2 and 106]/The [Number of 
Chains (Biological Assembly): between 2 and 106 chains].
4. [Number of chains (Biological Entity): between 7 and 106 chains].
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Similarly, proteasome-associated AAA ATPases tend to be homo-hexamers in bacteria 
and archaea and hetero-hexamers in eukaryotes. Proteins that regulate gene expression in 
prokaryotes are often homodimers or oligomers, but in eukaryotes, processes that regulate 
gene expression appear to rely heavily on the formation of multiprotein complexes.9 
The expanded sizes of eukaryotic genomes compared to prokaryotic genomes appear to 
have been caused in part by genome duplication events. On an evolutionary timescale 
identical copies of genes gradually diverge in sequence and function to form paralogs 
and through additional genome duplication events become families of related proteins.10 
Thus, homodimeric proteins could evolve into so called “superfamily heterodimers”, 
families of related proteins that can form homomeric and/or heteromeric interactions with 
other family members. The homo- and heterodimerizing superfamilies include receptors, 
enzyme complexes, transcription factors and ion channels and are often functionally 
very important. Indeed, there is a positive correlation between the number of protein 
partners and importance to the viability of an organism,11 and large scale protein-protein 
interaction screening studies show that proteins that can form homo-oligomers are more 
likely to have an increased number of binding partners.3

Different combinations and permutations of subunits in complexes tend to have different 
activities, such as transcription factor complexes targeting different DNA sequences or 
recruiting different cofactors (see accompanying chapters on nucleic acid binding proteins by 
Wilce, Vivian and Wilce and transcription factors by Funnell and Crossley). The exchange 
of a single component can transform a transcription complex from one that activates to one 
that represses transcription. This ability to use transcription factors and other regulatory 

Figure 2. Comparison of the archael (Thermoplasma acidophilum) and yeast (Saccharomyces cerevisiae) 
20S proteosome structures. A) The core units of the archaeal proteosome consist of two rings of alpha (�) 
and two rings of beta (�) subunits, with each ring containing seven subunits (alpha and beta subunits 
coloured white and black, respectively). B) In eukaryotes there are seven different types of alpha and 
seven different types of beta subunits (coloured in different shades of grey). (PDB 3IPM and 3NZJ). 
Black dashed lines demarcate the two � rings.


