

Transportation and Traffic Theory 2009: Golden Jubilee

William H. K. Lam · S. C. Wong · Hong K. Lo
Editors

Transportation and Traffic Theory 2009: Golden Jubilee

Papers selected for presentation at ISTTT18,
a peer reviewed series since 1959

Editors

William H.K. Lam
Department of Civil and Structural
Engineering
The Hong Kong Polytechnic University
Hung Hom, Kowloon
Hong Kong SAR
cehklam@polyu.edu.hk

S.C. Wong
Department of Civil Engineering
The University of Hong Kong
Hong Kong SAR
hhecwsc@hkucc.hku.hk

Hong K. Lo
Department of Civil and
Environmental Engineering
The Hong Kong University of Science
and Technology
Clear Water Bay, Kowloon
Hong Kong SAR
cehklo@ust.hk

ISBN 978-1-4419-0819-3 e-ISBN 978-1-4419-0820-9
DOI 10.1007/978-1-4419-0820-9

Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2009930423

© Springer Science+Business Media, LLC 2009

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Contents

Preface	ix
Remembering Ryuichi Kitamura	xii
Organizers and Local Organizing Committee	xiv
Funding and Supporting Organizations	xv
International Advisory Committee, Founders and Honorary Members	xvi
Contributors	xix
1 A Game Theoretic Approach to the Determination of Hyperpaths in Transportation Networks <i>Jan-Dirk Schmöcker, Michael G.H. Bell, Fumitaka Kurauchi, Hiroshi Shimamoto</i>	1
2 Network Equilibrium under Cumulative Prospect Theory and Endogenous Stochastic Demand and Supply <i>Agachai Sumalee, Richard D. Connors, Paramet Luathep</i>	19
3 Estimation of Parameters of Network Equilibrium Models: A Maximum Likelihood Method and Statistical Properties of Network Flow <i>Shoichiro Nakayama, Richard D. Connors, David Watling</i>	39
4 Spatiotemporal Effects of Segregating Different Vehicle Classes on Separate Lanes <i>Michael J. Cassidy, Carlos F. Daganzo, Kitae Jang, Koohong Chung</i>	57
5 Microscopic Traffic Behaviour near Incidents <i>Victor L. Knoop, Henk J. van Zuylen, Serge P. Hoogendoorn</i>	75
6 Understanding Stop-and-go Traffic in View of Asymmetric Traffic Theory <i>Hwasoo Yeo, Alexander Skabardonis</i>	99
7 A Stochastic α -Reliable Mean-Excess Traffic Equilibrium Model with Probabilistic Travel Times and Perception Errors <i>Anthony Chen, Zhong Zhou</i>	117

8	Equilibrium Trip Scheduling in Congested Traffic under Uncertainty <i>Barbara W.Y. Siu, Hong K. Lo</i>	147
9	Reliable a Priori Shortest Path Problem with Limited Spatial and Temporal Dependencies <i>Yu (Marco) Nie, Xing Wu</i>	169
10	Risk Averse Second Best Toll Pricing <i>Xuegang (Jeff) Ban, Shu Lu, Michael Ferris, Henry X. Liu</i>	197
11	Cordon Pricing Consistent with the Physics of Overcrowding <i>Nikolas Geroliminis, David M. Levinson</i>	219
12	Build-operate-transfer Schemes for Road Franchising with Road Deterioration and Maintenance Effects <i>Zhijia Tan, Hai Yang, Xiaolei Guo</i>	241
13	Equilibria and Inefficiency in Traffic Networks with Stochastic Capacity and Information Provision <i>Tian-Liang Liu, Hai-Jun Huang, Hai Yang, Xiaolei Guo</i>	263
14	An Active-set Algorithm for Discrete Network Design Problems <i>Lihui Zhang, Siriphong Lawphongpanich, Yafeng Yin</i>	283
15	Multi-class Multi-modal Network Equilibrium with Regular Choice Behaviors: a General Fixed Point Approach <i>Meng Xu, Ziyou Gao</i>	301
16	Existence of Equilibrium in a Continuous Dynamic Queueing Model for Traffic Networks with Responsive Signal Control <i>Richard Mounce</i>	327
17	Harmonic Analysis and Optimization of Traffic Signal Systems <i>Nathan H. Gartner, Rahul Deshpande</i>	345
18	A Two-direction Method of Solving Variable Demand Equilibrium Models with and without Signal Control <i>Mike Smith</i>	365
19	Modeling Learning Impacts on Day-to-Day Travel Choice <i>Ozlem Yanmaz-Tuzel, Kaan Ozbay</i>	387

20	A Probit-based Joint Discrete-continuous Model System: Analyzing the Relationship between Timing and Duration of Maintenance Activities <i>Xin Ye, Ram M. Pendyala</i>	403
21	Bayesian Learning, Day-to-Day Adjustment Process, and Stability of Wardrop Equilibrium <i>Shoichiro Nakayama</i>	425
22	Hotspot Identification: A Full Bayesian Hierarchical Modeling Approach <i>H.L. Huang, H.C. Chin, M.M. Haque</i>	441
23	The Continuous Risk Profile Approach for the Identification of High Collision Concentration Locations on Congested Highways <i>Koohong Chung, David R. Ragland, Samer Madanat, Soon Mi Oh</i>	463
24	Driver Behavior, Dilemma Zone, and Capacity at Red Light Camera Equipped Intersections <i>Yohannes Weldegiorgis, Manoj K. Jha</i>	481
25	Optimization of a Bus and Rail Transit System with Feeder Bus Services under Different Market Regimes <i>Zhi-Chun Li, William H.K. Lam, S.C. Wong</i>	495
26	Modelling Dynamic Generation of a Choice Set in Pedestrian Networks <i>Takamasa Iryo, Yasuo Asakura, Ryota Onishi, Chiharu Samma</i>	517
27	A Common Modeling Framework for Dynamic Traffic Assignment and Supply Chain Management Systems with Congestion Phenomena <i>Georgios Kalafatas, Srinivas Peeta</i>	541
28	A Pedestrian Model Considering Anticipatory Behaviour for Capacity Evaluation <i>Miho Asano, Takamasa Iryo, Masao Kuwahara</i>	559
29	A Comparative Assessment of Stochastic Capacity Estimation Methods <i>Justin Geistefeldt, Werner Brilon</i>	583

30	Supply-demand Diagrams and a New Framework for Analyzing the Inhomogeneous Lighthill-Whitham-Richards Model <i>W.L. Jin, L. Chen, Elbridge Gerry Puckett</i>	603
31	Network Evaluation Based on Connectivity Vulnerability <i>Fumitaka Kurauchi, Nobuhiro Uno, Agachai Sumalee, Yumiko Seto</i>	637
32	Reliability-based Dynamic Discrete Network Design with Stochastic Networks <i>Hao Li, Michael C.J. Bliemer, Piet H.L. Bovy</i>	651
33	Flow Breakdown, Travel Reliability and Real-time Information in Route Choice Behavior <i>Jing Dong, Hani S. Mahmassani</i>	675
34	Optimal Sensor Placement for Freeway Travel Time Estimation <i>Xuegang (Jeff) Ban, Ryan Herring, J.D. Margulici, Alexandre M. Bayen</i>	697
35	Updating Dynamic Origin-destination Matrices using Observed Link Travel Speed by Probe Vehicles <i>Toshiyuki Yamamoto, Tomio Miwa, Tomonori Takeshita, Takayuki Morikawa</i>	723
	Previous Symposia and Proceedings	739

Preface

It is our great privilege and honor to present the proceedings of the 18th *International Symposium on Transportation and Traffic Theory* (ISTTT), held at The Hong Kong Polytechnic University in Hong Kong, China on 16-18 July 2009. The 18th ISTTT is jointly organized by the Hong Kong Society for Transportation Studies and Department of Civil and Structural Engineering of The Hong Kong Polytechnic University.

The ISTTT series is the main gathering for the world's transportation and traffic theorists, and those who are interested in contributing to or gaining a deep understanding of traffic and transportation phenomena in order to better plan, design and manage the transportation system. Although it embraces a wide range of topics, from traffic flow theories and demand modeling to road safety and logistics and supply chain modeling, the ISTTT is hallmarked by its intellectual innovation, research and development excellence in the treatment of real-world transportation and traffic problems. The ISTTT prides itself in the extremely high quality of its proceedings. Previous ISTTT conferences were held in Warren, Michigan (1959), London (1963), New York (1965), Karlsruhe (1968), Berkeley, California (1971), Sydney (1974), Kyoto (1977), Toronto (1981), Delft (1984), Cambridge, Massachusetts (1987), Yokohama (1990), Berkeley, California (1993), Lyon (1996), Jerusalem (1999), Adelaide (2002), College Park, Maryland (2005), and London (2007).

This 18th ISTTT celebrates the 50th Anniversary of this premier conference series. The first Symposium, organized by Professor Robert Herman, was held on 7-8 December 1959. A total of 15 papers were presented in the 1st Symposium. The scope of this Symposium series has since broadened, from the *Symposium on the Theory of Traffic Flow* to the *International Symposium on Transportation and Traffic Theory*. The ISTTT has also grown in size, but is still limited to around 35 papers. The rationale is, as was since the 1st Symposium, to allow ample time for presentation and informal discussion. Indeed, this time, in celebrating the 50th Anniversary of this tradition, we have arranged roundtable discussions to further enhance the interactions among researchers, scientists, and practitioners. We hope to have an opportunity to reminisce advances made in the past, and to outline important, uncharted territories. In reviewing the outline of the 1st Symposium, we were awed by the foresights of the researchers then, addressing research topics such as traffic control, distribution of traffic on a network and that of households and workplaces, clustering tendency of vehicular traffic, modeling traffic via stochastic processes, and simulation of bottlenecks, etc. These topics appear as fresh today as they were posed 50 years ago, despite much progress having been made. Transportation and traffic theories renew themselves as technology advances, as human activities are re-organized, and as scarce resources become gradually depleted, etc, representing our best effort at the time to understand and

hence manage the needs and consequences of connecting activities, goods, and people. From this vantage point, we are confident that the best years for ISTTT are yet to come in the future.

It is timely to organize the 18th ISTTT in Hong Kong, as the thrust of transportation infrastructure development has emerged strongly in Asia. Indeed, many parts of Asia are currently undertaking extensive transportation infrastructure programs. Hong Kong, for example, will initiate 10 major infrastructure projects with an investment of about HK\$250 billion (roughly US\$32 billion), in which 6 are transportation projects, including 4 railway and 2 highway infrastructure projects. These transportation infrastructures will bring about an economic benefit of more than HK\$100 billion (roughly US\$12 billion) annually, amounting to some 7% of the GDP of Hong Kong in 2006. This points to the imminent demand of high caliber transportation and traffic planners and engineers for the planning, design, management and operation of the transportation systems. The 18th ISTTT offers an excellent platform to elevate the role of transportation and traffic theories for transportation infrastructure planning and operations.

Special thanks are given to Members of the International Advisory Committee (IAC) and the local organizing committee for reviewing the extended abstracts and then full paper submissions, especially under the short review time requested of them. Our particular appreciation is extended to the referees who have contributed their considerable time and effort to the two-tier review process. With their dedicated support, each paper submission received at least three reviews, typically four to five, sometimes up to six reviews. Given the extremely high selectivity, we have tried our very best to ensure that each paper submission received a sufficient number of reviews to evaluate its merit. In reality, the tight constraint on the number of papers to be accepted for this Symposium have forced us to decline a number of very high quality submissions, which would be acceptable for publications in quality transportation journals. All in all, out of 230 extended abstract submissions, we have finally selected 35 papers to be included in this volume. We sincerely hope that this volume will serve as a vehicle to stimulate novel research initiatives in transportation and traffic theories.

As this volume was heading towards press, the news of Ryuichi Kitamura's untimely death on 19 February 2009 struck us with sadness and a profound sense of loss. A professor at Kyoto University, Ryuichi had given his unstinting support to ISTTT as a Member of the IAC. All of us who had the good fortune of having met him were often touched by his cheerfulness, kindness, and generosity. His positive attitude and warmth endured even when he was suffering from a long illness. We shall sorely miss his scholarship and friendship.

This commemorative Symposium volume is dedicated to researchers, scientists, and practitioners who have spent their career advancing the state-of-the-art in

transportation and traffic theories. We celebrate their accomplishments and honor the memory of those who are not with us today.

Finally, we express our gratitude to the organizations whose financial contribution has made it possible for us to host the 18th ISTTT in Hong Kong.

William H. K. Lam, S.C. Wong and Hong K. Lo

March 2009

Remembering Ryuichi Kitamura

On February 19, 2009, many of us were saddened to hear of Ryuichi Kitamura's passing. His close friends and colleagues had known for some time of his struggle with cancer, but had drawn hope from his appearances at conferences and occasional correspondence. He taught us a lot about how to be graceful in the face of adversity, as he remained his wonderful positive self until the end, and continued to write and conduct far-reaching research with his students and collaborators. He had hoped to attend the 18th ISTTT meeting in Hong Kong, but unfortunately it was not meant to be.

Ryuichi returned to Kyoto University, his alma mater, in 1993, as a Professor of Urban Management in the Faculty of Engineering, after a distinguished 15-year career on the faculty of the Department of Civil and Environmental Engineering at the University of California at Davis, where he was instrumental in founding the Institute for Transportation Studies (ITS). He received his BS in Civil Engineering and MS in Transportation in 1972 and 1974, respectively, from Kyoto University, and a PhD in Civil Engineering from the University of Michigan at Ann Arbor in 1978.

Through his research, teaching and professional service, Ryuichi played a key role in advancing the state of the art as well as state of practice in travel demand modeling and the dynamic analysis of transportation systems through micro-simulation of household travel and activity behaviour. He realized early on that travel demand does not occur for its own sake, but is part of a broader set of activities undertaken by individuals and households in fulfilling their various needs. He became a major force in the US and internationally in promoting greater behavioural realism in transportation models, leading the way towards comprehensive activity-based models of travel demand.

Ryuichi challenged conventional wisdom and brought a fresh perspective to nearly all topics on which he worked. He was a scholar, with a probing inquisitive mind, who subtly but firmly made you look at problems from a different angle. He was a keen observer of social trends, and among the first to recognize how they might impact travel and transportation. Telecommuting, changing gender roles, increased environmental awareness and shifting preferences are examples of phenomena he sought to understand and quantify in terms of transportation implications. Ryuichi was one of few researchers who had the methodological firepower to analyze these kinds of trends rigorously, ranging from novel survey methods to advanced econometric and psychometric techniques.

His quest for models based on sound behavioural theories was promoted through several disciples who studied under him at both Davis and Kyoto, and who went on to become influential scholars and practitioners in their own right. He helped

shape the field through his service as chair of the Traveller Behaviour and Values committee of the Transportation Research Board in the mid to late 1980's, a time of major advances in both research and practice. He served as President of the International Association of Travel Behaviour Research (IATBR) in 1992-94, and hosted its triennial meeting in Kyoto in 2006. In that same year, the IATBR recognized his contributions by awarding him the Lifetime Achievement Award.

Ryuichi was a member of the International Advisory Committee of the ISTTT, and had discussed with us his desire to host it in Kyoto at some future date. It is unfortunate he did not live to see this wish fulfilled. We will miss his thoughtful interventions and good humour, the depth of insight and breadth of perspective he brought to the ISTTT, and his warm, pleasant and congenial personality. I will miss a dear friend, who contributed so much to making what we do the exciting privilege it truly is.

Hani S. Mahmassani

March 2009

Organizers

Hong Kong Society for Transportation Studies

and

**Department of Civil and Structural Engineering,
The Hong Kong Polytechnic University**

Local Organizing Committee

William H.K. Lam (Chairman)	The Hong Kong Polytechnic University
S.C. Wong (Co-Chairman)	The University of Hong Kong
Hong K. Lo (Co-Chairman)	The Hong Kong University of Science and Technology
C.H. Cheng	The Chinese University of Hong Kong
Janny M.Y. Leung	The Chinese University of Hong Kong
Stephen C.H. Leung	City University of Hong Kong
H.P. Lo	City University of Hong Kong
Becky P.Y. Loo	The University of Hong Kong
Agachai Sumalee	The Hong Kong Polytechnic University
C.O. Tong	The University of Hong Kong
Hai Yang	The Hong Kong University of Science and Technology

Funding Organizations

Commerce and Economic Development Bureau, The Government of the Hong Kong Special Administrative Region

The Professional Services Development Assistance Scheme (PSDAS) (<http://www.cedb.gov.hk/citb/psdas>) is established by a Government allocation of HK\$100 million to provide financial support for projects which aim at increasing the competitiveness of Hong Kong's professional service sector as a whole, or of individual sectors, in external markets including the Mainland market.

Disclaimer: Any opinions, findings, conclusions or recommendations expressed in this material / any event organized under this Project do not reflect the views of The Government of the Hong Kong Special Administrative Region or the Vetting Committee for the Professional Services Development Assistance Scheme.

The Croucher Foundation

Founded in 1979 by the late Mr. Noel Croucher, one of the founders of the original Hong Kong Stock Exchange and who contributed to the development of Hong Kong for nearly seven decades, with the object to promote the standard of natural sciences, technology and medicine through education and research activities in Hong Kong. <http://www.croucher.org.hk/>

Faculty of Construction and Land Use, The Hong Kong Polytechnic University (FCLU)

FCLU (<http://www.polyu.edu.hk/fclu/>) is the biggest higher education provider of professional manpower for the Hong Kong construction industry. Virtually all aspects of construction from land surveying to transportation and infrastructure design, to actual construction and its management, to repair and refurbishment and to the operation and management of finished facilities are covered by the Faculty's programmes and its research activities.

Supporting Organizations

The Chartered Institute of Logistics and Transport in Hong Kong (CILTHK)
<http://www.cilt.org.hk/>

The Hong Kong Institution of Engineers, Civil Division
<http://www.hkie.org.hk/>

International Advisory Committee

Carlos F. Daganzo	University of California, U.S.A. (Convenor)
Michael G.H. Bell	Imperial College London, U.K.
Werner Brilon	Ruhr-University Bochum, Germany
Avishai (Avi) Ceder	Technion - Israel Institute of Technology, Israel
Nathan H. Gartner	University of Massachusetts Lowell, U.S.A.
Ben G. Heydecker	University College London, U.K.
Serge P. Hoogendoorn	Delft University of Technology, The Netherlands
Ryuichi Kitamura	Kyoto University, Japan
Reinhart Kühne	German Aerospace Center, Germany
Masao Kuwahara	University of Tokyo, Japan
William H.K. Lam	The Hong Kong Polytechnic University, Hong Kong
Jean-Baptiste Lesort	Institut National de Recherche sur les Transports et leur Sécurité, France
Hani S. Mahmassani	Northwestern University, U.S.A.
Valentin Silyanov	Moscow Automobile and Roads Institute (State Technical University), Russia
Michael Taylor	University of South Australia, Australia
Marian Tracz	Cracow University of Technology, Poland
S.C. Wirasinghe	University of Calgary, Canada

Founders

Martin Beckmann

Leslie Edie

Denos Gazis

Robert Herman

Wilhelm Leutzbach

Alan Miller

Gordon Newell

Renfrey Potts

Ilya Prigogine

Richard Rothery

Tsuna Sasaki

Reuben Smeed

John Tanner

John Wardrop

Honorary Members

Richard Allsop	U.K.	Convenor 1981-1996
Ezra Hauer	Canada	Convenor 1996-2002
Piet H.L. Bovy	The Netherlands	
Hartmut Keller	Germany	
Masaki Koshi	Japan	
Wilhelm Leutzbach	Germany	
Yasuji Makigami	Japan	
Hans-Georg Retzko	Germany	
Dennis Robertson	U.K.	
Sam Yagar	Canada	

Contributors

Yasuo Asakura	Kobe University Japan
Miho Asano	National Institute for Land and Infrastructure Management, Japan
Xuegang (Jeff) Ban	Rensselaer Polytechnic Institute U.S.A.
Alexandre M. Bayen	University of California U.S.A.
Michael G.H. Bell	Imperial College London U.K.
Michael C.J. Bliemer	Delft University of Technology The Netherlands
Piet H.L. Bovy	Delft University of Technology The Netherlands
Werner Brilon	Ruhr-University Bochum Germany
Michael J. Cassidy	University of California U.S.A.
Anthony Chen	Utah State University U.S.A.
L. Chen	University of Science and Technology of China China
H.C. Chin	National University of Singapore Singapore
Koohong Chung	California Department of Transportation U.S.A.
Richard D. Connors	University of Leeds U.K.
Carlos F. Daganzo	University of California U.S.A.
Rahul Deshpande	University of Massachusetts Lowell U.S.A.
Jing Dong	Northwestern University U.S.A.
Michael Ferris	University of Wisconsin-Madison U.S.A.
Ziyou Gao	Beijing Jiaotong University China
Nathan H. Gartner	University of Massachusetts Lowell U.S.A.
Justin Geistefeldt	Hessian Road and Traffic Authority Germany
Nikolas Geroliminis	University of Minnesota U.S.A.

Xiaolei Guo	The Hong Kong University of Science and Technology, Hong Kong
M.M. Haque	National University of Singapore Singapore
Ryan Herring	University of California U.S.A.
Serge P. Hoogendoorn	Delft University of Technology The Netherlands
Hai-Jun Huang	Beijing University of Aeronautics and Astronautics, China
H.L. Huang	University of Central Florida U.S.A.
Takamasa Iryo	Kobe University Japan
Kitae Jang	University of California U.S.A.
Manoj K. Jha	Morgan State University U.S.A.
W.L. Jin	University of California U.S.A.
Georgios Kalafatas	Purdue University U.S.A.
Victor L. Knoop	Delft University of Technology The Netherlands
Fumitaka Kurauchi	Gifu University Japan
Masao Kuwahara	The University of Tokyo Japan
William H.K. Lam	The Hong Kong Polytechnic University Hong Kong
Siriphong Lawphongpanich	University of Florida U.S.A.
David M. Levinson	University of Minnesota U.S.A.
Hao Li	Delft University of Technology The Netherlands
Zhi-Chun Li	The Hong Kong Polytechnic University, Hong Kong and Huazhong University of Science and Technology, China
Henry X. Liu	University of Minnesota U.S.A.
Tian-Liang Liu	Beijing University of Aeronautics and Astronautics, China
Hong K. Lo	The Hong Kong University of Science and Technology, Hong Kong

Shu Lu	University of North Carolina at Chapel Hill U.S.A.
Paramet Luathep	The Hong Kong Polytechnic University Hong Kong
Samer Madanat	University of California U.S.A.
Hani S. Mahmassani	Northwestern University U.S.A.
J.D. Margulici	University of California U.S.A.
Tomio Miwa	Nagoya University Japan
Takayuki Morikawa	Nagoya University Japan
Richard Mounce	Queen's University U.K.
Shoichiro Nakayama	Kanazawa University, Japan and University of Leeds, U.K.
Yu (Marco) Nie	Northwestern University U.S.A.
Soon Mi Oh	University of California U.S.A.
Ryota Onishi	Hankyu Railway Company Limited Japan
Kaan Ozbay	Rutgers University U.S.A.
Srinivas Peeta	Purdue University U.S.A.
Ram M. Pendyala	Arizona State University U.S.A.
Elbridge Gerry Puckett	University of California U.S.A.
David R. Ragland	University of California U.S.A.
Chiharu Samma	JCB Company Limited Japan
Jan-Dirk Schmöcker	Tokyo Institute of Technology Japan
Yumiko Seto	Kyoto University Japan
Hiroshi Shimamoto	Hiroshima University Japan
Barbara W.Y. Siu	The Hong Kong University of Science and Technology, Hong Kong
Alexander Skabardonis	University of California U.S.A.

Mike Smith	University of York U.K.
Agachai Sumalee	The Hong Kong Polytechnic University Hong Kong
Tomonori Takeshita	Shizuoka Prefecture Japan
Zhijia Tan	The Hong Kong University of Science and Technology, Hong Kong
Nobuhiro Uno	Kyoto University Japan
Henk J. van Zuylen	Delft University of Technology The Netherlands
David Watling	University of Leeds U.K.
Yohannes Weldegiorgis	Morgan State University U.S.A.
S.C. Wong	The University of Hong Kong Hong Kong
Xing Wu	Northwestern University U.S.A.
Meng Xu	Beijing Jiaotong University China
Toshiyuki Yamamoto	Nagoya University Japan
Hai Yang	The Hong Kong University of Science and Technology, Hong Kong
Ozlem Yanmaz-Tuzel	Rutgers University U.S.A.
Xin Ye	University of Maryland U.S.A.
Hwasoo Yeo	University of California U.S.A.
Yafeng Yin	University of Florida U.S.A.
Lihui Zhang	University of Florida U.S.A.
Zhong Zhou	Citilabs U.S.A.

Chapter 1

A Game Theoretic Approach to the Determination of Hyperpaths in Transportation Networks

Jan-Dirk Schmöcker, Tokyo Institute of Technology, Japan; Michael G.H. Bell, Imperial College London, U.K.; Fumitaka Kurauchi, Gifu University, Japan; Hiroshi Shimamoto, Hiroshima University, Japan

Abstract In transit assignment, the common lines problem leads to the notion of a hyperpath, which is a set of paths that when used according to the “take whichever attractive line arrives next” strategy minimises the expected travel time. Similarly, the game theoretic approach to risk-averse traffic assignment leads to the generation of a set of paths which minimises expected travel time when a pessimistic assumption is made about on-trip events. The equivalence between the hyperpath of transit assignment and the set of paths generated by a multi-agent, zero sum game is shown in this paper. In particular, game theory is used to show that the path split probabilities proposed by Spiess and Florian (1989) are optimal for the risk-averse traveller who needs to make an on-the-spot decision between alternative routes. An alternative two-agent (single demon), zero-sum game is considered. The results of the multiple- and two-agent games are compared on a small example network, showing that the single demon game can lead to denser hyperpaths.

1. Introduction

It is well known that route choice in transit networks differs from that in traffic networks. This is because passengers often face uncertainties at each boarding point along their paths. Unless a timetable is published and the trains arrive perfectly to schedule, passengers do not know how long they have to wait at boarding points, although they might know from experience how long they expect to wait.

The concept of the hyperpath, namely the set of paths any one of which may be the fastest depending on line arrival times, emanates from this problem (Spiess and Florian 1989; Nguyen and Pallottino 1988) and is associated with the concept of common lines. When arriving at a bus stop or a train station it is often the case that there are a number of attractive paths and the choice of which to take often depends on which line happens to arrive next. Under the “take whichever attractive line arrives next” rule, and assuming either that lines arrive randomly with given frequencies or that passengers arrive randomly (or both), it is possible to determine

which paths (and therefore which lines) minimise the expected travel time for the trip and are therefore attractive. The lines that are attractive at a given stop or station hence constitute the common lines referred to earlier.

This paper contributes to the on-going discussion of appropriate path choice models. Nökel and Weckeck (2007) review the assumptions made in frequency-based assignment models and point out shortcomings of existing models with regards to the role of available information to passengers at platforms. Kato et al. (2007) compared the appropriateness of various econometric and deterministic as well as stochastic equilibrium assignment models by applying these to Tokyo's rail and underground data. They found surprisingly little difference in the model fit, which might be due to the high reliability of Tokyo's network. Kato et al. (2007) ignored the common lines problem, which might in any case not be appropriate in networks where passengers do not feel the need to develop strategies to counter uncertainty in waiting times.

This paper returns to the basic Spiess and Florian model but replaces the link service frequency by a link-specific penalty which may be interpreted as the maximum link delay expected by the passenger, in order to highlight the link to game theory. It will be shown that a risk-averse transit user who follows the path choice probabilities as proposed in Spiess and Florian (1989) minimises his maximum expected travel time to his destination. Therefore, the Spiess and Florian algorithm provides optimal risk-averse node split probabilities which can also be applied to road networks, as proposed by Bell (2008) in the hyperstar algorithm.

The remainder of this paper is organised as follows. Section 2 reviews the main idea of the Spiess and Florian hyperpath as well as criticism it has attracted recently in Nökel and Weckeck (2007) that lead to the formulation of more complex choice models. In Section 3 the idea of constructing path sets through game theory as proposed by several authors is reviewed. In Section 4 the notation is introduced and in Section 5 it is shown that the node split probabilities in Spiess and Florian can also be derived through game theory. Section 6 then shows the equivalence of the Spiess and Florian linear programming formulation and a zero-sum, multi-agent game. Section 7 presents an alternative two-agent (single demon), zero-sum game that has been discussed in the existing literature, in particular for the hazardous material transportation problem (see Bell 2007). Section 8 illustrates the results numerically, and Section 9 concludes the paper.

2. Transit Choice Models for Different Assumptions

If passengers only have information about the service frequency, the common lines problem arises whereby, as stated in Spiess and Florian (1989), passengers board the first line to arrive among a set of attractive lines at a boarding node i , designated by A_i^+ . This means that the waiting times at nodes and the node split probabilities can be calculated as in equations (1) and (2) where f_a are the link service

frequencies (the links are line specific) and α is a parameter indicating the line regularity with $\alpha = 1$ describing exponential headway distribution.

$$w(A_i^+) = \frac{\alpha}{\sum_{a \in A_i^+} f_a}, \quad (1)$$

$$p_a(A_i^+) = \frac{f_a}{\sum_{a \in A_i^+} f_a}. \quad (2)$$

A non-trivial task is to find the optimal strategy, namely the set of paths which are used when expected journey time is minimised. Spiess and Florian presented the problem as a linear program where the objective is to find the strategy that minimises the sum of the expected total travel time including waiting time for flow from all origins to a specified destination. The resulting strategy defines a set of potentially optimal paths, referred to by Nguyen and Pallottino (1988) as a hyperpath.

The Spiess and Florian approach is, however, only correct if a number of assumptions about the transit service are made (see, in particular Billi et al. 2004; Gentile et al. 2005 and Nökel and Wekeck 2007). The latter paper points out three practical considerations that lead to more complex route choice models. Firstly, the service regularity might vary significantly between subsequent arrivals leading to choice sets more biased to a particular line. Equation (1) makes the strong assumption that the intervals between all services of all attractive lines serving the stop are equal on average, i.e. if two lines with the same frequency are part of the choice set, the expected waiting time is simply halved. Secondly, passengers often have more information than the service frequency alone. In many cities, countdown clocks have been installed telling passengers when to expect the next arrival of a number of lines. Thirdly, the structure of the choice set depends on the layout of the platforms or the fare system. If transit stops at the same station are not close together passengers may have to make a choice of line before the arrival of any transit line that could be in their set of attractive lines. Similarly, complex fare structures often lead to a much reduced attractive set of lines the passengers might take.

To cope with some of these assumptions, Gentile et al. (2005) developed a more general formulation that considers different regularity assumptions on the headways. Billi et al. (2004) considered the dynamically changing choice of the best line when passengers can observe elapsed waiting time on all lines and can assume that departures are regular. Nökel and Wekeck (2007) summarise these cases and look at further cases, such as the difference in choice probabilities when passengers can observe only one line (instead of all lines departing from the transit stop).

3. Path Choice and Game Theory

The idea that a split between multiple paths can minimise the maximum expected travel cost in the presence of scenario uncertainty has also been applied in other contexts. In particular, “risk-averse assignment” leads to the creation of a number of paths. In this case, a set of paths are created to reduce the exposure to potential loss or delay. To minimise the maximum travel cost, a zero-sum game is played between a rational traveller and a “demon”, to emphasise that the game can be understood as a search for worst case scenarios. By employing a mixed routing strategy, the traveller can then minimise his maximum exposure to cost.

This game notion was first introduced by Bell (2000) as a two player game, noting that such a pessimistic game might be used as a benchmark to assess network reliability and to find critical links in the network. The game notion has then been applied and extended in several ways: Cassir and Bell (2000) introduce a game between one network tester and n heterogeneous players. Cassir et al. (2003) test the approach on a larger network and introduce a “tree spoiler” to find the reliability of particular origins or destinations. Bell (2007) applies the game approach to the transportation of hazardous materials and shows some interesting properties of the game, for example that the overall expected cost of the solution is equal to the route cost plus the maximum exposure on any link. Nagae and Akamatsu (2007) introduce entropy terms to the objective function to uniquely define link choice and link attack probabilities, leading to a logit function for the path choice as well as for the attack probabilities. This allows one to compare various degrees of risk aversion as well as degrees of sensitivity to path cost (although there are theoretical objections to using the logit model for path choice). Bell et al. (2008) focus on the logit formulation of the attack probabilities.

Szeto et al. (2007) note that this line of work so far has only considered the failure of a single link. They introduce therefore multiple spoilers in the network, each of which can independently fail one link each. The game is formulated as a non-linear complementary problem and solved by minimising the resulting gap function. Different scenarios are tested and in particular it is shown that multiple solutions exist.

The games described above have been envisaged to be primarily applicable for road traffic scenarios. The following will investigate the connection between “risk averse path sets” created through a game analogy and the Spiess and Florian hyperpath created to describe the behaviour of public transport passengers who aim to minimise their expected travel times. It will be shown that the Spiess and Florian hyperpath is equivalent to a particular type of a zero-sum game.

4. Notation

Define the following sets and variables:

A	Set of all links
I	Set of all nodes
H	Set of links contained in the hyperpath from origin r to destination s
g_k	Expected travel time on path from node i to destination s when link k is attacked
A^+_i	Set of links emanating from node i
A^-_i	Set of links leading into node i
λ_i	Expected cost to reach destination s from node i (node potential)
w_i	Exposure to maximum delay at node i
f_a	Service frequency on link a
d_a	Penalty on link a ($= 1 / f_a$)
q_a	Probability penalty d_a occurs on link a
p_a	Probability link a is used
c_a	Undelayed travel time on link a
u_a	Undelayed travel time on link a plus expected travel time from the downstream node of link a to destination s

A hyperpath is in the following defined as a set of paths any of which has a non-zero probability of being taken by the traveller. It follows therefore that $p_a > 0 \forall a \in H$. Further, it should be noted that throughout the paper congestion effects are not considered. This means that it is assumed that the service frequency f_a (and hence also d_a) as well as the link travel times c_a are assumed to be independent of p_a .

5. Risk-averse Path Choice at a Node

Spiess and Florian (1989) proposed the path split probabilities in equation (2), where the choice of a line is equivalent to the frequency of the line divided by the sum of the frequencies of all the attractive lines emanating from the same node. The following proof shows that the same path split probabilities are also following from a game theoretic formulation. This means that under two different sets of assumptions the same path split probabilities can be derived. The traveller in Spiess in Florian aims to minimise expected travel times under the assumption that the service has exponential headways. Contrary to this, the traveller considered in the game described in this paper considers a link-specific maximum delay.

Proposition 1 The risk-averse traveller, who fears a maximum delay of d_a on any one link emanating from a node should use the split probabilities as in equation (2) for all attractive links, independent of the travel time on any downstream link c_a .

Proof Following the above definition on one link maximum delay might occur which can be expressed as a game between the traveller with arc choice probabilities p_a and a demon with arc attack probabilities q_a . For the choice of n links from a node this can be written as a pay-off matrix as in Table 1. The rows indicate the links in the set of optimal paths and the columns the attack probabilities. In choosing a link, the link specific cost u_a , which consists of the arc cost c_a plus the node cost of the tailnode, j , where $a = (i, j)$, is considered.

$$u_a = c_a + \lambda_j. \quad (3)$$

Attacked links suffer an additional (maximum) delay of d_a . Writing this as a pay-off table means that only in the main diagonal the link specific maximum delay is added to the costs. It is supposed here that there are n links out of node i , of which k are used.

Table 1. Game pay-off matrix at a node

	q_1	q_2	...	q_k	...	q_n
p_1	$u_1 + d_1$	u_1	...	u_1	...	u_1
p_2	u_2	$u_2 + d_2$...	u_2	...	u_2
...
p_k	u_k	u_k	...	$u_k + d_k$...	u_k
...
p_n	u_n	u_n	...	u_n	...	$u_n + d_n$

The traveller employs a mixed strategy in order to reduce the probability of encountering a large link delay, and the demon might choose a strategy that maximizes the expected cost. Wlog assume that the traveller only includes the first k links emanating from the node in his or her choice set, i.e. $p_a > 0 \forall a = 1, \dots, k$ and $p_a = 0 \forall a = k+1, \dots, n$. Note that Proposition 3 in the following shows that the set of arcs used by the demon is a subset of set of arcs used by the traveller, i.e. $q_a \geq 0 \forall a = 1, \dots, k$ and $q_a = 0 \forall a = k+1, \dots, n$. The costs encountered by the traveller are $\sum_{a \in A_i^+} u_a p_a + q_a p_a d_a$ and the corresponding optimisation problem for this zero-sum game can hence be written as:

$$\text{Min}_p \text{Max}_q \sum_{a \in A_i^+} u_a p_a + q_a p_a d_a, \forall i \in I. \quad (4)$$

The traveller's problem is hence to choose a (mixed) strategy \mathbf{p} that minimizes his or her expected (or rather feared) cost of travel λ_i from origin i to destination s . This can be written as follows:

Min λ_i so that

$$\begin{array}{llllll} p_1(u_1 + d_1) & + p_2 u_2 & + \dots & + p_k u_k & = g_1 & \leq \lambda_i \\ p_1 u_1 & + p_2(u_2 + d_2) & + \dots & + p_k u_k & = g_2 & \leq \lambda_i \\ \dots & + \dots & + \dots & + \dots & = \dots & \leq \lambda_i \\ p_1 u_1 & + p_2 u_2 & + \dots & + p_k(u_k + d_k) & = g_k & \leq \lambda_i \end{array} \quad (5)$$

$$p_1 + p_2 + \dots + p_k = 1, \quad (6)$$

$$p_i > 0 \forall i = 1, \dots, k. \quad (7)$$

Following the expected value principle at the saddle point the costs of all used strategies will be equal, i.e. $g_1 = g_2 = \dots = g_k = \lambda_i$ where λ_i is the expected game value of the saddle point.

Wlog solving the above set of linear equations for p_l leads to

$$p_a = p_l (d_l/d_a) \quad \forall a=2, \dots, k, \quad (8)$$

and with (6) this leads to

$$p_l + p_l (d_l/d_2) + p_l (d_l/d_3) + \dots + p_l (d_l/d_k) = 1, \quad (9)$$

Solving for p_l leads to

$$p_l = \frac{\frac{1}{d_l}}{\sum_{a=1, \dots, k} \frac{1}{d_a}}, \quad (10)$$

with $f_a = 1/d_a$ this is therefore equivalent to the path split proposed in equation (2). Q.E.D.

In particular it should be noted that the path split probabilities are independent of any delay occurrence probability, q_a , at the node as well as of any link costs c_a . Further note that by inserting equation (2) in any of the equations (5) one can derive the expected game value as in equation (11) which is also equivalent to the expected travel time in Spiess and Florian.

$$\lambda_i = (u_1 + \frac{1}{f_1} \sum_{a=1}^k f_a) + u_2 \frac{f_2}{\sum_{a=1}^k f_a} + \dots + u_k \frac{f_k}{\sum_{a=1}^k f_a} = \frac{1 + \sum_{a=1}^k f_a u_a}{\sum_{a=1}^k f_a}. \quad (11)$$

In the same way as for the path split probabilities, at the Nash equilibrium solution for all non-dominated attack strategies the following set of equations must hold:

Max λ_i so that

$$\begin{aligned} q_1(u_1 + d_1) + q_2u_1 + \dots + q_ku_l &= g_1 \geq \lambda_i \\ q_1u_1 + q_2(u_2 + d_2) + \dots + q_ku_2 &= g_2 \geq \lambda_i \\ \dots &= \dots \geq \lambda_i \\ q_1u_k + q_2u_k + \dots + q_k(u_l + d_l) &= g_k \geq \lambda_i \end{aligned} \quad (12)$$

$$q_1 + q_2 + \dots + q_k = 1, \quad (13)$$

$$q_i \geq 0 \quad \forall i = 1, \dots, k, \quad (14)$$

with equation (13) and applying the saddle point theorem it follows:

$$u_a(q_1 + q_2 + \dots + q_l) + d_a q_a = u_a + d_a q_a = \lambda_i, \quad \forall a = 1, \dots, l, \quad (15)$$

with λ_i as determined in equation (11) or solving equation (10) with equation (16) it follows therefore that:

$$q_a = f_a(\lambda_i - u_a) = f_a \left(\frac{1 + \sum_{a'=1}^k f_a u_{a'}}{\sum_{a'=1}^k f_{a'}} - u_a \right) = \frac{f_a + f_a \sum_{a'=1}^k f_{a'}(u_{a'} - u_a)}{\sum_{a'=1}^k f_{a'}}. \quad (16)$$

Hence with equation (16) the optimal attack probabilities at each node can be identified, giving a useful measure of the importance of the link to the expected travel time to the destination. The higher q_a the more the traveller fears any delay on this link. $q_a = 0$ means that even if the link is attacked the traveller has sufficient rerouting options so that a failure does not increase the expected travel time.

Proposition 2 Any arc $a = (i, j)$ with an undelayed travel time that reduces the node cost λ_i is part of the optimal hyperpath. In other words any arc that potentially reduces the node costs will be considered independent of its potential delay.

Proof For simplicity of notation, subscript i is omitted in the following from λ and λ' . Let λ' denote the node cost if arcs $1, \dots, k, k+1$ are included in the traveller's strategy and λ denotes the node cost if only arcs $1, \dots, k$ are considered. With equation (9) it follows that:

$$\begin{aligned}
 \lambda' < \lambda &\Leftrightarrow \frac{1 + \sum_{a=1}^k f_a u_a + f_{k+1} u_{k+1}}{\sum_{a=1}^k f_a + f_{k+1}} < \frac{1 + \sum_{a=1}^k f_a u_a}{\sum_{a=1}^k f_a} \\
 &\Leftrightarrow \sum_{a=1}^k f_a \left(1 + \sum_{a=1}^k f_a u_a + f_{k+1} u_{k+1} \right) < \left(1 + \sum_{a=1}^k f_a u_a \right) \left(\sum_{a=1}^k f_a + f_{k+1} \right) \quad (17) \\
 &\Leftrightarrow f_{k+1} u_{k+1} < \frac{1 + \sum_{a=1}^k f_a u_a}{\sum_{a=1}^k f_a} f_{k+1} = \lambda f_{k+1} \\
 &\Leftrightarrow u_{k+1} < \lambda
 \end{aligned}$$

Hence if $u_{k+1} < \lambda$ then λ can be reduced by the inclusion of link $k+1$ in the hyperpath. Q.E.D.

Note that the following complementary Proposition 2a also follows from the proof of Proposition 2. Alternatively the proof below leads to the same conclusion.

Proposition 2a An arc $a = (i, j)$ is not included in H if it does not reduce the expected travel time. In other words if $u_a \geq u_{a'} + d_a q_{a'} = \lambda_i$ for any arc $a' \in H$ with $a, a' \in A_i^+$ it follows that $p_a = 0$.

Proof Let us assume that arc 1 and arc 2 are part of the hyperpath but that $u_1 = u_2 + d_2 q_2$. The demon strategy will be to maximise the saddle point value of the game, hence to maximise the set of equations (10). It follows

$$q_1(u_2 + q_2 d_2 + d_1) + q_2(u_2 + q_2 d_2) + q_3(u_2 + q_2 d_2) + \dots + q_n(u_2 + q_2 d_2) = g_1, \quad (18)$$

$$q_1(u_2) + q_2 u_2 + q_3 u_2 + \dots + q_n u_2 = g_2. \quad (19)$$

with $a_1, a_2 \in H$ it follows that $g_1 = g_2$. With $d_1, d_2, u_2 > 0$ it follows further that independent of any demon strategy the expected cost of using arc 1 is always at least as high as using arc 2 and therefore $p_1 = 0$, so $a_1 \notin H$ which is a contradiction. Q.E.D.

The following proposition shows that the demon will focus the resources on any links that are part of the hyperpath.

Proposition 3 For $a, a' \in A_i^+$ and $a \notin H$ but $a' \in H$, $q_a = 0$.

Proof The demon problem is to $\text{Max}_q \sum_{a \in A_i^+} u_a p_a + q_a p_a d_a$ for any set of arc flows

p. From the definition of hyperpaths it follows that $p_{a'} > 0$ and that $p_a = 0$. Since the traveller only considers one incident to occur at this node $\sum_{a \in A_i^+} q_a$ is limited to 1

which means that from $q_a = 0 + \delta$ with $\delta > 0$ it follows that $q_{a'} \leq 1 - \delta$. This clearly cannot be optimal as increasing $q_{a'}$ by δ and reducing q_a by δ to $q_a = 0$ leads to an increase in the objective function by $\delta d_a p_{a'}$. Q.E.D.

Note that in equation (3) the cost u_a of any arc $a = (i, s)$ equals c_a . Therefore for any penultimate node $s-1$ the optimal node cost at the saddle point equation (11) can be uniquely determined as λ_{s-1} . This is only depending on the fixed costs d_a and c_a of the links emanating from $s-1$ that are part of the attractive path set. In particular note that the node costs are independent of any upstream path choice and attack probabilities once the attractive path set has been identified. Similarly note that from equation (4) it follows that:

$$\begin{aligned} \lambda_i &= \sum_{a \in A_i^+} ((c_a + \lambda_j) p_a + q_a p_a d_a) \\ &= \sum_{a \in A_i^+} (c_a + q_a d_a) p_a + \sum_{a=(i,j) \in A_i^+} p_a \lambda_j. \end{aligned} \quad (20)$$

This means that the cost from node i to the destination node s is the sum of the average cost for all links emanating from node i (1st term) plus the weighted cost from the downstream nodes j to the destinations.

This observation means that a Dijkstra-type algorithm can be applied to determine the optimal hyperpath in which each link is only visited once in increasing cost order from the destination. Whenever a new arc is found which decreases the node costs equation (9), the path split probabilities equation (8) and the attack probabilities equation (14) are updated until all arcs have been visited. The following section provides the linear programming formulation of the path choice problem with the arc split probabilities established in this section. Nguyen and Pallottino (1988) show that for this problem indeed a Dijkstra-type algorithm can find the solution.

6. Spiess and Florian (1989) Path Choice and Equivalence to Zero-sum Game Formulation

Following Spiess and Florian (1989), the optimal hyperpath from origin r to destination s under the assumption of path split probabilities as in equations (2) and (10) is identified by solving the following linear program:

$$\text{Min}_{p, w} \sum_{a \in A} c_a p_a + \sum_{i \in I} w_i, \quad (21)$$

subject to

$$\sum_{a \in A_i^+} p_a - \sum_{a \in A_i^-} p_a = g_i, \quad i \in I, \quad (22)$$

$$p_a d_a \leq w_i, \quad a \in A_i^+, \quad i \in I, \quad (23)$$

$$p_a \geq 0, \quad a \in A, \quad (24)$$

which may be solved by any LP solver if flow constraints equation (22) can be explicitly set in the LP solver. The objective function equation (21) is the travel time expected pessimistically. Correspondingly, the expected node delay is that which would be expected by a pessimistic passenger. If link a is the only link out of node i included in the hyperpath, then the passenger is fully exposed to maximum delay on that link and $w_i = d_a$. To mitigate this exposure, the passenger requires alternative ways out of node i .

Constraint equation (22) enforces flow conservation. Note that $g_i = 1$ if $i = r$, $g_i = -1$ if $i = s$, and $g_i = 0$ otherwise. Constraint equation (23) ensures that the usage of link a is inversely proportional to its maximum delay, if link a is used ($p_a > 0$). If link a is not part of the hyperpath and hence not used ($p_a = 0$), the traveller exposes himself to a larger w_i as equation (23) has to be fulfilled for all arcs emanating from i unless the node can be avoided altogether by the traveller. Constraint equation (23) further enforces $\mathbf{w} \geq 0$ as $\mathbf{p} \geq 0$ and $\mathbf{d} \geq 0$.

The equivalence between the above problem and a non-cooperative zero sum game can be demonstrated by the method of Lagrange multipliers. The Lagrangian function for the above problem is

$$L(\mathbf{p}, \mathbf{w}, \boldsymbol{\lambda}, \mathbf{q}) = \sum_{a \in A} c_a p_a + \sum_{i \in I} w_i - \sum_{i \in I} \sum_{a \in A_i^+} q_a (w_i - p_a d_a) + \sum_{i \in I} \lambda_i (g_i - \sum_{a \in A_i^+} p_a + \sum_{a \in A_i^-} p_a), \quad (25)$$

where $\mathbf{q} \geq 0$ and $\boldsymbol{\lambda}$ are sets of Lagrange multipliers. In Ahuja et al. (1993) the dual variable of the link choice probabilities \mathbf{p} are further proven to be the node costs, or also referred to as node potential, which is in accordance with the usage of $\boldsymbol{\lambda}$ in previous Section 3. By means of the Lagrangian function, a constrained optimisation problem is transformed into an optimisation problem constrained only by non-negativity conditions. In this case, the $L(\mathbf{p}, \mathbf{w}, \boldsymbol{\lambda}, \mathbf{q})$ is minimised with respect to $\mathbf{p} \geq 0$ and \mathbf{w} and maximised with respect to the Lagrange multipliers, subject to non-negativity conditions on \mathbf{p} and \mathbf{q} . The solution is given by the saddle point.

Maximisation of the third term in equation (25), $-\sum_{i \in I} \sum_{a \in A_i^+} q_a (w_i - p_a d_a)$, with respect to \mathbf{q} enforces the non-negativity constraint provided $q_a \geq 0$. If the term in brackets is positive, $q_a = 0$ is the solution. On the other hand, should the term in brackets try to go negative, $q_a > 0$ but minimisation with respect to \mathbf{p} restores the term in brackets to 0. At the saddle point a value for q_a is found that is large enough to enforce the constraint.

The maximisation of the fourth term in equation (25), $\sum_{i \in I} \lambda_i (g_i - \sum_{a \in A_i^+} p_a + \sum_{a \in A_i^-} p_a)$, with respect to $\boldsymbol{\lambda}$ enforces the equality constraint. If the term in brackets is positive, $\lambda_i > 0$, but minimisation with respect to \mathbf{p} returns the term in brackets to 0. Conversely, if the term in brackets is negative, λ_i