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Preface

The book is a summation of many years’ work on the study of general Beltrami
equations with singularities. This is not only a summary of our own long-term
collaboration but also with that of many other authors in the field. We show that our
geometric approach based on the modulus and capacity developed by us makes it
possible to derive the main known existence theorems, including sophisticated and
more general existence theorems that have been recently established.

The Beltrami equation plays a significant role in geometry, analysis, and
physics, and, in particular, in the theory of quasiconformal mappings and their
generalizations, Kleinian groups, and Teichmiiller spaces. There has been renewed
interest and activity in these areas and, in particular, in the study of degenerate and
alternating Beltrami equations since the early 1990s.

In this monograph, we restrict ourselves to the study of very basic properties of
solutions in the degenerate and in the alternating cases like existence, uniqueness,
distortion, boundary behavior, and mapping problems that can be derived by
extremal length methods. The monograph can serve as a textbook for a one- or
two-semester graduate course.

Donetsk, Ukraine Vladimir Gutlyanskii
Donetsk, Ukraine Vladimir Ryazanov
Haifa, Israel Uri Srebro

Holon, Israel Eduard Yakubov
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Chapter 1
Introduction

1.1 The Beltrami Equation

Let C be the complex plane. In the complex notation w = u +iv and z = x + iy, the
Beltrami equation in a domain D C C has the form

wz = U(z)wy, (B)

where 1 : D — C is a measurable function and
= 1 . 1 .
wz=dw= E(Wx +iwy) and w,=dw= 5 (wy —iwy)

are formal derivatives of w in 7 and z, while w, and wy are partial derivatives of
w in the variables x and y, respectively. For the geometric interpretation of u, see
Appendix A4.5.

In the real variables x,y,u, and v, (B) can be written in the form of the system

{ vy = Quy+ Puy B
—vy = Buy + yuy,

where o, 3, and y are given measurable functions in x and y; see, e.g., [263]. For
U1 =0, (B') reduces to the Cauchy-Riemann system, i.e., (B") with § =0 and o =
y=1.

This book is devoted mainly to the Beltrami (B). In addition to the theory of the
Beltrami (B), there is a theory of the Beltrami equation of the second kind

wz = V(z) Wz, (S)

with applications to many problems of mathematical physics; see, for instance,
[136]. The Beltrami equation of the second type also plays a significant role in the
theory of harmonic mappings in the plane; see, e.g., [59,201]. Hence, we give also

V. Gutlyanskii et al., The Beltrami Equation: A Geometric Approach, 1
Developments in Mathematics 26, DOI 10.1007/978-1-4614-3191-6_1,
© Springer Science+Business Media, LLC 2012



2 1 Introduction

some results on the Beltrami equation with two characteristics:
w: = W(z)-w: + v(2)-w:. (D
The existence problem for degenerate Beltrami (B) when

L@, .
e FE

is currently an active area of research; see, e.g., [26,48-50, 56, 57, 65, 66, 70, 76,
77,99, 117, 140, 147, 159, 160, 174, 212-214, 238, 254, 271]. The study of such
homeomorphisms started from the theory of the so-called mean quasiconformal
mappings; see, e.g., [5,41,94,95, 100, 133, 134, 138, 139, 141, 185, 187, 204, 206,
243,244,257,273,274], and related to the modern theory of mappings with finite
distortion; see, e.g., [25,42, 104, 105, 112-114, 116, 118, 125-130, 132, 155, 161-
165,181-183,192-195,207-209, 225].

Ku(z) : =

1.2 Historical Remarks

The system (B’) first appeared in [86] in connection with finding isothermal
coordinates on a surface. Local coordinates u and v on a given surface are called
isothermal if the curves u = const are orthogonal to the curves v = const or,
equivalently, if the length element ds is given by

ds® = A (u,v) (du® +dv?).

The transition from given local coordinates x and y to isothermal coordinates u and
v is an injective mapping (x,y) — (u,v) satisfying

a(x,y) dx? +2b(x,y) dxdy + c(x,y) dy? = A(du? +dv?), A >0,

where u and v are solutions of the Beltrami system (B') with

- \/LZ,y: \/LZ and A =ac—b>> Ay >0,

Gauss in [86] proved the existence and uniqueness of a solution in the case of
real analytic o, 3, and v, or, equivalently, when u is real-analytic. The equation
then appeared in the Beltrami studies on surface theory; see [32]. There is a
long list of names associated with proofs of existence and uniqueness theorems
for more general classes of p’s. Among them we mention A. Korn [124] and
L. Lichtenstein [154] (Holder continuous p’s, 1916) and M.A. Lavrent’ev [144]
(continuous u’s, 1935). C.B. Morrey [176] was the first to prove the existence and
uniqueness of a homeomorphic solution for a measurable u (1939). Morrey’s proof
was based on PDE methods. In the mid-1950s, L. Ahlfors [6], B. Bojarski [43,44],
and LN. Vekua [263] proved the existence in the measurable case by singular
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integral methods. L. Ahlfors and L. Bers [7] established the analytic dependence
of solutions on parameters; cf. the paper [44] and its English translation in [47], and
the corresponding discussion in the monograph [51].

1.3 Applications of Beltrami Equations

The Beltrami equation was first used in various areas such as differential geometry
on surfaces (see Sect. 1.2), hydrodynamics, and elasticity. Most applications of the
Beltrami equation are based on the close relation to quasiconformal (qc) mappings.
Plane qc mappings appeared already implicitly in the late 1920s in papers by
Grotzsch [97]. The relation between qc mappings and the Beltrami equation was
noticed by Ahlfors [4] and Lavrent’ev [144] in the 1930s. The significant connection
between the theory of the Beltrami equation and the theory of plane qc mappings
has stimulated intensive study and enriched both theories. Most notable is the
contribution of qc theory to the modern development of Teichmiiller spaces and
Kleinian groups.

The Beltrami equation turned out to be useful in the study of Riemann surfaces,
Teichmiiller spaces, Kleinian groups, meromorphic functions, low dimensional
topology, holomorphic motion, complex dynamics, Clifford analysis, control the-
ory, and robotics. The following list is only a partial list of references: [2,4-6,8-11,
22,23,26,27,33-38,45,60,72,78,80-82,90, 117, 135-137, 143,146, 151, 157,232,
242,245,246,263]. Part of the list consists of books and expository papers where
further references can be found. For the classical theory of the Beltrami equation
and plane qc mappings, we refer to [9,30,44, 152].

1.4 Classification of Beltrami Equations

We say that i is bounded in D if ||| < 1 and that y is locally bounded in D if u|A
is bounded whenever A is a relatively compact subdomain of D. The study of the
Beltrami equation is divided into three cases according to the nature of p(z) in D:

(1) The classical case: | ||| < 1.

(2) The degenerate case: ||1| < 1 almost everywhere (a.e.) and ||t]]. = 1.

(3) The alternating case: || < 1 a.e. in a part of D and 1/|u| < 1 a.e. in the
remaining part of D.

1.5 ACL Solutions

By writing f : D — C, we assume that D is a domain in C, which is an open
and connected set and that f is continuous. A mapping f : D — C is absolutely
continuous on lines (ACL), f € ACL, if for every rectangle R,R C D, whose sides are
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parallel to the coordinate axes, f is absolutely continuous on almost every horizontal
and almost every vertical line; see, e.g., [9] or [152]. A function f: D — Cis a
solution of (B), if f is ACL in D, and its ordinary partial derivatives, which exist a.e.
in D, satisfy (B) a.e. in D.

Some authors (cf. [99,116]) include in the definition of a solution the assumption
that f belongs to the Sobolev class Wl(l)’c1 and that (B) holds in the sense of

distributions. If f € Wlé’cl and f is continuous, then f € ACL, and the generalized
(distributional) partial derivatives coincide with the ordinary partial derivatives. In
general, an ACL function need not belong to Wkl)"cl. For some u’s, however, every

ACL solution is just a Vl/kl)’cl solution.

A solution f: D — C of (B) which is a homeomorphism of D into C is called a -
homeomorphism or lL-conformal mapping. In the above cases (1) and (2), a solution
f:D — C of (B) will be called elementary if f is open and discrete, meaning that
f maps every open set onto an open set and that the preimage of every point in
D consists of isolated points. Elementary solutions of (B) are also called by us u-
regular mappings.

If f: D — C is open and has partial derivatives a.e. in D, then by a result of
Gehring and Lehto (see [9, 91, 152]), see also with the earlier Menchoff result for
homeomorphisms in [172,255,256], f is differentiable a.e. in D. It thus follows that
every elementary solution is differentiable a.e.

Let f: D — C be an elementary solution. The complex dilatation of f is defined
by

Hr(2) = u(x) = 9f(2) /£ (), (15.1)
if df(z) # 0 and by u(z) = 0if df(z) = 0. For such a mapping, the dilatation is
_ @)

Ky(z) = Ku(2) (1.5.2)

= u@l

Note that Ky < e a.e. if and only if |u(z)| < I a.e., and that Ky € L™ if and only if
]l < 1.

1.6 Ellipticity of the Beltrami Equation

In the classical case (1) in Sect. 1.4, the system (B) is uniformly or, in a different
terminology, strongly elliptic, i.e.,

A=ay—B>> Ay >0, (1.6.1)

and in the relaxed classical case (2) in Sect. 1.5, (B) is elliptic, i.e.,

A=ay—B*>0. (1.6.2)



Chapter 2
Preliminaries

2.1 BMO Functions in C

The class BMO was introduced by John and Nirenberg in the paper [122] and soon
became an important concept in harmonic analysis, partial differential equations,
and related areas; see, e.g., [21,24,84,103,200] and [239].

A real-valued function u in a domain D in C is said to be of bounded mean
oscillation in D, u € BMO(D), if u € L] (D), and

loc

1
l|ul|« == sup—/|u(z) —up| dm(z) < oo, (2.1.1)
B |B|B

where the supremum is taken over all discs B in D, dm(z) corresponds to the
Lebesgue measure in C, |B] is the Lebesgue measure of B, and

1
s — EZM(Z) dm(2).

We write u € BMOjoc (D) if u € BMO(U) for every relatively compact subdomain
U of D (we also write BMO or BMO). if it is clear from the context what D is).

A function ¢ in BMO is said to have vanishing mean oscillation (abbreviated
as ¢ € VMO), if the supremum in (2.1.1) taken over all disks B in D with |B| < €
converges to 0 as € = 0. VMO was introduced by Sarason in [227]. A large number
of papers are devoted to the existence, uniqueness and properties of solutions
for various kinds of differential equations and, in particular, of elliptic type with
coefficients of the class VMO; see, e.g., [61,119, 166, 184, 190].

If u € BMO and c is a constant, then u + ¢ € BMO and |jull« = ||u+ c||«.
Obviously L™ C BMO.

John and Nirenberg [122] established the following fundamental fact (see
also [103]):

V. Gutlyanskii et al., The Beltrami Equation: A Geometric Approach, 5
Developments in Mathematics 26, DOI 10.1007/978-1-4614-3191-6_2,
© Springer Science+Business Media, LLC 2012



6 2 Preliminaries
Lemma 2.1. Ifu is a nonconstant function in BMO(D), then

__b
{z€B:|u(z) —up| >1}| <ae T=".|B| (2.1.2)

for every disc B in D and all t > 0, where a and b are absolute positive constants
which do not depend on B and u. Conversely, if u € LllOC and if for every disc B in D
and forallt >0

{z € B |u(z) —ug| > t}| < ae™"|B| (2.1.3)

for some positive constants a and b, then u € BMO(D).
We will need the following lemma which follows from Lemma 2.1:

Lemma 2.2. Ifu is a nonconstant function in BMO(D), then

{ze€B:|u(z)] > 1} <Ae P7.|B| (2.1.4)
for every disc B in D and all T > |ug|, where
B=b/||ul. and A =ae’"sl/lul (2.1.5)

and the constants a and b are as in Lemma 2.1.

Proof. For t > 0, let T =t + |ug|, D = {z € B: |u(z)| > t}, and D, =
{z € B : |u(z) —up| > t}. Then, by the triangle inequality, D; C D;, and hence,
by (2.1.2),

ID1| < |Dy| < aellusl/ Il . o=/ lull- ||

which implies (2.1.4) with A and 8 as in (2.1.5). O
Proposition 2.1. BMO C L! _forall p € [1,).

loc

Proof. Letu € BMO. Then by (2.1.4),
Ju(2)|Pdm(z) < |Bl{|up|” +A [ t”e’ﬁtdt} < oo, O
B |up]

Remark 2.1. Given a domain D, D C C, there is a nonnegative real-valued function
u in D such that u(z) < Q(z) a.e. for some Q(z) in BMO(D) and u ¢ BMO(D).
For D = C, one can take, for instance, Q(x,y) = 1+ |log|y|| and u(x,y) = O(x,y) if
y>0andu(x,y)=1ify <0.

2.2 BMO Functions in C

Later on, we will need also several facts about BMO functions on C and their
relations to BMO functions on C.
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We identify C with the unit sphere
S?={xcR¥:|x|=1}

and the functions on C with the functioni on S2. This is done with the aid of
the stereographic projection P of S> onto C which is given for (x;,x2,x3) € §2\
(0,0,1) by
X1 +1ixa

1—X3 '

7= P(x1,x2,x3) =

A real-valued measurable function « in a domain D C C is said to be in BMO(D),
if u is locally integrable with respect to the spherical area and

1
o =SUp—— [ |u—up|do < o, 2.2.1
o = sup Z ju—ugldo 2.0

where the supremum is taken over all spherical discs B in D. Here, 6(B) denotes
the spherical area of B, do = 4dx;dx,/(1 +x7 +x3)2, and

1 "
w= o5 / 1do. (22.2)
B

The following two lemmas enable one to decide whether a function « in a domain
D c C belongs to BMO(D) (in the spherical sense) by considering the restriction ug
of uto Dy = D\ {eo} (see [200], p. 7):

Lemma 2.3. u € BMO(D) if ug € BMO(Dy). Furthermore,
¢ Huoll+ < llullo < clluolls, (2.2.3)

where c is an absolute constant.
The following lemma is a consequence of Lemmas 2.2 and 2.3:

Lemma 2.4. Ifeither u € BMO(D) or uy € BMO(Dy), then for T > v,
o{zeB:|u(z)|> 1} <aeP* (2.2.4)

for every spherical disc B in D where the constants o, 3, and y depend on B as well
as on the function u.

Proof. 1If B € C, then by Lemma 2.3, we have (2.1.4), and since o(E) < 4|E| for
every measurable set E C C, (2.2.4) follows. If o € B, then for suitable rotation R of
82, oo is exterior to B/, B’ = R(B), and the assertion follows by Lemma 2.3 and the
validity of (2.2.4) with B’ and i = u o R~ ! instead of B and u. Now, in view of the
invariance of the spherical area with respect to rotations, by Lemmas 2.2 and 2.3,
we have again (2.2.4). O
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2.2.1 Removability of Isolated Singularities of BMO Functions

The following lemma holds for the BMO functions and cannot be extended to the
BMOj,, functions (see [200], p. 5):

Lemma 2.5. Let E be a discrete set in a domain D, D C C, and let u be a function
in BMO(D \ E). Then any extension i of u on D is in BMO(D) and ||u/|. = ||#]|.

2.2.2 BMO Functions, gc Mappings, qc Arc, and Symmetric
Extensions

We say that a Jordan curve E in C is a K-quasicircle if E = f(dA) for some
K-quasiconformal map f : C — C; see Sect.3.1 below. A curve E is a gc curve
if it is a subarc of a quasicircle. The following lemma is a special case of a theorem
by Reimann on the characterization of quasiconformal maps in R”, n > 2, in terms
of the induced isomorphism on BMO (see [199], p. 266):

Lemma 2.6. If f is a K-gc map of a domain D in C onto a domain D' and
u € BMO(D'), then v =uo f belongs to BMO(D), and

[Vl < ellull.

where c is a constant which depends only on K.
The next lemma can be found in [121].

Lemma 2.7. Let D be a Jordan curve such that dD is a K-quasicircle, and let u be
a BMO(D) function. Then u has an extension it on C which belongs to BMO(C)
and

1]l < el

where c depends only on K.

The following lemmas, which concern symmetric extensions of BMO functions,
will be needed in studying the reflection principle and boundary behavior of
the so-called BMO-quasiconformal and BMO-quasiregular mappings in Chap. 5.
It should be noted that these lemmas cannot be extended to BMO),. functions
(see [200], p. 8).

Lemma 2.8. If u € BMO(D) and i is an extension of u on C, which satisfies the
symmetry condition

oy u(z) if zeD,
(r) = {u<z/|z|2> if 2 C\D,

then i € BMO(C) and ||ul|« = |4
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Similarly, one can prove the following lemma:

Lemma 2.9. Let D be a domain in C, E a free boundary arc in dD which is either
a line segment or a circular arc, D* a domain which is symmetric to D with respect
to the corresponding line or circle such that DND* =0 and 2 = DUD*UE. If
u € BMO(D) and ii is an extension of u on Q which satisfies the symmetry condition

| ulz) ifzeD,
”(Z)_{u(z*) if z€ D",

then it € BMO(Q) and |||« = || u]|«

2.3 FMO Functions

Let D be a domain in the complex plane C. Following [112] and [113], we say that
a function ¢ : D — R has finite mean oscillation at a point zy € D if

dy(z0) = lim |9(z) — e (20)] dm(z) < oo, (2.3.1)

€=0 JB(z,e)

where

Pelz0) = ]i e ¢(z) dm(z) (2.3.2)

is the mean value of the function ¢(z) over the disk B(zg,€). Condition (2.3.1)
includes the assumption that ¢ is integrable in some neighborhood of the point zg.
We call dy(zo) the dispersion of the function ¢ at the point zo. We say also that a
function ¢ : D — R is of finite mean oscillation in D, abbreviated as ¢ € FMO(D)
or simply ¢ € FMO, if ¢ has a finite dispersion at every point z, € D.

Remark 2.2. Note that if a function ¢ : D — R is integrable over B(zp, &) C D, then
£ 100 =Bl dn(z) < 2-Felao), (233)
B(ZU!E)

and the left-hand side in (2.3.3) is continuous in the parameter € € (0, &) by the
absolute continuity of the indefinite integral. Thus, for every & € (0, &),

sup ][ |9(2) = Pg(20)] dm(z) < oo, (2.3.4)
e€[by,g] /B(20:€)

If (2.3.1) holds, then

swp o 19(2) = elao) dm(z) <. (235)
ec(0,8)] /B(z0:€)



10 2 Preliminaries

The value of the left-hand side of (2.3.5) is called the maximal dispersion of the
function ¢ in the disk B(zo, &)-

Proposition 2.2. If, for some collection of numbers ¢ € R, € € (0,&),

Tim |9(2) — @e| dm(z) <o, (2.3.6)

€0 JB(z,e)

then @ is of finite mean oscillation at 7.

Proof. Indeed, by the triangle inequality,

]i(zo,e) |9(2) — §p(z0)| dm(z) < ]i(ZOﬁ)I(P(z)—(pA dm(z) + |9 — P, (20)]

< z-][ 10(2) — @] dm(z). O
B(ZO!E)

Choosing in Proposition 2.2, in particular, ¢ = 0, € € (0, &), we obtain the
following:

Corollary 2.1. [f, for a point zy € D,

lim lo(2)| dm(z) < oo, (2.3.7)

€20 JB(z.¢)

then @ has finite mean oscillation at 7.

Recall that a point zg € D is called a Lebesgue point of a function ¢ : D — R if
¢ is integrable in a neighborhood of zp and

lim l¢(z) — ¢(20)| dm(z) = 0. (2.3.8)

€20 JB(z.€)

It is known that, for every function ¢ € L! (D), almost every point in D is a Lebesgue
point. We thus have the following corollary:

Corollary 2.2. Every function @ : D — R, which is locally integrable, has a finite
mean oscillation at almost every point in D.

Remark 2.3. Note that the function ¢(z) = log(1/|z|) belongs to BMO in the unit
disk A (see, e.g., [191], p. 5) and hence also to FMO. However, ¢, (0) — o as € — 0,
showing that condition (2.3.7) is only sufficient but not necessary for a function ¢
to be of finite mean oscillation at zg. Clearly, BMO(D) C BMOjoc(D) C FMO(D)
and BMO(D) # BMOj,.(D). Also, BMOjc(D) # FMO(D) as is clear from the
following examples.
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2.3.1 Examples of Functions ¢ € FMO\ BMO,,

Setzy=2"" 1, =2"P" p>1, cy=2"",D, = {z€C:|z—z4| <14}, and

oo

0(x) =, cnxp,(2),

n=1
where yg denotes the characteristic function of aset E, i.e.,

1, z€E,
0, otherwise.

260 = {

It is evident by Corollary 2.1 that ¢ € FMO(C\ {0}).
To prove that @ € FMO(0), fix N such that (p — 1)N > 1, and set € = gy =
av+ry.-ThenU,>y Dp C D(g):={z€C:|z] <€} and

/(P Z/(PZnZCnrﬁ
D(e) nszn n>N
_ 2 22(17[7);12 < Z 22(17]))11

n>N n>N

< C-RU=PIN2 < 2ce?,

Hence, ¢ € FMO(0) and, consequently, ¢ € FMO(C).
On the other hand,

/(p”zﬂZc%rﬁ: 21:00.

D(e) n>N n>N

Hence, ¢ ¢ L?(D(¢)), and therefore, ¢ ¢ BMOj,c by Proposition 2.1.

We conclude this section by constructing functions ¢ : C — R of the class
C(C\{0}) which belongs to FMO but not to L{ for any p > 1 and hence not
to BMOjq. In the following example, p = 1 4 ¢ with an arbitrarily small § > 0. Set

1
o(z) =4 e ifle <1, (2.3.9)
0, if |7 > 1.

Then @ belongs to Cj’ and hence to BMO),c. Consider the function

* (Pk(Z)a ifZEBka
_ 23.1
95(2) {o, if z€ C\UB, (2.3.10)
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where By = B(z,7¢), zx =27, rp =2 (110K ? §>0,and

on(z) = 2% g <Z;—Z"> ZEB, k=2.3,.... (2.3.11)
k
Then ¢j is smooth in C\ {0} and thus belongs to BMOj,c(C\ {0}) and hence to
FMO(C\ {0}).
Now,
/ oc(2) dm(z) = 2720 / o0(z) dm(z). (2.3.12)
C
Hence,
Tim @5(2) dm(z) < oo. (2.3.13)
£e—0 B(e)

Thus, ¢ € FMO by Corollary 2.1.
Indeed, by setting

1 1
K=K(e)= {logz E] <log, s (2.3.14)
where [A] denotes the integral part of the number A, we have

J= ][ 03(z) dm(z) <1y, 27208 /o 2K+ (2.3.15)
D(e)

where I = [ @(z) dm(z). If K6 > 1,i.e, K > 1/0, then

o - = /1\* 4
2725/(2 < 2*21{ — 272]{ — = — . 272K 23.16
kg;( - ,Z;( ,Zz) 4 3 7 | )
ie.,J <16I/3x.
On the other hand,
/(p1+5 ) dm(z /(p1+6 (2.3.17)

and hence @5 ¢ L'*3(U) for any neighborhood U of 0.
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2.4 On Sobolev’s Classes

We recall the necessary definitions and basic facts on LP, p € [1,o0], and the
Sobolev spaces W/? [ = 1,2,.... Given an open set U in R” and a positive integer
l C(l)(U ) denotes a collection of all functions ¢ : U — R with compact support
having all partial continuous derivatives of order at least / in U; ¢ € C5(U) if
@ € Ch(U) foralll =1,2,.... A vector & = (04,..., o) with natural coordinates is
called a multi-index. Every multi-index ¢ is associated with the differential operator
* = glol /ox]1 - x| where |t = 0 + -+ + Q.

Now, let u and v : U — R be locally integrable functions. The function v is called

the distributional derivative D%u of u if

/uD“(pdx:(—l)‘“‘ /v(pdx Y oeCyU), (2.4.1)
U U

where the notation dx corresponds to the Lebesgue measure in R”.

The concept of the generalized derivative was introduced by Sobolev in [231].
The Sobolev class WP (U) consists of all functions u : U — R in LP(U), p > 1,
with generalized derivatives of order / summable of order p. A functionu : U — R
belongs to Wléf (U) if u € WHP(U,) for every open set U, with compact closure
U, C U. A similar notion is introduced for vector functions f : U — R™ in the
componentwise sense.

A function @ : R" — R with a compact support in the unit ball B” is called a
Sobolev averaging kernel if @ is nonnegative and belongs to Cj' (R") and

/ o(x) dr = 1. (2.4.2)

The well-known example of such a function is @(x) = yo(|x|> — 1), where
@(t) =e'/" fort < 0 and @(r) = 0 for r > 0, and the constant ¥ is chosen so that
(2.4.2) holds. Later on, we use only @ depending on |x].

Let U be a nonempty bounded open subset of R” and f € L' (U). Extending f by
zero outside of U, we set

fi=@yxf = / flx+hy) o hn/f ( )dz, 2.43)

[y[<1

where f;, = @y, * f, @, (y) = @0 (y/h), h > 0, is called the Sobolev mean functions for
f-Itis known that f, € C5(R"), || fullp < || f|l, forevery f € LP(U), p € [1,e2], and
fn— fin LP(U) forevery f € LP(U), p € [1,00); see, e.g., 1.2.11in [170]. It is clear
that if f has a compact support in U, then f}, also has a compact support in U for
small enough 4.
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A sequence ¢y € L' (U) is called weakly fundamental if

lim [ @(x) (@, (x) — ¢, (x)) dx=0 VD e L”(U). (2.4.4)

khkz*)w

It is well known that the space L'(U) is weakly complete, i.e., every weakly
fundamental sequence ¢ € L'(U) weakly converges in L'(U), i.e., there is a
function in ¢ € L'(U) such that

k—yoo

lim [ ®(x) g(x) dv = / O() p() dx ¥ ® e L7(U); (2.4.5)
U U

see, e.g., Theorem I'V.8.6 in [73]:
Recall also the following statement (see, e.g., Theorem 1.2.5 in [110]).

Proposition 2.3. Let f and g € L} (U). If

[roa=[sodc Voecrw), (2.4.6)

then f =g a.e.

The following fact is known for the Sobolev classes WI’P(U), p > 1; see, e.g.,
Lemma II1.3.5 in [202], also Theorem 4.6.1 in [79]. Note that this fact for p = 2 was
known long ago in the plane for the so-called mappings with the bounded Dirichlet
integral; see, e.g., Theorem 1 in [247].

Lemma 2.10. Let U be a bounded open set in R" and let f; : U — R be a sequence
of functions of the class WP (U), p > 1. Suppose that the norm sequence || fi |1 is
bounded and fi — f ask— o in LY(U). Then f e W'P(U) and d fi,/dx; — 0 f | 9x;
as k — oo weakly in L (U).

Here we apply instead of Lemma 2.10, which is not valid for p = 1, the following

lemma; see, e.g., [222] or [220].

Lemma 2.11. Let U be a bounded open set in R" and let f, : U — R be a
sequence of functions of the class W' (U). Suppose that f, — f as k — oo weakly
in L"U), dfi/dxj, k=1,2,..., j = 1,2,...,n are uniformly bounded in L' (U)
and their indefinite integrals are absolutely equicontinuous. Then f € W' (U) and
dfi/dx; — df/dx; as k — e weakly in L'(U).

The proof of Lemma 2.11 is based on Proposition 2.3 and the above mentioned
criterion of weak convergence in the space L.

Remark 2.4. The weak convergence f; — f in L' (U) implies that

sup [[fill1 < oo
k
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see, e.g., IV.8.7 in [73]. The latter together with

sup 9 fi/dxjll1 < o=,

Jj=1,2,...,n, implies that f;y — f by the norm in L7 for every | < g <n/(n—1),
the limit function f belongs to BV (U), the class of functions of bounded variation,
but, generally speaking, not to the class W (U); see, e.g., Remark in 4.6 and
Theorem 5.2.1 in [79]. Thus, the additional condition of Lemma 2.11 on absolute
equicontinuity of the indefinite integrals of d f; /dx; is essential; cf. also Remark to
Theorem 1.2.4 in [197].

Proof of Lemma 2.11. Tt is known that the space L! is weakly complete; see Theorem
IV.8.6 in [73]. Thus, it suffices to prove that the sequences dfi/dx; are weakly
fundamental in L' (U).

Indeed, by the definition of generalized derivatives, we have that

/@()gf"dx— /fk ‘de VoeCyU). (2.4.7)
J j

Note that the integrals on the right-hand side in (2.4.7) are bounded linear
functionals in L' (U) and the sequence f; is weakly fundamental in L' (U) because
fi — f weakly in L' (U). Hence, in particular,

/(p(x) (%—af“)dx—m VoeCU)
U

8x.,- 8xj

as ky and ky — oo.

Now, let @ € L=(U). Then || @y |- < || ®||- and @}, — @ in the norm of L' (U) for
its Sobolev mean functions @y, and hence, @, — @ in measure as 7 — 0. Set ¢, =
@y, , where @, — @ a.e. as m — oo. Considering restrictions of @ to compacta in
U, we may assume that ¢,, € C;°(U). By the Egoroff theorem, ¢,, — @ uniformly
on aset S C U such that |[U \ S| < &, where 6 > 0 can be arbitrary small; see, e.g.,
II1.6.12 in [73]. Given € > 0, we have that

S/ (@(x) — Pu()) (%i—%i) dx

d
<2-max| ®(x) — - sup /‘ 9
xes k=12,.. 8x,

u|m

for all large enough m. Choosing one such m, we have that

' afkl asz £
U/(pM(X) (8_x,_ 8xj) dx | < 3




