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Preface

The concept of rainbow connection of a graph was first introduced by G. Chartrand,
G.L. Johns, K.A. McKeon and P. Zhang in 2006. Let G be a nontrivial connected
graph on which an edge-coloring c : E(G)→ {1,2, · · · ,n}, n ∈N, is defined, where
adjacent edges may be colored the same. A path is rainbow if no two edges of it
are colored the same. An edge-colored graph G is rainbow connected if every two
distinct vertices are connected by a rainbow path. An edge-coloring under which G
is rainbow connected is called a rainbow coloring. Clearly, if a graph is rainbow
connected, it must be connected. Conversely, every connected graph has a trivial
edge-coloring that makes it rainbow connected by coloring edges with distinct
colors. Thus, we define the rainbow connection number of a connected graph G,
denoted by rc(G), as the smallest number of colors that are needed in order to make
G rainbow connected. A rainbow coloring using rc(G) colors is called a minimum
rainbow coloring. Obviously, the rainbow connection number can be viewed as a
new kind of chromatic index.

The rainbow connection number is not only a natural combinatorial measure,
but it also has applications to the secure transfer of classified information between
agencies. In addition, the rainbow connection number can also be motivated by its
interesting interpretation in the area of networking. Suppose that G represents a
network (e.g., a cellular network). We wish to route messages between any two
vertices in a pipeline, and require that each link on the route between the vertices
(namely, each edge on the path) is assigned a distinct channel (e.g., a distinct
frequency). Clearly, we want to minimize the number of distinct channels that we
use in our network. This number is precisely rc(G).

There is a vertex version of the rainbow connection, called the rainbow vertex-
connection number rvc(G), which was introduced by M. Krivelevich and R. Yuster.
There are also the concepts of strong rainbow connection or rainbow diameter, the
rainbow connectivity, and the rainbow index. For details, we refer to Sect. 1.4 of
this book.

The rainbow connections of graphs are very new concepts. Recently, there has
been great interest in these concepts and a lot of results have been published. The
goal of this book is to bring together most of the results that deal with rainbow
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vi Preface

connections of graphs. We begin with an introductory chapter. In Chap. 2, we
address the computing complexity of the rainbow connections. In general, it is
NP-hard. Many upper bounds have been obtained in the literature, which appear
in Chap. 3. In Chaps. 4 and 5, dense and sparse graphs and some graph classes
are studied. Chapter 6 concerns graph products, such as the Cartesian product, the
direct product, the strong product, and the composition or lexicographic product
of graphs. Chapter 7 is on the rainbow connectivity, which actually includes the
rainbow k-connectivity, the k-rainbow index, and the (k, �)-rainbow index. In the
final chapter, results of the vertex version, the rainbow vertex-connection number,
are reported. In each chapter we list conjectures, open problems, or questions at
appropriate places. We hope that this can motivate more young graph theorists and
graduate students to do further study in this subject. We do not give proofs for
all results. Instead, we only select some of them for which we give their proofs
because we feel that these proofs employed some typical techniques, and these
proof techniques are popular in the study of rainbow connections. New results are
still appearing. There must be some or even many of them for which we have not
realized their existence, and therefore have not included them in this book.

The readers of the book are expected to have some background in graph
theory and some related knowledge in combinatorics, probability, algorithms, and
complexity analysis. All relevant notions from graph theory are properly defined in
Chap. 1, but also elsewhere where needed.

The anticipated readers of the book are mathematicians and students of mathe-
matics, whose fields of interest are graph theory, combinatorial optimization as well
as communication network design. Consequently, the present book will be found
suitable for courses in these fields. The exposition of the details of the proofs of
some main results will enable students to understand and eventually master a good
part of graph theory and combinatorial optimization.

People working on communication networks may also be interested in some
aspects of the book. They will find it useful for designing networks that can securely
transfer classified information.

The material presented in this book was used in graph theory seminars, held three
times at Nankai University, in 2009, 2010, and 2011. We thank all the members
of our group for their help in the preparation of this book. Without their help, we
would have not finished writing it in such a short period of time. We also thank the
Natural Science Foundation of China (NSFC) for financial support to our research
project on rainbow connections. Last, but not least, we are very grateful to the
editor for algebraic combinatorics and graph theory of this new series of books of
Springer Briefs, Professor Ping Zhang, for inviting us to write this book. Without
her encouragement, this book may not exist.

Xueliang Li and Yuefang Sun
Tianjin, China
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Chapter 1
Introduction

1.1 Basic Concepts

In this section, we want to collect most of the terminology and notations used in this
monograph. For those not given here, they will be defined when needed.

All graphs considered in this book are finite, simple, and undirected. We follow
the terminology and notations of [9] for all those not defined here. We use V (G)
and E(G) to denote the set of vertices and the set of edges of G, respectively. For
any subset X of V (G), let G[X ] denote the subgraph induced by X , and E[X ] the
edge set of G[X ]; similarly, for any subset F of E(G), let G[F ] denote the subgraph
induced by F . Let G be a set of graphs. Then we denote V (G ) =

⋃
G∈G V (G), and

E(G ) =
⋃

G∈G E(G), which is the union of all the graphs in G .
A clique of a graph G is defined as a complete subgraph of G, and a maximal

clique is a clique that is not contained in any larger clique of G. For a set S, |S|
denotes the cardinality of S. An edge in a connected graph is called a bridge if its
removal disconnects the graph. A graph with no bridges is called a bridgeless graph.
A path on n vertices is denoted by Pn, whose length is n− 1 and denoted by �(Pn).
A vertex is called pendant if its degree is 1. We call a path of G with length k a
pendant k-length path if one of its end vertex has degree 1 and all inner vertices
have degree 2 in G. By definition, a pendant k-length path contains a pendant �-
length path (1 ≤ � ≤ k). A pendant 1-length path is a pendant edge. We denote by
Cn a cycle on n vertices. For n ≥ 3, the wheel Wn is constructed by joining a new
vertex to every vertex of Cn. Let Ks,t be a complete bipartite graph whose sizes of two
parts are s, t, respectively. The line graph of a graph G is the graph L(G) (or L1(G))
whose vertex set V (L(G)) = E(G) and two vertices e1, e2 of L(G) are adjacent if
and only if they are adjacent in G. The iterated line graph of a graph G, denoted by
L2(G), is the line graph of the graph L(G). More generally, the k-iterated line graph
Lk(G) is the line graph of Lk−1(G) (k ≥ 2). An intersection graph of a family
F of sets is a graph whose vertices can be mapped to the sets in F such that
there is an edge between two vertices in the graph if and only if the corresponding
two sets in F have a nonempty intersection. An interval graph is an intersection
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2 1 Introduction

graph of intervals on the real line. A unit interval graph is an intersection graph
of unit length intervals on the real line. A circular arc graph is an intersection
graph of arcs on a circle. An independent triple of vertices x,y,z in a graph G is
an asteroidal triple (AT ) if between every pair of vertices in the triple, there is a
path that does not contain any neighbor of the third. A graph without ATs is called
an AT - f ree graph [25]. A graph G is a threshold graph if there exists a weight
function w : V (G) → R and a real constant t such that two vertices u,v ∈ V (G)
are adjacent if and only if w(u) +w(v) ≥ t. A bipartite graph G(A,B) is called a
chain graph if the vertices of A can be ordered as A = (a1,a2, · · · ,ak) such that
N(a1)⊆ N(a2)⊆ ·· · ⊆ N(ak) [96].

Let Γ be a group [88], and let a be an element of Γ. We use 〈a〉 to denote the cyclic
subgroup of Γ generated by a. The number of elements of 〈a〉 is called the order of
a, denoted by |a|. A pair of elements a and b in a group commutes if ab = ba. A
group is Abelian if every pair of its elements commutes. A Cayley graph of Γ with
respect to S is the graph C(Γ ,S) with vertex set Γ in which two vertices x and y are
adjacent if and only if xy−1 ∈ S (or equivalently, yx−1 ∈ S), where S ⊆ Γ \ {1} is
closed under taking inverse.

A k-regular graph G of order v is said to be strongly regular and denoted by
SRG(v,k,λ ,μ) if there are integers λ and μ such that every two adjacent vertices
have λ common neighbors and every two nonadjacent vertices have μ common
neighbors.

Let G be a connected graph. The distance between two vertices u and v in
G, denoted by d(u,v), is the length of a shortest path between them in G. The
eccentricity of a vertex v is ecc(v) := maxx∈V (G) d(v,x). The diameter of G is
diam(G) := maxx∈V (G) ecc(x). The radius of G is rad(G) := minx∈V (G) ecc(x).
Distance between a vertex v and a set S ⊆ V (G) is d(v,S) := minx∈S d(v,x). The
k-step open neighborhood of a set S ⊆ V (G) is Nk(S) := {x ∈ V (G)|d(x,S) = k},
k ∈ {0,1,2, · · ·}. A set D ⊆ V (G) is called a k-step dominating set of G if every
vertex in G is at a distance at most k from D. Further, if D induces a connected
subgraph of G, it is called a connected k-step dominating set of G. The cardinality
of a minimum connected k-step dominating set in G is called its connected k-step
domination number, denoted by γk

c (G). We call a two-step dominating set k-strong
[55] if every vertex that is not dominated by it has at least k neighbors that are
dominated by it. In [13], Chandran, Das, Rajendraprasad, and Varma made two new
definitions which will be useful in the sequel. A dominating set D in a graph G is
called a two-way dominating set if every pendant vertex of G is included in D. In
addition, if G[D] is connected, we call D a connected two-way dominating set.
A (connected) two-step dominating set D of vertices in a graph G is called a
(connected) two-way two-step dominating set if (1) every pendant vertex of G
is included in D and (2) every vertex in N2(D) has at least two neighbors in N1(D).
Note that if δ (G) ≥ 2, then every (connected) dominating set in G is a (connected)
two-way dominating set.

Let F be a subgraph of a graph G. An ear of F in G is a nontrivial path in G
whose ends are in F but whose internal vertices are not. A nested sequence of graphs
is a sequence (G0,G1, · · · ,Gk) of graphs such that Gi ⊂ Gi+1,0 ≤ i < k. An ear


