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Preface

Topics in Experimental Dynamics Substructuring and Wind Turbine Dynamics represents one of six volumes of technical

papers presented at the 30th IMAC, A Conference and Exposition on Structural Dynamics, 2012 organized by the Society

for Experimental Mechanics, and held in Jacksonville, Florida, January 30 – February 2, 2012. The full proceedings also

include volumes on Dynamics of Civil Structures; Nonlinear Dynamics; Model Validation and Uncertainty Quantification;

and Modal Analysis, I & II.

Each collection presents early findings from experimental and computational investigations on an important area within

Structural Dynamics. The current volume on Topics in Experimental Dynamics Substructuring and Wind Turbine Dynamics
presents research in two areas of great importance. Recent advances in experimental techniques, sensor/actuator

technologies, novel numerical methods, and parallel computing have rekindled interest in substructuring in recent years

leading to new insights and improved experimental and analytical techniques.

Governments around the world have set ambitious goals of meeting 20% of energy requirements by 2020 through

renewable energy sources including wind energy. This presents challenges, including the growing size and complexity of the

wind turbine structure, necessitating the need for designers to better understand and characterize the dynamics of the wind

turbine. Despite well-established techniques (Experimental and Operational Modal Analysis) for dynamic characterization

of structures, their application to wind turbines is not straight forward due to the complexities involved on account of

considerable aeroelastic interaction and time-varying nature of wind turbines, when in operation. This volume showcases

research activities with regards to application of modal analysis to wind turbines, preparing and updating numerical models,

instrumentation and sensing on wind turbine blades, and structural health monitoring as applied to wind turbines.

The organizers would like to thank the authors, presenters, session organizers, and session chairs for their participation in

this track.
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Chapter 1

Tutorial on Experimental Dynamic Substructuring

Using the Transmission Simulator Method*

Randy L. Mayes

Abstract Although analytical substructures have been used successfully for years, practical experimental substructures

have been limited to special cases until recently. Many of the historical practical applications were based on a single point

attachment. Since substructures have to be connected, theoretically, in both translation and rotation degrees of freedom,

measurement translation responses and forces around the single point attachment could be used to estimate the rotational

responses and moments. For multiple attachment points, often the rotations and moments have been neglected entirely.

In addition, often the effect of the joint stiffness and damping is neglected. The translation simulator approach developed by

Allen and Mayes captures the interface forces and motions through a fixture called the transmission simulator, overcoming

the historical difficulties. The experimental free modes of the experimental substructure mounted to the transmission

simulator and the finite element model of the transmission simulator are used to couple the experimental substructure to

another substructure and subtract the transmission simulator. This captures the effects of the joint stiffness and damping.

The experimental method and mathematics will be explained with examples. The tutorial assumes a basic understanding of

the linear multi-degree of freedom equations of motion and the modal approximation.

1.1 Introduction

The modal constraint for fixture and subsystem (MCFS) method was introduced at IMAC in 2007 for the component mode

synthesis approach (Allen and Mayes [1]) and the Frequency Based Substructuring approach (Mayes and Stasiunas [2]).

It uses a fixture in the experimental dynamic substructure called the transmission simulator, so is also called the transmission

simulator method. An analytical model of the transmission simulator is always required with this method.

Physically, the transmission simulator is mounted to the experimental substructure with exactly the same joint geometry

and material as that to which the experimental substructure will ultimately be connected. Because of this, the resulting

experimental substructure inherently includes the linearized stiffness and damping in the joint, which classical methods

neglect, to their peril. The fixture is also designed to provide accessible locations to mount response sensors and to apply

input forces. Often the actual connection points are poor locations to mount sensors. For example, the connection point may

be at a bolt or a threaded screw interface. Special features can also be included to provide good driving point measurements,

which are extremely important to obtain accurate modal mass for scaling the mode shapes.

The analytical model of the transmission simulator is used in multiple ways. It is generally mounted with an assumed

welded connection to the analytical substructure (often a finite element model) to which the experimental substructure is to

be connected. By constraining the transmission simulator on the experimental substructure to have the same motion as the

transmission simulator on the analytical substructure, the systems are joined. Then the mass and stiffness of the analytical

and experimental transmission simulators are subtracted from the assembled system. The analytical model of the transmis-

sion simulator can also be thought of as an aid to interpolate from the measurement sensor locations back to the actual

R.L. Mayes (*)
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connection degrees of freedom (dof). A truncated set of the mode shapes of the transmission simulator is used that spans

the frequency bandwidth of interest. The sensor set can be chosen to provide a set of sensor locations for which all chosen

transmission shapes are linearly independent. These sensors can all be translational – no rotations are required. The

rotations at the connection points are inherently carried in the modal coordinates of the transmission simulator.

The connections can actually be continuous, not just discrete, as long as the transmission simulator mode shape set spans

the space of the connection motion reasonably well. In addition the transmission simulator mass stresses the joint. This

stress across the joint provides a much better Ritz vector shape basis than simple free modes where there is no stress at the

joint. It provides enough improvement in the basis vectors that residuals, which are difficult to measure, do not need to be

added to the basis set.

Although this method requires fabrication of a fixture and generation of its associated analytical model, it provides

extensive benefits for the investment. One does not have to measure exactly at the connection points. One does not have to

measure rotations because they are inherently included in the analytical model modal coordinates (so they are not just being

neglected). The stiffness and damping of the joint are inherently included. No residual measurements are required.

One problem that can result in this method is that the mass matrix can be indefinite when the transmission simulator is

subtracted. However, methods to correct the mass matrix have been developed recently [3]. This has cleared the way so that

in practice, refinements can be made without theoretical road blocks.

An example from [3] shows conceptually how the method was implemented for one actual hardware case in Fig. 1.1. The

transmission simulator hardware, which is a ring with tabs, is mounted to the experimental substructure with eight bolts, just

as it will be attached in the real system to the cylinder substructure, so it contains the joint. An analytical model of the

transmission simulator is welded in to the flange of the cylinder analytical model. The transmission simulator and the

cylinder flange actually occupy the same space, which can be done with an analytical model. Then transmission simulators

for each substructure are forced to have the same motion, which connects them. Finally the stiffness and mass of the two

transmission simulators are analytically subtracted.

The free-free experimental modal test setup is shown in Fig. 1.2 with 12 triaxial accels on the transmission simulator and

2 triaxial accels at points of interest on the beam. Twenty five rigid body and elastic modes were extracted out to 4 kHz. This

structure had eight discrete bolted attachments, which would require 48 discrete constraints for the three rotations and three

translations at each connection. Figure 1.3 shows the 12 triax locations, which are not at the eight connection points. 18

modes of the transmission simulator analytical model were used to span the connection space motion, using 36 measured dof

to describe the mode shapes. The method thus reduces the number of constraints down from the classic 48 connections to 18.

The 18 modes covered a frequency bandwidth of 2 kHz.

Fig. 1.1 Coupling of experimental substructure C with analytical substructure D to generate full system E after transmission simulators (Aan1 and

Aan2) are subtracted

2 R.L. Mayes



1.2 Component Mode Synthesis Theory Using Primal Formulation

in a Generalized Framework

The generalized framework of deKlerk, Rixen and Voormeeren [4] for dynamic substructuring is utilized. Here assume that

each substructure has been approximated with a reduced model, whether experimental or analytical. Then the displacements

are approximated with the modal substitution as

�u ffi R�h (1.1)

where �u is the vector of physical displacements, �h is the vector of generalized coordinates from a modal test or eigenvector

analysis and R is the truncated mode shape matrix relating the generalized coordinates to the physical coordinates. Then the

equations of motion for the substructure can be written as

MðsÞR€�h
ðsÞ þ CðsÞR _�h

ðsÞ þKðsÞR�hðsÞ ¼ �f
ðsÞ þ �gðsÞ þ �rðsÞ (1.2)

Where M, C and K are mass stiffness and damping matrices, the superscript (s) denotes the particular substructure, �f
ðsÞ

denotes the external forces applied to the substructure, �gðsÞrepresents the equilibrium joining forces from another substructure

Fig. 1.2 Experimental

substructure free modal test

setup with 36 sensors on the

transmission simulator ring

and a few sensors at points

of interest on the substructure

Fig. 1.3 Transmission

simulator with 12 triaxial

accelerometers at blue nodes

for sensing

1 Tutorial on Experimental Dynamic Substructuring Using the Transmission Simulator Method 3



that will be applied to the substructure, and �rðsÞis the residual force due to the mismatch caused by the approximation of the

displacements in (1.1). Premultiplying by RT yields

RTMðsÞR€�h
ðsÞ þ RTCðsÞR _�h

ðsÞ þ RTKðsÞR�hðsÞ ¼ RT�f
ðsÞ þ RT�gðsÞ þ RT�rðsÞ: (1.3)

It can be shown that, because of orthogonality of the mode shapes with respect to M, C and K,

RT�rðsÞ ¼ �0 (1.4)

which leaves

RTMðsÞR€�h
ðsÞ þ RTCðsÞR _�h

ðsÞ þ RTKðsÞR�hðsÞ ¼ RT�f
ðsÞ þ RT�gðsÞ; (1.5)

or in a renamed form

MðsÞ
m
€�h
ðsÞ þ CðsÞ

m
_�h
ðsÞ þKðsÞ

m �hðsÞ ¼ �f
ðsÞ
m þ �gðsÞm (1.6)

where subscript m denotes modal quantities. The matrices are, if the mode shapes are mass normalized,

MðsÞ
m ¼ RTMðsÞR ¼ I

CðsÞ
m ¼ RTCðsÞR ¼ diagð2��z:� �vÞ

KðsÞ
m ¼ RTKðsÞR ¼ diagð�v:^2Þ
�f
ðsÞ
m ¼ RTfðsÞ

�gðsÞm ¼ RTgðsÞ: (1.7)

At this point, let us concatenate the various substructures together in the uncoupled form as

Mm€�hþ Cm _�hþKm�h ¼ �fm þ �gm: (1.8)

Compatibility is now enforced with a constraint equation from

B�uc ¼ �0 (1.9)

Where B is a Boolean matrix of ones, zeros and negative ones, and for convenience we will include only connection dof in

the displacement vector. Take the partition of (1.1) for only the connection dof and again make the modal substitution

BRc�h ffi �0 (1.10)

where the subscript c indicates taking only the partition of R necessary for the connection dof.

Up to this point we have followed the generalized framework rather strictly, but at this point, the transmission simulator

method affects the rest of the development. It is assumed that there is an analytical model of the transmission simulator, one

uses a truncated set of its mode shapes,Cc, as a basis to span the space of the connection motion for each substructure. Now

we use the pseudo-inverse (denoted with a superscript +) to project the constraint on the space of the transmission simulator

vector space by premultiplying both sides by the block diagonal pseudo-inverse as

CBDþ
c BRc�h ffi CBDþ

c
�0 (1.11)

where

CBDþ
c ¼

Cþ
c 0 0

0 ::: 0

0 0 Cþ
c

2
4

3
5 (1.12)

4 R.L. Mayes



will have as many block rows as there are substructures. The right hand side of (1.11) is still a vector of zeros, although the

number of constraints (rows) is reduced since the matrix Ccis selected so that it always has more dof than modes. The final

constraint is

~B�h ¼ �0 (1.13)

where

~B ¼ CBDþ
c BRc (1.14)

There are multiple reasons for premultiplying byCBDþ
c . First it softens the constraint (reduces the number of constraints).

The advantage of this is that it gives a least squares fit through the measured motions of the transmission simulator at the dof

to which the constraints will be applied. The mode shapes of the transmission simulator provide a smoothing effect through

the measured motions, which always have experimental error. The modified matrix greatly improves the conditioning of the

problem. Also, one does not HAVE to use motions measured directly at the attachment points and also does not HAVE to

measure rotations, which are inherently carried along in the generalized dof of the transmission simulator. The generalized

modal dof of the transmission simulator are �g in the following

Cc�g ffi RðsÞ
c �hðsÞ (1.15)

but can be expressed as

�g ffi Cþ
c R

ðsÞ
c �hðsÞ (1.16)

which can be seen in the left hand side of (1.11) as converting the constraint to the transmission simulator modal coordinates.

Now continue the development in the general framework from (1.13). We perform another modal-like substitution with

�h ¼ ~L�«: (1.17)

Substitute (1.17) into (1.13) to give

~B~L�« ¼ �0: (1.18)

If one chooses ~L such that it is in the null space of ~B, then (1.18) is guaranteed to be satisfied because

~B~L ¼ ½zeros�: (1.19)

All the rows of ~B are orthogonal to all the columns of ~L. Since ~B is known, a one line command in matlab can provide ~L.
Substituting (1.17) back into the uncoupled equations of motion in (1.8) and premultiplying by ~L

T
gives

~L
T
Mm

~L€�«þ ~L
T
Cm

~L _�«þ ~L
T
Km

~L�« ¼ ~L
T�fm þ ~L

T
�gm; (1.20)

which couples the equations of motion, reducing the number of rows in (1.8) by the number of constraints (rows) in (1.13).

This leads to the primal coupling formulation in this framework. In this formulation ~L
T
�gm ¼ ~L

T
RT�g ¼ �0, since the rows of

~L
T
are orthogonal to a linear combination of the columns of RT , leaving

~Mm€�«þ ~Cm _�«þ ~Km�« ¼ ~�fm (1.21)

where

~Mm ¼ ~L
T
Mm

~L

~Cm ¼ ~L
T
Cm

~L

~Km ¼ ~L
T
Km

~L

~�fm ¼ ~L
T�fm: (1.22)

1 Tutorial on Experimental Dynamic Substructuring Using the Transmission Simulator Method 5



1.3 Frequency Based Substructuring Dual Formulation in the General Framework

Again following [4], for the physical dof, the uncoupled equations of motion, the compatibility and the equilibrium

are written as

M€�uþ C _�uþK�u ¼ �f þ �g (1.23)

B�u ¼ �0 (1.24)

LTg ¼ �0 (1.25)

where M, C and K are block diagonal with as many blocks as substructures. The constraint forces �g between the

substructures can be written as

g ¼ �BT�l (1.26)

where �l are Lagrange multipliers corresponding physically to the interface forces. Equations (1.23) and (1.24) can now

be written in matrix form as

M 0

0 0

� �
€u
l

� �
þ C 0

0 0

� �
_u
l

� �
þ K BT

B 0

� �
u

l

� �
¼ f

0

� �
: (1.27)

Taking the Fourier transform to put into the frequency domain, where each quantity is a function of frequency, gives

Z BT

B 0

� �
u

l

� �
¼ f

0

� �
(1.28)

where Z is the block diagonal impedance matrix resulting from the mass, stiffness and damping. The frequency response

function matrix,H, which is often measured experimentally is the inverse of Z. The dual formulation coupled formulation in

terms of H is derived from (1.28) by eliminating l, yielding

�u ¼ H�f �HBTðBHBTÞ�1
BH�f: (1.29)

The transmission simulator method modifies the B matrix in (1.24) as

CBDþB�u ffi �0 (1.30)

So one has

B̂�u ¼ �0 (1.31)

where

B̂ ¼ CBDþB: (1.32)

Now simply substitute (1.32) into (1.29) to give the frequency based transmission simulator equation as

�u ¼ H�f �HB̂
TðB̂HB̂

TÞ�1
B̂H�f: (1.33)

The B̂matrix transforms the physical connection dof frequency response functions (FRFs) into generalized dof FRFs cast

on the space of the transmission simulator mode shapes. This collapses the size of the physical connection dof FRFs down to

the size of the number of modes of the transmission simulator, providing some least squares smoothing, and makes the

matrix inversion in (1.33) much better conditioned.
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1.4 Example Combining Experimental Plate/Beam Substructure with Analytical

Cylinder Substructure Using the CMS Approach

The example is based on the hardware and analytical finite element models depicted in the first three figures. In the equations

below, the finite element (FE) substructure is considered to have the analytical model of the transmission simulator attached,

and the experimental (EXP) substructure has the physical transmission simulator attached. Two transmission simulators

must be subtracted. In this example, 100 modes were utilized from the finite element substructure, 25 modes from the

experimental substructure, and 18 modes from the transmission simulator giving 143 uncoupled equations of motion.

Consider only the eigenvalue equations of motion, and then the final coupled modal parameters can be used to analytically

form any desired full system response FRF. Damping will be predicted in a simplified method later. The undamped

frequency domain equations of motion using modal coordinates when forces are removed are

v2
FE 0 0

0 v2
EXP 0

0 0 �2v2
TS

2
64

3
75

hFE

hEXP

hTS

8><
>:

9>=
>;�v2

IFE 0 0

0 IEXP 0

0 0 �2ITS

2
64

3
75

€hFE

€hEXP

€hTS

8><
>:

9>=
>; ¼

0

0

0

8><
>:

9>=
>; (1.34)

and the physical displacements, y, on each substructures are

yFE

yEXP

yTS

8><
>:

9>=
>; ¼

RFE 0 0

0 REXP 0

0 0 RTS

2
64

3
75

hFE

hEXP

hTS

8><
>:

9>=
>; (1.35)

where R are a truncated set of the mass normalized mode shapes of each substructure coming from experiment or analysis.

The motion of the transmission simulator in all three substructures should be the same when all the substructures are

coupled, so two sets of physical constraints can be written

yFEmeas ¼ yEXPmeas and yEXPmeas ¼ yTSmeas (1.36)

Just consider the first of these constraints, invoke the modal substitution from (1.35) and premultiply by the pseudo-

inverse of transmission simulator mode shapes, Rþ
TSto give

Rþ
TSRFEmeas�hFE ¼ Rþ

TSREXPmeas�hEXP (1.37)

Or moving everything to the left had side gives

Rþ
TSRFEmeas�hFE � Rþ

TSREXPmeas�hEXP ¼ 0: (1.38)

A similar process can be applied to the second constraint of (1.36). The constraints can now be written in the form given

in (1.12)–(1.14) as

Rþ
TS 0

0 Rþ
TS

" #
I �I 0

0 I �I

" # RFEmeas 0 0

0 REXPmeas 0

0 0 RTS

2
64

3
75

hFE

hEXP

hTS

8><
>:

9>=
>; ¼ 0

0

( )
(1.39)

Where CBDþ
c in (1.11) is RBDþ

TS and B is the Boolean matrix here, thus

~B ¼ Rþ
TS 0

0 Rþ
TS

" #
I �I 0

0 I �I

" # RFEmeas 0 0

0 REXPmeas 0

0 0 RTS

2
64

3
75: (1.40)
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Repeating (1.17) and (1.18) here for clarity gives

�h ¼ ~L�« (1.41)

and

~B~L�« ¼ �0 (1.42)

and ~Lis the null space of ~B,which is known. Substitute (1.41) into (1.34) and premultiply by ~L
T
to give

LT

v2
FE 0 0

0 v2
EXP 0

0 0 �2v2
TS

2
64

3
75L�«�v2LT

IFE 0 0

0 IEXP 0

0 0 �2ITS

2
64

3
75L€�« ¼ �0 (1.43)

providing the coupled equations from which the eigenvalue problem can be solved yielding. The solution will provide a set

of eigenvectors, F, frequencies, v2
, and modal coordinates, �b. Now the coupled displacements will be

�y ¼ RLF�b: (1.44)

The resulting new damping matrix is formed by

FTLT

v2
FE 0 0

0 v2
EXP 0

0 0 �2v2
TS

2
64

3
75LF (1.45)

From which we usually just take the diagonal values to give 2�znew: � �vnew.

1.5 Example Combining Experimental Plate/Beam Substructure with Analytical Cylinder

Substructure Using the CMS Approach

Generally, the author does not execute (1.33) in a single step, since it makes the matrices very large and the resulting

inversions are computationally too intensive. For this example, assume we have one step where systems C and D in the

figure are too be joined. (Another step can be taken to subtract the transmission simulators, which will not be done here).

Define HC and HD as the frequency response function matrices for substructures C and D respectively. HT is the FRF

matrix of the total system after C and D are coupled. Each substructure has a two dimensional FRF matrix for every

frequency line of the FRFs. The first subscript on any of these matrices represents the output response dof and the second

subscript represents the input force dof. Perhaps the two most useful equations from partitions of the classical method in

(1.29) are

HTri ¼ HDrc HDcc þHCccð Þ�1
HCci (1.46)

where the force input is on substructure C and the response output is on substructure D, and

HTri ¼ HCri �HCrc HDcc þHCccð Þ�1
HCci (1.47)

where the force input is on substructure C and the response output is also on substructure C. Here the subscript r represents
the output response and the subscript i represents the input force, and the subscript c represents the connection dof between
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the two substructures. With the transmission simulator method, the Boolean matrix B is replaced with B̂ to convert all the

connection dof to modal dof of the transmission simulator in (1.33), so that

HDrc ¼ HDrpR
Tþ
TS (1.48)

HDcc ¼ Rþ
TSHDppR

Tþ
TS (1.49)

HCcc ¼ Rþ
TSHCppR

Tþ
TS (1.50)

HCci ¼ Rþ
TSHCpi (1.51)

HCrc ¼ HCrpR
Tþ
TS (1.52)

in (1.46) and (1.47). The subscript p represents the dof at the transmission simulator measurement locations on either

substructure. The pseudo-inverse of the mode shape matrix RTS of the transmission simulator reduces the size of the physical

measurement FRF matrices down to the number of modes kept for the transmission simulator at all the connection dof.

In Fig. 1.4 one can see the axial FRF at the tip of the beam (see Fig. 1.1 for location). The red FRF was constructed from

the modal parameters of the coupled system mode shapes, frequencies and damping using the transmission simulator method

with the CMS approach. The blue FRF represents the truth data constructed from the modal parameters of a highly validated

finite element model of the full system.

References

1. Allen MS, Mayes RL (2007) Comparison of FRF and modal methods for combining experimental and analytical substructures. In: Proceedings

of the 25th IMAC conference on structural dynamics, Paper #269, Orlando

2. Mayes RL, Stasiunas EC (2007) Combining lightly damped experimental substructures with analytical substructures. In: Proceedings of the

25th IMAC conference on structural dynamics, Paper #207, Orlando

3. Mayes RL, Allen MS, Kammer DC (2012) Eliminating indefinite mass matrices with the transmission simulator method of substructuring.

In: Proceedings of the 30th IMAC Conference on Structural Dynamics, Paper #163, Jacksonville, FL

4. de Klerk D, Rixen DJ, Voormeeren SN (2008) General framework for dynamic substructuring: history, review, and classification of techniques.

AIAA J 46(5):1169–1181

102 103
10-1

100

101

102

103

104

105
Drive Point 1000Y

Frequency - Hz

Full system 100 modes

25 exp modes - 18 fixture shapes - 100 FE modes

Fig. 1.4 Transmission

simulator method FRF of

coupled system (red) versus
truth model (blue) – Driving

point response at tip of beam

in Fig. 1.1 (color figure online)

1 Tutorial on Experimental Dynamic Substructuring Using the Transmission Simulator Method 9



Chapter 2

Experimental–Analytical Substructure Model Sensitivity

Analysis for Cutting Machine Chatter Prediction

Anders Liljerehn and Thomas Abrahamsson

Abstract Process reliability and dynamic stability is a growing customer demand in the metal machining industry.

A limiting factor in process stability is regenerative vibrations which may damage the machined component, the cutting

tool and even the machine tool. Spindle speed optimization to ensure process stability and enable larger cutting depths is

based on the machine tool and cutting tool assembly’s frequency response at the tool-tip. The traditional procedure to

retrieve the tool-tip frequency response is to conduct dynamic testing of each machine tool mounted cutting tool. This

methodology is normally very time-consuming. In an attempt to reduce testing time, receptance coupling substructure

analysis (RCSA) has been proposed by a number of researchers. The objective with this approach is to measure the machine

tool structure once and then couple a finite element based substructure representation of the cutting tool of interest. The

accuracy of the predicted tool-tip frequency response is then dependent on the quality of measured data. This paper details

the state-space based sub-structure coupling technique that is used and presents a sensitivity analysis. This analysis

distinguishes key considerations for the machine tool component test and it quantifies the parameter influence on the

process stability predictions of the coupled system.

2.1 Introduction

In metal cutting, spindle speed optimization for process stability is one example of action that may reduce production time

and increase process reliability. For process stability, it is crucial to avoid regenerative vibrations due to feedback of the

cutting forces and thereby enable larger cutting depth, with higher material removal rate as benefit. An analytical spindle

speed optimization is based on the real part of frequency response functions, FRFs, in two orthogonal transversal directions

at the tool tip of a machine tool and cutting tool assembly. Based on the real part of the tool tip FRFs a chart of what is known

as stability lobes can be constructed see Fig. 2.1. The stability lobe chart indicates optimal spindle speeds where regenerative

vibrations can be avoided for larger depths of cut. The chart, Fig. 2.1, should be read as follows. A stable machining process

can be expected if the spindle speed and axial depth of cut is in a combined state in the stable region of the chart. In the

unstable state, however, regenerative vibrations also known as chatter do occur. From the stability chart one can see that

some spindle speeds are more beneficial than others where greater cutting depths, and thus a better production, are allowed

without encountering chatter.

The stability chart is only constructed out of the negative values of the real FRF in two orthogonal main directions at the

tool tip of the cutting tool. The creation of the whole set of stability lobes to create the complete stability chart is based on the

phase shifts between the vibration marks left on the machined surface made from one cutting tooth to the next tooth that

comes in to cut, see [1].

Stability lobe predictions have been a vast research area since the early 1960s, [2, 3]. One of the limitations of FRF-based

chatter predictions is that the FRF at the tool tip of a machine tool and cutting tool assembly only yields for a specific setup.
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Larger production plants are usually equipped with a substantial amount of cutting tools in their machine tools. To measure

each cutting tool combination is not only time consuming but it also requires that the machine tool is taken out of operation

during measurements. This results in productivity losses which in many cases are regarded as unacceptable by the plant

company. To reduce testing time receptance coupling substructure analysis (RCSA) has been utilized by a number of

researchers. The objective with this approach is to only measure the machine tool structure once and then couple a

substructure representation of the cutting tool of interest into an assembly.

To use a receptance coupling technique by synthesizing the frequency response displacement function of the system is

indeed very appealing but is not without obstacles. This paper is a factor relevance investigation, trying to answer questions

that aroused after the writing of [4]. One of the conclusions drawn in [4] was that a slight overestimation of the first bending

mode of the coupled system’s spindle/cutting tool assembly, compared to verification measurements, can have a large

impact on the stability chart. The question of which parameters effects the result of the substructured system is one of the key

understandings that need to be in place in order to conduct relevant measurements and stability lobe predictions.

The factor relevance investigation in this paper is strictly restricted to FRFs generated from FEM of the assembly

components. The models are described in [4] and the coupling routines used are fully described in [5]. The approach of using

synthetic data has been chosen in order to avoid the complexity and uncertainties that follows with measurements in terms of

noise, misalignment of force and output sensors, etc. The necessity of further sensitivity analyses to the measurement

problem is evident but excluded from this paper.

2.2 Component Synthesis

Component substructuring is usually divided in to two main categories. The first is direct frequency response function

coupling [6–11]. The direct FRF coupling method has the advantage that it is fast in that sense that it can be applied directly

on measured FRFs and don’t require a system identification data processing. The absence of data processing is also its

biggest disadvantage since it makes this type of coupling techniques sensitive to noise. The other type of coupling methods

often found in literature is component mode synthesis [12–15]. This method has the advantage that it diminishes the noise

problems but on the other hand requires that the mode shapes are captured well and it may also suffer from errors that can

come from mode truncation. The mode truncation issue for the modal synthesis coupling technique is not a problem in the

direct FRF coupling methods since the influences of higher frequency modes are accounted for in the measurement data. The

component synthesis used in this sensitivity analysis is based on the state-space coupling method proposed in [5]. This

coupling method utilizes the benefits of noise suppression introduced by modal analysis. This is done by coupling of

identified first-order state-space substructure component models. The coupling method is used to couple two subsystems

(i ¼ 1, 2) on state-space form with displacement or velocities as output. A state-space model with external force inputs u and

displacement outputs y can be written as follows

_xi ¼ Aixi þ Biui

yi ¼ Cixi

(
(2.1)

Fig. 2.1 Stability lobe chart
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The state vector isx, andA,B andC are constant coefficientmatrices.Both subsystemsare partitionedwith respect to coupling

degrees of freedom (DOFs), subscript c, and other DOFs, subscript o, according to the partition of response and loading

yi ¼ yc
i

yo
i

( )
ui ¼ uc

i

uo
i

( )
(2.2)

Using the non-uniqueness of state-space representations, the system might be transformed with similarity transformation

without approximation. A similarity transform T with certain properties transforms the states as

~xi ¼ Tixi ¼
_yc

i

yc
i

xo
i

8><
>:

9>=
>; (2.3)

it can be shown, see [5], that the state-space matrices in this case turn into the particular coupling form as

~A
i ¼

Ai
vv Ai

vd Ai
vo

I 0 0

0 Ai
od Ai

oo

2
664

3
775 ~B

i ¼
Bi
vv

0

0

Bi
vo

0

Bi
oo

2
664

3
775 ~C

i ¼
0

Ci
ov

I

Ci
od

0

Ci
oo

" #
(2.4)

Thepartition subscripts indicate velocityoutputs (v), displacement outputs (d) andother states (o), all in accordancewith (2.3).

The next stage in order to couple themodels together, equilibriumand compatibility conditions has to be taken in to account at the

couplingDOFs. For response and excitation of two subsystems that are co-oriented and numbered in the same order we canwrite

the relation between the response and the excitation quantities between the uncoupled subsystem models and the synthesized

models as

yIc

yIIc

( )
¼ I

I

" #
�yc �uc ¼ ½I I�

uIc

uIIc

8<
:

9=
; (2.5)

and from here on considering coupling responses only in displacement, yc
i for simplicity. We can now write the state-space

realization on coupled form using (2.4) and (2.5), which is defined as

€�yc

_�yc

_xo

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

Ai
vv Ai

vd Ai
vo

I 0 0

0 Ai
od Ai

oo

2
6666664

3
7777775

_�yc

�yc

xo

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

þ

Bi
vv

0

0

Bi
vo

0

Bi
oo

2
6666664

3
7777775

�uc

uo

8><
>:

9>=
>; (2.6a)

�yc

yo

( )
¼

0

Ci
ov

I

Ci
od

0

Ci
oo

" # _�yc

�yc

xo

8><
>:

9>=
>; (2.6b)

The advantage of using first-order state-space models in lieu to a second-order modal model is that the state-space model has

lesser restrictionwhich enables thismodel to better reproduce themeasured data. However, some physical properties, introduced

as constraints in the system identification phase, have been found to enhance the first-order state-space model, [5]. To enforce

these kinematic and equilibriumconstraintswefirst need to transform the two subcomponents, subsystemI and subsystem II, in to

coupling form in accordance with (2.6a) and (2.6b). The first kinematic constraint to enforce is that the interface velocities and

displacements should be equal. This is done by considering the first row of equation (2.6a) from which we have that the

acceleration output for substructure I, 2.7a and II, 2.7b can be formulated as

€�y
I
c ¼ AI

vv
_�y
I
c þ AI

vd�y
I
c þ AI

vox
I
o þ BI

vv�u
I
c þ BI

vou
I
o (2.7a)

€�y
II
c ¼ AII

vv
_�y
II
c þ AII

vd�y
II
c þ AII

vox
II
o þ BII

vv�u
II
c þ BII

vou
II
o (2.7b)
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and to fulfill the stated kinematic constraints it follows that the velocity output at the coupling DOFs, 2.8a, satisfies

_�y
I
c ¼ _�y

II
c ¼

def
_�yc (2.8a)

and the displacement output at the coupling DOFs 2.8b, satisfies

�yIc ¼ �yIIc ¼
def

�yc (2.8b)

and the equilibrium conditions are met for substructure I, 2.9a and II, 2.9b respectively

�uIc ¼ �uI;IIc þ �uIc;e (2.9a)

�uIIc ¼ ��uI;IIc þ �uIIc;e (2.9b)

Where �uI;IIc denotes the cross-sectional force between the two subsystems and �uc;e denotes the externally applied force to

the interface DOFs. By introducing (2.8a,b) and (2.9a,b) into (2.7a,b) we get

€�yc ¼ AI
vv
_�yc þ AI

vd�yc þ AI
vox

I
o þ BI

vv�u
I;II
c þ BI

vv�u
I
c;e þ BI

vou
I
o (2.10a)

€�yc ¼ AII
vv
_�yc þ AII

vd�yc þ AII
vox

II
o � BII

vv�u
I;II
c þ BII

vv�u
II
c;e þ BII

vou
II
o (2.10b)

The mass inertial of the interface DOFs correspond to the inverse of BI
vv and B

II
vv. To introduce these kinematic constraints

the first step is to multiply (2.10a) with BI
vv

� ��1
from the left and (2.10b) with BII

vv

� ��1
also from the left and add them

together.

BI
vv

� ��1 þ BII
vv

� ��1
� �

€�yc ¼ BI
vv

� ��1
AI

vv þ BII
vv

� ��1
AII

vv

� �
_�yc

þ BI
vv

� ��1
AI

vd þ BII
vv

� ��1
AII

vd

� �
�yc

þ BI
vv

� ��1
AI

vox
I
o þ BII

vv

� ��1
AII

vox
II
o þ �uc

þ BI
vv

� ��1
BI
vou

II
o þ BII

vv

� ��1
BII
vou

II
o (2.11)

were �ucis the total external load applied to assembled components interface DOFs and is defined as

�uc ¼
def

�uIc þ �uIIc ¼ �uI;IIc þ �uIc;e � �uI;IIc þ �uIIc;e ¼ �uIc;e þ �uIIc;e (2.12)

rearranging (2.11) slightly we can write it in the following structure

€�yc ¼ �Avv
_�yc þ �Avd�yc þ �A

I
vox

I
o þ �A

II
vox

II
o þ �Bvv�u

II
c þ BI

vo�u
I
o þ BII

vo�u
II
o (2.13)

where

�Avv ¼ BII
vv BI

vv þ BII
vv

� ��1
AI

vv þ BI
vv BI

vv þ BII
vv

� ��1
AII

vv (2.14)

�Avd ¼ BII
vv BI

vv þ BII
vv

� ��1
AI

vd þ BI
vv BI

vv þ BII
vv

� ��1
AII

vd (2.15)

�A
I
vo ¼ BII

vv BI
vv þ BII

vv

� ��1
AI

vo (2.16)

�A
II
vo ¼ BI

vv BI
vv þ BII

vv

� ��1
AII

vo (2.17)

�Bvv ¼ BI
vv BI

vv þ BII
vv

� ��1
BII
vv (2.18)
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�B
I
vo ¼ BII

vv BI
vv þ BII

vv

� ��1
BI
vv (2.19)

�B
II
vo ¼ BI

vv BI
vv þ BII

vv

� ��1
BII
vv (2.20)

the assembled systems on state-space form can now be written as

€�yc

_�yc

_xIo

_xIIo

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

¼

�Avv
�Avd

�A
I
vo

�A
II
vo

I 0 0 0

0 AI
od AI

oo 0

0 AII
od 0 AII

oo

2
66666664

3
77777775

_�yc

�yc

xIo

xIIo

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

þ

�Bvv
�B
I
vo

�B
II
vo

0 0 0

0 �B
I
oo 0

0 0 �B
II
oo

2
66666664

3
77777775

�uc

�uIo

�uIIo

8>>><
>>>:

9>>>=
>>>;

(2.21)

�yc

yIo

yIIo

8><
>:

9>=
>; ¼

0 I 0 0

CI
ov CI

od CI
oo 0

CII
ov CII

od 0 CII
oo

2
64

3
75

_�yc

�yc

xIo

xIIo

8>>>><
>>>>:

9>>>>=
>>>>;

(2.22)

For the system studied in this paper which is a non-gyroscopic, non-circulatory and passive mechanical system it is

expected that Betti’s reciprocity principle should apply. To ensure reciprocity the condition CiBi ¼ 0 has been enforced, in

order for the system to be self-adjoint. The state-space models used have also been forced to be stable and passive, see [5].

2.3 System Setup

The purpose of the investigation is to investigate the causal effects different factors have on the tool tip FRF which is the

foundation for the stability lobe chart. This approach requires a system which is free from errors, such as noise and model

order uncertainties. The system chosen for this investigation is a simplified FE-model of a test rig used in [4], see Fig. 2.2.

The FE-model of the test rig consists of two substructures, Fig. 2.3. The spring suspended metal block with the clamping

unit along with the coupling and the tool family generic part of the cutting tool, referred to as the blank, constitutes

subsystem I. The tool tip, with a geometry that may vary within the tool family, is considered to be substructure II. Figure 2.4

shows the DOF numbering of the interface. In this study we are particularly interested in motion in the y- and z-directions,

DOFs 2 and 3.

Before proceeding with sensitivity analysis we made a validation of the coupling technique. As a reference we obtained

frequency response functions of the total system coupled to an entity by ordinary FEM assembly procedures. We see one

example in Fig. 2.5. To mimic the system identification procedures for test data we made a system identification of FRFs

given by FEM analysis of substructure I. In the frequency range from 0 to 5 kHz it was found that 30 states were sufficient to

capture data. In the FE representation 0.5% damping was introduced to all modes.

Fig. 2.2 Left; FE-model of test rig. Right; real test rig
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2.3.1 Results of Validation and Substructuring Method

The result of the state-space coupling of the identified model can be seen in Fig. 2.5. It is seen that it compares favorable to

the FEM results and validates the coupling technique. Figure 2.5 also shows the FRF of Subsystem I from FEM and system

identification can be seen to match very well. Figure 2.5 also contains and an additional comparison using a direct FRF

Fig. 2.4 Reference coordinate system and degree of freedom notations
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Fig. 2.5 Frequency response function comparison between uncoupled subsystem I and the state space identification of subsystem I as well as the
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Fig. 2.3 Substructures I and II
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coupling method, [6], of the two substructures using generalized frequency domain substructure synthesis. The coupled

FRFs using this method match the re-estimated assembled parallel model perfectly which is a good indication that the state

space coupling routines works properly. It can be seen in Fig. 2.5 that the FRFs of these three systems matches the fully

assembled FEMmodel very well up and over the first bending mode which is at about 500 Hz. The slight deviation at higher

frequencies Is due to model truncation in the synthesis of FRFs of component I.

2.4 Sensitivity Analysis and Evaluation Method

With a reliable identification process in place the next step is the sensitivity analysis based on perturbation of the state space

model from modal data and model estimation of that system.

2.4.1 Problem Formulation

The evaluation is limited to investigate the factors governing the accuracy of the predicted spindle speed and depth of cut and

quantify the impact they have on the predicted stability lobes. A criterion function based on the stability lobe chart is

required. The sensitivity analysis is performed through a screening process where each parameter can vary within a certain

interval. Each test combination resulted in a perturbed FRF from which a stability lobe chart were obtained. The lobes from

the perturbed test were evaluated against a stability lobe chart based on the solution of the unperturbed coupled state space

model presented in Fig. 2.5 system based on two criteria.

A first criterion is an evaluation of the angle between stability lobe data vectors of the nominal and perturbed systems.

These data vectors are stability lobe functions at discrete spindle speeds. The good thing about this approach is that

amplitude of the vectors is disregarded. The angle ranges between 0 and p/2 were 0 means that the two data vectors are

completely parallel and an angle of p/2 means that the two data vectors are orthogonal. In this evaluation the angle is

normalized by taking cosine of the angle resulting in a number ranging from 0 to 1 were 1 means that the two data vectors are

perfectly parallel and in that sense equal and 0 means completely orthogonal which is not desirable. We call this normalized

angle the co-linearity index

A second evaluation criterion is the minimum axial depth of cut, ap
lim, were the cutting process is stable for all spindle

speeds, see Fig. 2.6. This criterion was selected since this depth of cut is the local minimum value of all lobes. This is not the

case with the stability peaks which grows with higher spindle speeds. The minimum depth of cut is also the parameter that is

especially important when machining at low spindle speeds.

2.4.2 Screening

A traditional screening set up, see [16], is an essential first step of the objective evaluation method that will be used to answer

the question of which factors has the largest impact on the criterion function and if there are any interaction between these

factors. The aim is to assign all factors the same possibility to influence the criteria and then, if possible, reduce the number

Fig. 2.6 Description

of minimum axial depth

of cut, ap
lim
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factors for further investigations. Some of the factors subjected to investigation in this paper have been found to have a strong

nonlinear behavior within their range of variation. This makes them unsuitable for the coupled analysis, proposed in [16],

which would make it hard to determine their separate impact on the coupled system. A much simpler approach was taken

regarding the sensitivity analysis based on the insight that the attempt to investigate the full design space was much to

complicate. The approach was instead of changing many parameters all at once to simply change one parameter at the time

and keep all others at their reference values. The screening procedure starts with listing, categorizing and determine a relevant

range that each factor can vary within. Table 2.1 presents the factors chosen to be investigated in this investigation along with

their category and variation span. The screening procedure has multiple objectives. The first is to get an insight of which

factors have most influence on the result of the coupled model. If a factor is found to have no influence on the criteria then that

result is also useful information. The exclusion of a factor can be proven to be very beneficial from a time or economical

perspective. The screening also ranks each factor and therefore gives an indication of which of the factors to put additional

focus on.

The chosen factors all contribute differently to the identified models. The number of states included in the state-space

model is an interesting parameter to investigate. Previous tests conducted in [17] showed that too few states could influence

the coupled systems of but no investigation of the impact of too many states was made. Damping is another parameter of

interest since it can normally not be precisely determined from measurements. To see how much amplitude error influences

the coupled system is also of interest. This parameter can be influenced from ill calibrated accelerometers, errors in force

input measurements and test setup errors. The cut-off frequency will determine how many modes that are taken into account

by the state-space substructures and this should influence the coupled system.

2.5 Results

The stability lobe chart is constructed from the real part of FRF22 and FRF33, the FRFs associated to transversal motion. Both

these directions are important for the final evaluation of the stability lobe chart. The results of a comparison between the real

part of the FRF22 of the reference and the perturbed systems show how the different parameter influences the location of the

bending eigenfrequency and the amplitude of the FRF22, see Fig. 2.7.

Stability lobes for comparison were constructed based on the results of the perturbed FRFs for evaluation. The ingoing

cutting parameters used to obtain the stability lobe charts presented in tabled in Table 2.2.

Figure 2.8 shows how the different parameter settings affect the stability lobe chart. It should be noted that the perturbed

system with a reduced number of states is not seen in the chosen plot interval. The amplitude of the stability lobes for this

setting is much too high to be included in the plot. The drastic impact of this setting is seen in Fig. 2.7.

The plotted stability lobe chart comparison gives a good indication of the influence of different perturbations to the

system but it makes it hard to quantify its meaning. The results of the comparisons of the angle between stability lobe data

vectors and the minimum value of the depth of cut for each perturbed system compared to the reference system makes it

easier to interpret the results. Such results are presented in Table 2.3.

From the results in Table 2.3 it can be seen that the factor with the smallest impact on the system is the one were two

additional states has been introduced to add a resonance frequency close to that of the first bending mode. This factor has a

very small influence on the angle between the real FRF vectors and almost no influence on the minimum amplitude value

compared to the reference. The perturbed system were the state order had been underestimated by neglecting a bending

mode showed a significant impact on both evaluation criterions. The damping perturbation proved to have a very small

influence on the subspace angle criterion and minimum amplitude seemed to be proportional to the magnitude of the

Table 2.1 Factors subjected to perturbation in identification of subsystem I

Test nr. Factor Change

N1 Number of states that describe first bending mode Add 2

N2 Number of states that describe first bending mode Subtract 2

N3 Damping estimation of first bending mode Add 20%

N4 Damping estimation of first bending mode Subtract 20%

N5 FRF level Add 10%

N6 FRF level Subtract 10%

N7 Cut off frequency for system identification 2 kHz instead of 5 kHz
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Fig. 2.7 Real part of FRF22 of unperturbed (reference) and the perturbed systems

Table 2.2 Cutting parameters used in stability lobe predictions

Cutting parameters Quantity Unit

Number of teeth, z 1 –

Tool diameter, Dc 80 [mm]

Radial width of cut, ae 80 [mm]

Cutting force coefficient in tangential direction, Kt 1319 [MPa]

Cutting force coefficient in radial direction, Kr 789 [MPa]
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Fig. 2.8 Stability lobe comparisons between unperturbed (reference) and the perturbed systems

Table 2.3 Comparison between the influences of the different perturbation factors minimum axial depth of cut and co-linearity index relative to

that of reference configuration

Test nr. Type of perturbation Co-linearity index Minimum axial depth of cut

N1 Number of states +2 0.985 0.99

N2 Number of states �2 0.410 1335.33

N3 Damping estimation of first bending mode +20% 0.975 1.21

N4 Damping estimation of first bending mode �20% 0.976 0.83

N5 FRF amplitude +10% 0.484 0.60

N6 FRF amplitude �10% 0.427 0.81

N7 Cut-off frequency 0.825 1.06
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damping. A factor that influenced the coupled system much was the FRF amplitude. The system that had its amplitude

increased by 10% underestimated the eigenfrequency with 12 Hz and overestimated the eigenfrequency with 12 Hz with a

similar underestimation for an amplitude decrees. Both these errors then propagated to the stability lobe chart resulting in an

optimum spindle speed error of 90 rpm. The lowered cut-off frequency perturbation was the fourth least influential

perturbation when it comes to the subspace angle criterion. The lowered cut-off frequency also had a small minimum

amplitude error.

2.6 Conclusions

The methodology and workflow used to conduct these analyses make up a good foundation for designing the measurement

set up. The approach with the two evaluation criteria based on subspace angle and minimum amplitude, makes the

evaluation of the perturbed systems much clearer and the two evaluation criteria makes good indications on the comparison

to the reference system. This method allows several factors to be evaluated against each other even though they can play a

very different role in the identification process. Regarding the results the sensitivity analysis definitely distinguishes the

important from the less important parameters. The parameter that influenced the coupled system the most was an error in

the estimation of the FRF amplitude. Such significant impact points towards that great care must be taken during the

measurement procedure. Accelerometer imprecision of 5% is not uncommon for accelerometers used in these types of

measurements. Large accelerometer errors can be expected from temperature transients, calibration errors, linearity errors,

frequency and phase response errors, aging errors, cable motion, and electromagnetic interference in cables. Load cell errors

affect the FRF estimation similarly. It is seen that the number of states may be very important. This is much in line with the

conclusions drawn in [17]. It seems that an excessive state order not necessarily causes bad coupling results as long as

the identified modes fit is also shown in the stability chart. The damping perturbation seems to practically only influence the

amplitude error in the stability chart. This is good from an application standpoint were the accurate spindle speed is

considered much more important than the amplitude of the stability chart. To find the stability limit is fairly easy compared

to finding the optimum spindle speed. Regarding the cut-off frequency it is shown that it influences the coupled model but it

should not have a large impact as long as no states are disregarded.
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Chapter 3

Eliminating Indefinite Mass Matrices with the Transmission

Simulator Method of Substructuring*

Randy L. Mayes, Mathew S. Allen, and Daniel C. Kammer

Abstract The transmission simulator method of experimental dynamic substructuring captures the interface forces and

motions through a fixture called a transmission simulator. The transmission simulator method avoids the need to measure

connection point rotations and enriches the modal basis of the substructure model. The free modes of the experimental

substructure mounted to the transmission simulator are measured. The finite element model of the transmission simulator is

used to couple the experimental substructure to another substructure and to subtract the transmission simulator. However, in

several cases the process of subtracting the transmission simulator has introduced an indefinite mass matrix for the

experimental substructure. The authors previously developed metrics that could be used to identify which modes of the

experimental model led to the indefinite mass matrix. A method is developed that utilizes those metrics with a sensitivity

analysis to adjust the transmission simulator mass matrix so that the subtraction does not produce an indefinite mass matrix.

A secondmethod produces a positive definite mass matrix by adding a small amount of mass to the indefinite mass matrix. Both

analytical and experimental examples are described.

3.1 Introduction

Experimental-analytical substructuring has been a topic of interest since modal testing was first introduced several decades

ago. It is appealing because it has the potential to allow one to replace complicated subcomponents with experimental

models that may be much less expensive to derive. It also allows the experimentalist to re-use the experimental model,

predicting its response in a multitude of other configurations without repeating the test. One can also think of structural

modification [1] as a special case of substructuring, where the modification is a special substructure that one wishes to

determine in order to produce a desired response, (although the terms “substructuring” and “structural modification” are

often used interchangeably [2]).

The authors recently presented a new substructuring methodology, called Modal Constraints for Fixture and Subsystem

(MCFS), that has proven quite effective at subtracting one structure from another [3]. Typically one has experimentally

measured the modes of a built-up structure and one wishes to remove one subcomponent from that assembly. The subtraction

is accomplished by creating a model of the subcomponent that is to be removed, making its mass, stiffness, and damping

negative and then coupling the negative subcomponent to the assembly. Whereas, in conventional substructuring one

enforces constraints between the points where the substructures are joined, the MCFS method estimates a set of modal

R.L. Mayes (*)

Experimental Structural Dynamics, Sandia National Laboratories, Albuquerque, NM, USA

e-mail: rlmayes@sandia.gov

M.S. Allen • D.C. Kammer

Department of Engineering Physics, University of Wisconsin, Madison, WI 53706, USA

e-mail: msallen@engr.wisc.edu; kammer@engr.wisc.edu

*Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under

Contract DE-AC04-94AL85000.

R.L. Mayes et al. (eds.), Topics in Experimental Dynamics Substructuring and Wind Turbine Dynamics, Volume 2,
Conference Proceedings of the Society for Experimental Mechanics Series 27,

DOI 10.1007/978-1-4614-2422-2_3, # The Society for Experimental Mechanics, Inc. 2012

21

mailto:rlmayes@sandia.gov
mailto:msallen@engr.wisc.edu
mailto:kammer@engr.wisc.edu


coordinates on the substructure and enforces constraints on those coordinates. This reduces the sensitivity of the method

to experimental errors and assures that an appropriate number of constraints is enforced.

The MCFS method is primarily used to estimate a modal model that can be used for substructuring predictions. The

substructure is connected to a fixture or transmission simulator [4] and the assembly is tested in free-free conditions. This is

equivalent to the well-known method where rigid masses are attached to the structure and used to create a mass-loaded

interface, except that the proposed methodology is valid even if the transmission simulator is flexible. The transmission

simulator serves to mass-load the interface of the subcomponent, enriching the modal basis and circumventing the need to

measure displacements and rotations at the connection point. A model of the transmission simulator is then created and used

to subtract its effects from the measured modal model in order to obtain a model for the substructure of interest in isolation,

but with an improved modal basis. However, because a system with negative mass has been introduced in order to remove

the transmission simulator, the substructure model may not necessarily have a positive definite mass matrix. Similar

problems were encountered by other researchers when removing rigid masses from a structure [5]. This paper presents

two methods that can be used to assure that the mass matrix of the subcomponent has positive mass.

3.2 Theory

3.2.1 Review of Subtraction of Modal Substructures

Suppose that the natural frequencies, or, damping ratios, zr, and matrix of mass-normalized mode shapes, FC, of

an assembly consisting of the subcomponent of interest and the transmission simulator have been measured. The modal

parameters of the transmission simulator are also known. (Here we shall refer to the substructure that is being removed as the

transmission simulator, but in a general problem it could be any subcomponent that one wishes to subtract from the

assembly). The assembly shall be referred to as system C and the transmission simulator as system A, as in [3],

so the uncoupling procedure estimates the modes of B, the component of interest, since C� A ¼ ðAþ BÞ � A ¼ B. First

the equations of motion of C and (-A) are concatenated as follows
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where the q dof are the generalized modal coordinates of each substructure, and then constraints are enforced as

F
y

A;m FC;m�IA � qC
qA

� �
¼ 0

�
(3.2)

Where the superscript, { , denotes the pseudo-inverse of the matrix, and subscript m represents degrees of freedom common

to both system C and system A that have been measured.

This is done by finding a matrix B that transforms the concatenated coordinates into a set of unconstrained coordinates.

The coordinates of C are typically a suitable set [6], so one can choose

qC

qA

� �
¼ BqC

B ¼ IC

t

� � (3.3)

where t ¼ FA;m
yFC;m. The number of modal coordinates in A and C are denoted NA and NC respectively. One can verify

that B is in the null space of the matrix on the left in (3.2), so these coordinates always satisfy the constraints. As discussed

in [3], if the model for the transmission simulator is accurate then the negative transmission simulator model completely
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