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Preface

Algebraic graph theory is the branch of mathematics that studies graphs by using
algebraic properties of associated matrices. In particular, spectral graph theory
studies the relation between graph properties and the spectrum of the adjacency
matrix or Laplace matrix. And the theory of association schemes and coherent
configurations studies the algebra generated by associated matrices.

Spectral graph theory is a useful subject. The founders of Google computed
the Perron-Frobenius eigenvector of the web graph and became billionaires. The
second-largest eigenvalue of a graph gives information about expansion and ran-
domness properties. The smallest eigenvalue gives information about independence
number and chromatic number. Interlacing gives information about substructures.
The fact that eigenvalue multiplicities must be integral provides strong restrictions.
And the spectrum provides a useful invariant.

This book gives the standard elementary material on spectra in Chapter 1.
Important applications of graph spectra involve the largest, second-largest, or small-
est eigenvalue, or interlacing, topics that are discussed in Chapters 3 and 4. After-
wards, special topics such as trees, groups and graphs, Euclidean representations,
and strongly regular graphs are discussed. Strongly related to strongly regular
graphs are regular two-graphs, and Chapter 10 mainly discusses Seidel’s work on
sets of equiangular lines. Strongly regular graphs form the first nontrivial case of
(symmetric) association schemes, and Chapter 11 gives a very brief introduction to
this topic and Delsarte’s linear programming bound. Chapter 12 very briefly men-
tions the main facts on distance-regular graphs, including some major developments
that have occurred since the monograph [54] was written (proof of the Bannai-Ito
conjecture, construction by Van Dam and Koolen of the twisted Grassmann graphs,
determination of the connectivity of distance-regular graphs). Instead of working
over IR, one can work over IF,, or Z and obtain more detailed information. Chapter
13 considers p-ranks and Smith normal forms. Finally, Chapters 14 and 15 return
to the real spectrum and consider when a graph is determined by its spectrum and
when it has only few eigenvalues.

In Spring 2006, both authors gave a series of lectures at IPM, the Institute for
Studies in Theoretical Physics and Mathematics, in Tehran. The lecture notes were
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combined and published as an IPM report. Those notes grew into the present text, of
which the on-line version still is called ipm.pdf. We aim at researchers, teachers,
and graduate students interested in graph spectra. The reader is assumed to be
familiar with basic linear algebra and eigenvalues, but we did include a chapter on
some more advanced topics in linear algebra, such as the Perron-Frobenius theorem
and eigenvalue interlacing. The exercises at the end of the chapters vary from easy
but interesting applications of the treated theory to little excursions into related
topics.

This book shows the influence of Seidel. For other books on spectral graph
theory, see CHUNG [93], CVETKOVIC, DOOB & SACHS [115], and CVETKOVIC,
ROWLINSON & SiMIC [120]. For more algebraic graph theory, see BIGGS [30],
GODSIL [172], and GODSIL & ROYLE [177]. For association schemes and distance-
regular graphs, see BANNAI & ITO [21] and BROUWER, COHEN & NEUMAIER
[54].

Amsterdam Andries Brouwer
December 2010 Willem Haemers
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Chapter 1
Graph Spectrum

This chapter presents some simple results on graph spectra. We assume the reader is
familiar with elementary linear algebra and graph theory. Throughout, J will denote
the all-1 matrix, and 1 is the all-1 vector.

1.1 Matrices associated to a graph

Let I be a graph without multiple edges. The adjacency matrix of I" is the 0-1 ma-
trix A indexed by the vertex set VI™ of I', where A,, = 1 when there is an edge from
xtoyin I and Ay, = 0 otherwise. Occasionally we consider multigraphs (possibly
with loops), in which case Ay, equals the number of edges from x to y.

Let I" be an undirected graph without loops. The (vertex-edge) incidence matrix
of I' is the 0-1 matrix M, with rows indexed by the vertices and columns indexed by
the edges, where M,, = 1 when vertex x is an endpoint of edge e.

Let I be a directed graph without loops. The directed incidence matrix of I" is
the matrix N, with rows indexed by the vertices and columns by the edges, where
Nye = —1,1,0 when x is the head of e, the tail of e, or not on e, respectively.

Let I' be an undirected graph without loops. The Laplace matrix of I' is the
matrix L indexed by the vertex set of I", with zero row sums, where L,, = —A,, for
x # y. If D is the diagonal matrix, indexed by the vertex set of I" such that D, is the
degree (valency) of x, then L = D — A. The matrix Q = D + A is called the signless
Laplace matrix of T".

An important property of the Laplace matrix L and the signless Laplace matrix
Q is that they are positive semidefinite. Indeed, one has Q = MM " and L=NN" if
M is the incidence matrix of I" and N the directed incidence matrix of the directed
graph obtained by orienting the edges of I" in an arbitrary way. It follows that for
any vector u one has u' Lu = ¥, (ux — uy)? and u" Qu = ¥, (ux + uy)?, where the
sum is over the edges of I". '

A.E. Brouwer and W.H. Haemers, Spectra of Graphs, Universitext, 1
DOI 10.1007/978-1-4614-1939-6_1, © Andries E. Brouwer and Willem H. Haemers 2012



2 1 Graph Spectrum

1.2 The spectrum of a graph

The (ordinary) spectrum of a finite graph I" is by definition the spectrum of the
adjacency matrix A, that is, its set of eigenvalues together with their multiplicities.
The Laplace spectrum of a finite undirected graph without loops is the spectrum of
the Laplace matrix L.

The rows and columns of a matrix of order n are numbered from 1 to n, while A
is indexed by the vertices of I', so that writing down A requires one to assign some
numbering to the vertices. However, the spectrum of the matrix obtained does not
depend on the numbering chosen. It is the spectrum of the linear transformation A
on the vector space KX of maps from X into K, where X is the vertex set and K is
some field such as R or C.

The characteristic polynomial of I is that of A, that is, the polynomial p4 defined
by pa(0) =det(61 —A).

Example Let I be the path P3 with three vertices and two edges. Assigning some
arbitrary order to the three vertices of I", we find that the adjacency matrix A be-
comes one of

011 010 001
100 or |101] or [001
100 010 110

The characteristic polynomial is ps(0) = 63 —26. The spectrum is V2,0, —/2.
The eigenvectors are:

V2 2 V2

O O O O

V2

O

(=}
|
0%
|
(i8]

Here, for an eigenvector u, we write u, as a label at the vertex x. One has Au = Qu
if and only if 3, u, = Ou, for all x. The Laplace matrix L of this graph is one of

2—-1-1 1-1 0 1 0-1
-1 1 Olor |—1 2-1{or 0 1-1
-1 0 1 0-1 1 -1-1 2

Its eigenvalues are 0, 1 and 3. The Laplace eigenvectors are:

1 1 1 1 0 -1 1 -2
e, O O O O O

—_

One has Lu = Qu if and only if 3 uy = (dx — 6)u, for all x, where d, is the degree
of the vertex x.

Example Let I' be the directed triangle with adjacency matrix

010
A=1001
100
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Then A has characteristic polynomial p(8) = 6 — 1 and spectrum 1, @, @?, where
® is a primitive cube root of unity.

Example Let I" be the directed graph with two vertices and a single directed edge.

00
tiplicity (that is, the dimension of the corresponding eigenspace) equal to 1 and
algebraic multiplicity (that is, its multiplicity as a root of the polynomial p4) equal
to 2.

Then A = [O 1] with pa(8) = 62, so A has the eigenvalue 0 with geometric mul-

1.2.1 Characteristic polynomial

Let I" be a directed graph on n vertices. For any directed subgraph C of I' that
is a union of directed cycles, let ¢(C) be its number of cycles. Then the charac-
teristic polynomial p4(¢) = det(tI —A) of I' can be expanded as ¥ c;t"~‘, where
ci= ZC(—I)C(C), with C running over all regular directed subgraphs with in- and
outdegree 1 on i vertices.

(Indeed, this is just a reformulation of the definition of the determinant as
detM = ¥.55gn(0)M5(1) - My (n)- Note that when the permutation ¢ with n — i
fixed points is written as a product of nonidentity cycles, its sign is (—1)¢, where e
is the number of even cycles in this product. Since the number of odd nonidentity
cycles is congruent to i (mod 2), we have sgn(c) = (—1)7<(9))

For example, the directed triangle has ¢y = 1, c3 = —1. Directed edges that do
not occur in directed cycles do not influence the (ordinary) spectrum.

The same description of p4(f) holds for undirected graphs (with each edge
viewed as a pair of opposite directed edges).

Since 4 det(t] —A) = ¥, det(t] — A,) where A, is the submatrix of A obtained
by deleting row and column x, it follows that p/, (¢) is the sum of the characteristic
polynomials of all single-vertex-deleted subgraphs of I".

1.3 The spectrum of an undirected graph

Suppose I" is undirected and simple with n vertices. Since A is real and symmetric,
all its eigenvalues are real. Also, for each eigenvalue 0, its algebraic multiplicity
coincides with its geometric multiplicity, so that we may omit the adjective and just
speak about “multiplicity”’. Conjugate algebraic integers have the same multiplicity.
Since A has zero diagonal, its trace trA, and hence the sum of the eigenvalues, is
Zero.

Similarly, L is real and symmetric, so that the Laplace spectrum is real. More-
over, L is positive semidefinite and singular, so we may denote the eigenvalues by
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Uis..o Uy, where 0 =y < tp < ... < U,. The sum of these eigenvalues is trL,
which is twice the number of edges of I'.

Finally, also Q has real spectrum and nonnegative eigenvalues (but is not neces-
sarily singular). We have trQ = trL.

1.3.1 Regular graphs

A graph I is called regular of degree (or valency) k when every vertex has precisely
k neighbors. So, I' is regular of degree k precisely when its adjacency matrix A has
row sums k, i.e., when A1 = k1 (or AJ = kJ).

If I' is regular of degree k, then for every eigenvalue 6 we have || < k. (One way
to see this is by observing that if |¢| > k then the matrix 7] — A is strictly diagonally
dominant, and hence nonsingular, so that ¢ is not an eigenvalue of A.)

If I is regular of degree k, then L = kI — A. It follows that if I" has ordinary
eigenvalues k = 6, > ... > 6, and Laplace eigenvalues 0 = yu; < tp <... < ,, then
0, =k—u; fori=1,... n. The eigenvalues of Q = kI +A are 2k, k+ 6,,...,k+ 0,.

1.3.2 Complements

The complement T of T is the graph with the same vertex set as I", where two
distinct vertices are adjacent whenever they are nonadjacent in I'. So, if I'" has ad-
jacency matrix A, then I' has adjacency matrix A = J —I — A and Laplace matrix
L=nl—J—-L.

Because eigenvectors of L are also eigenvectors of J, the eigenvalues of L are
0,n— Uy, ...,n— Uy. (In particular, u, < n.)

If I is regular we have a similar result for the ordinary eigenvalues: if I" is k-
regular with eigenvalues 6y > ... > 6,, then the eigenvalues of the complement are
n—k—1,—-1-6,,...,—1—6,.

1.3.3 Walks

From the spectrum one can read off the number of closed walks of a given length.

Proposition 1.3.1 Let h be a nonnegative integer. Then (Ah)xy is the number of
walks of length h from x to y. In particular;, (A?),, is the degree of the vertex x, and
trA2 equals twice the number of edges of I'; similarly, trA3 is six times the number
of triangles in I'.
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1.3.4 Diameter

We saw that all eigenvalues of a single directed edge are zero. For undirected graphs
this does not happen.

Proposition 1.3.2 Let I be an undirected graph. All its eigenvalues are zero if and
only if ' has no edges. The same holds for the Laplace eigenvalues and the signless
Laplace eigenvalues.

More generally, we find a lower bound for the diameter:

Proposition 1.3.3 Let I" be a connected graph with diameter d. Then I' has at least
d + 1 distinct eigenvalues, at least d + 1 distinct Laplace eigenvalues, and at least
d + 1 distinct signless Laplace eigenvalues.

Proof Let M be any nonnegative symmetric matrix with rows and columns in-
dexed by VI and such that for distinct vertices x,y we have M,, > 0 if and only if
x ~ y. Let the distinct eigenvalues of M be 6y, ...,6,. Then (M —06,1)--- (M —6,I) =
0, so that M" is a linear combination of I, M, ..., M'~'. But if d(x,y) = t for two ver-
tices x,y of I', then (Mi)x), =0for0<i<t—1and (M), > 0, a contradiction.
Hence t > d. This appliesto M = A, to M = nl — L, and to M = Q, where A is the
adjacency matrix, L is the Laplace matrix, and Q is the signless Laplace matrix of
rI. O

Distance-regular graphs, discussed in Chapter 12, have equality here. For an up-
per bound on the diameter, see §4.7.

1.3.5 Spanning trees

From the Laplace spectrum of a graph one can determine the number of spanning
trees (which will be nonzero only if the graph is connected).

Proposition 1.3.4 Let I be an undirected (multi)graph with at least one vertex,
and Laplace matrix L with eigenvalues 0= 1 < tp < ... < Uy, Let Uy be the (x,)-
cofactor of L. Then the number N of spanning trees of I equals

1 1
N =y, =det(L+ EJ) = M2 My forany x,y e VI.

(The (i, j)-cofactor of a matrix M is by definition (—1)/*/detM(i, j), where M(i, j)
is the matrix obtained from M by deleting row i and column j. Note that £, does
not depend on an ordering of the vertices of I".)

Proof LetLS, for S C VI, denote the matrix obtained from L by deleting the rows
and columns indexed by S, so that ¢, = detL1*}. The equality N = £, follows by
induction on n, and for fixed n > 1 on the number of edges incident with x. Indeed,
if n =1 then ¢,, = 1. Otherwise, if x has degree 0, then ¢,, = 0 since L%} has zero
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row sums. Finally, if xy is an edge, then deleting this edge from I diminishes ¢,
by det L1}, which by induction is the number of spanning trees of I" with edge
xy contracted, which is the number of spanning trees containing the edge xy. This
shows N = £,,.

Now det(t/ —L) =t T, (¢t — ;) and (—1)"~ ' - - -, is the coefficient of 7, that
is, is % det(t] — L)|,—o. But % det(t] —L) =Y, det(t] — L), s0 tly -ty = 3, by =
nN.

Since the sum of the columns of L is zero, so that one column is minus the sum of
the other columns, we have £, = £,, for any x,y. Finally, the eigenvalues of L+ n%J

are%andu27...,un,sodet(L+ni2]):%uz...“n. 0
For example, the multigraph of valency k on two vertices has Laplace matrix

= le _i so 1 =0, up =2k, and N = $.2k = k.

If we consider the complete graph K, then u, = ... = U, = n, and therefore K,
has N = n"~2 spanning trees. This formula is due to CAYLEY [85]. Proposition 1.3.4
is implicit in KIRCHHOFF [242] and known as the matrix-tree theorem. There is a
“1-line proof” of the above result using the Cauchy-Binet formula.

L

Proposition 1.3.5 (Cauchy-Binet) Let A and B be m x n matrices. Then

detAB" =Y detAgdetBs,
S

where the sum is over the (;’l) m-subsets S of the set of columns, and As (Bs) is the
square submatrix of order m of A (resp. B) with columns indexed by S.

Second proof of Proposition 1.3.4 (sketch) Let N, be the directed incidence matrix
of I' with row x deleted. Then [, = detN,N, . Apply the Cauchy-Binet formula to
get I, as a sum of squares of determinants of size n — 1. These determinants vanish
unless the set S of columns is the set of edges of a spanning tree, in which case the
determinant is £1. d

1.3.6 Bipartite graphs

A graph I' is called bipartite when its vertex set can be partitioned into two disjoint
parts X1, X5 such that all edges of I meet both X| and X,. The adjacency matrix of a
0 B

bipartite graph has the form A = BT 0

}. It follows that the spectrum of a bipartite

graph is symmetric w.r.t. 0: if Z is an eigenvector with eigenvalue 6, then [f

is an eigenvector with eigenvalue —6. (The converse also holds, see Proposition
34.1)

For the ranks one has rkA =21k B. If n; = |X;| (i = 1,2) and n; > np, thenrkA <
2ny, so I' has eigenvalue 0 with multiplicity at least n; — n,.

One cannot, in general, recognize bipartiteness from the Laplace or signless
Laplace spectrum. For example, K; 3 and K| + K3 have the same signless Laplace
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spectrum and only the former is bipartite. And Figure 14.4 gives an example of a
bipartite and a nonbipartite graph with the same Laplace spectrum. However, by
Proposition 1.3.10 below, a graph is bipartite precisely when its Laplace spectrum
and signless Laplace spectrum coincide.

1.3.7 Connectedness

The spectrum of a disconnected graph is easily found from the spectra of its con-
nected components:

Proposition 1.3.6 Let I" be a graph with connected components I; (1 <i<s). Then
the spectrum of I is the union of the spectra of I} (and multiplicities are added). The
same holds for the Laplace spectrum and the signless Laplace spectrum. O

Proposition 1.3.7 The multiplicity of 0 as a Laplace eigenvalue of an undirected
graph I equals the number of connected components of I'.

Proof We have to show that a connected graph has Laplace eigenvalue 0 with
multiplicity 1. As we saw earlier, L = NN, where N is the incidence matrix of an
orientation of I'. Now Lu = 0 is equivalent to N " u = 0 (since 0 = u ' Lu = ||N " ul|?),
that is, for every edge the vector u takes the same value on both endpoints. Since I"
is connected, that means that u is constant. O

Proposition 1.3.8 Let the undirected graph I' be regular of valency k. Then k is
the largest eigenvalue of I', and its multiplicity equals the number of connected
components of .

Proof We have L =kl —A. O

One cannot see from the spectrum alone whether a (nonregular) graph is con-
nected: both K 4 and K 4 Cy4 have spectrum 2L 03, ( —2)1 (we write multiplicities
as exponents). And both Eg and K; + Cg have spectrum 2!, 12,0, (—1)2, (=2)!.

Fig. 1.1 Two pairs of cospectral graphs

Proposition 1.3.9 The multiplicity of 0 as a signless Laplace eigenvalue of an undi-
rected graph I' equals the number of bipartite connected components of T".
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Proof Let M be the vertex-edge incidence matrix of I', so that Q = MM . If
MM u=0,then M u=0, so u, = —uy, for all edges xy, and the support of u is
the union of a number of bipartite components of I". g

Proposition 1.3.10 A graph I is bipartite if and only if the Laplace spectrum and
the signless Laplace spectrum of I are equal.

Proof If I' is bipartite, the Laplace matrix L and the signless Laplace matrix Q
are similar by a diagonal matrix D with diagonal entries +1 (that is, Q = DLD™").
Therefore Q and L have the same spectrum. Conversely, if both spectra are the same,
then by Propositions 1.3.7 and 1.3.9 the number of connected components equals
the number of bipartite components. Hence I” is bipartite. g

1.4 Spectrum of some graphs

In this section we discuss some special graphs and their spectra. All graphs in this
section are finite, undirected, and simple. Observe that the all-1 matrix J of order
n has rank 1, and that the all-1 vector 1 is an eigenvector with eigenvalue n, so the
spectrum of Jis n!, 0"~!. (Here and throughout, we write multiplicities as exponents
where convenient and no confusion seems likely.)

1.4.1 The complete graph

Let I' be the complete graph K,, on n vertices. Its adjacency matrix is A =J —1, and
the spectrumis (n—1)!, (—1)"~!. The Laplace matrix is nf —J, which has spectrum
Ol , nnfl .

1.4.2 The complete bipartite graph
The spectrum of the complete bipartite graph K, , is £+/mn, 0"*+"=2_ The Laplace
spectrum is 0!, m"~ 1 w1 (m+n)!.

1.4.3 The cycle

Let I' be the directed n-cycle D,,. Eigenvectors are (1,,¢2,...,¢" )T, where " =
1, and the corresponding eigenvalue is . Thus, the spectrum consists precisely of
the complex n-th roots of unity 2™/ (j =0,...,n—1).
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Now consider the undirected n-cycle C,. If B is the adjacency matrix of D,, then
A =B+ B is the adjacency matrix of C,. We find the same eigenvectors as before,
with eigenvalues ¢ 4 ¢!, so that the spectrum consists of the numbers 2 cos(27j/n)
(j=0,...,n—1).

This graph is regular of valency 2, so the Laplace spectrum consists of the num-
bers 2 —2cos(2nj/n) (j=0,...,n—1).

1.4.4 The path

Let I be the undirected path P, with n vertices. The ordinary spectrum con-
sists of the numbers 2cos(mj/(n+1)) (j = 1,...,n). The Laplace spectrum is
2-2cos(mj/n) (j=0,...,n—1).

The ordinary spectrum follows by looking at Ca,ya. If u($) = (1,¢,¢2,...,
g2+ 1T is an eigenvector of Ca,4 2, where {22 = 1, then u({) and u({~") have
the same eigenvalue, 2cos(7,j/(n+ 1)), and hence so has u({) —u(~!). This latter
vector has two zero coordinates distance n+ 1 apart and (for { # +1) induces an
eigenvector on the two paths obtained by removing the two points where it is zero.

Eigenvectors of L with eigenvalue 2 — ¢ — ! are (1 + ¢!, &/ 4+ ¢,
., ¢ &™), where £ = 1. One can check this directly, or view P, as the result
of folding C5,,, where the folding has no fixed vertices. An eigenvector of Cy, that is
constant on the preimages of the folding yields an eigenvector of P, with the same
eigenvalue.

1.4.5 Line graphs

The line graph L(T") of I' is the graph with the edge set of I as vertex set, where two
vertices are adjacent if the corresponding edges of I" have an endpoint in common.
If N is the incidence matrix of I', then N "N — 2 is the adjacency matrix of L(T").
Since NN is positive semidefinite, the eigenvalues of a line graph are not smaller
than —2. We have an explicit formula for the eigenvalues of L(I") in terms of the
signless Laplace eigenvalues of I".

Proposition 1.4.1 Suppose I' has m edges, and let py > ... > p, be the positive
signless Laplace eigenvalues of T'. Then the eigenvalues of L(I") are 0; = p; — 2 for
i=1,....,r,and 6; = -2 ifr<i<m.

Proof The signless Laplace matrix Q of I' and the adjacency matrix B of L(I")
satisfy Q=NN' and B+2I = N'N. Because NN ' and NN have the same nonzero
eigenvalues (multiplicities included), the result follows. U

Example Since the path P, has line graph P,_; and is bipartite, the Laplace and the

signless Laplace eigenvalues of P, are 2+ 2cos %i, i=1,...,n
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Corollary 1.4.2 If I is a k-regular graph (k > 2) with n vertices, e = kn/2 edges,
and eigenvalues 0; (i = 1,...,n), then L(I") is (2k — 2)-regular with eigenvalues
6;+k—2(i=1,...,n) and e —n times —2. O

The line graph of the complete graph K,, (n > 2) is known as the triangular graph
T(n). It has spectrum 2(n —2)', (n —4)"~!, (—2)""=3)/2_ The line graph of the
regular complete bipartite graph K, ,, (m > 2) is known as the lattice graph L;(m).
It has spectrum 2(m — 1), (m —2)>"2, (—2)(””1)2. These two families of graphs,
and their complements, are examples of strongly regular graphs, which will be the
subject of Chapter 9. The complement of 7'(5) is the famous Petersen graph. It has
spectrum 3! 15 (=2)%,

1.4.6 Cartesian products

Given graphs I and A with vertex sets V and W, respectively, their Cartesian prod-
uct A is the graph with vertex set V X W, where (v,w) ~ (v/,w') when either
v=yv and w ~ w' or w=w' and v ~ V. For the adjacency matrices we have
Aroa =Ar@I+1RAx.

If u and v are eigenvectors for I and A with ordinary or Laplace eigenvalues 0
and 1, respectively, then the vector w defined by w(, ;) = uyvy is an eigenvector of
I'JA with ordinary or Laplace eigenvalue 0 + 7.

For example, L, (m) = K, JK,,.

For example, the hypercube 2", also called Q,, is the Cartesian product of n
factors K». The spectrum of K3 is 1,—1, and hence the spectrum of 2" consists of
the numbers n — 2i with multiplicity (}) (i=0,1,...,n).

1.4.7 Kronecker products and bipartite double

Given graphs I" and A with vertex sets V and W, respectively, their Kronecker prod-
uct (or direct product, or conjunction) I' ® A is the graph with vertex set V x W,
where (v,w) ~ (V/,w') when v ~ v/ and w ~ w'. The adjacency matrix of I' ® A is
the Kronecker product of the adjacency matrices of I" and A.

If u and v are eigenvectors for I' and A with eigenvalues 6 and 7, respectively,
then the vector w = u®@v (with w(, ) = uyvy) is an eigenvector of I' ® A with eigen-
value 61. Thus, the spectrum of I' ® A consists of the products of the eigenvalues
of I and A.

Given a graph I', its bipartite double is the graph I' ® K, (with for each vertex x
of I' two vertices x” and x”, and for each edge xy of I two edges x'y” and x”y"). If I
is bipartite, its double is just the union of two disjoint copies. If I" is connected and
not bipartite, then its double is connected and bipartite. If I" has spectrum @, then
I' ® K3 has spectrum @ U —@.
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The notation I" X A is used in the literature both for the Cartesian product and
for the Kronecker product of two graphs. We avoid it here.

1.4.8 Strong products

Given graphs I" and A with vertex sets V and W, respectively, their strong product
I'X A is the graph with vertex set V x W, where two distinct vertices (v,w) and
(v/,w') are adjacent whenever v and V' are equal or adjacent in I', and w and w/
are equal or adjacent in A. If Ar and A, are the adjacency matrices of I" and A,
then ((Ar +1) ® (Ap +1)) — I is the adjacency matrix of I' X A. It follows that
the eigenvalues of I' X A are the numbers (6 4+ 1)(n + 1) — 1, where 6 and 1 run
through the eigenvalues of I" and A, respectively.

Note that the edge set of the strong product of I" and A is the union of the edge
sets of the Cartesian product and the Kronecker product of I" and A.

For example, K+, = K, X K,,.

1.4.9 Cayley graphs

Let G be an Abelian group and S C G. The Cayley graph on G with difference set
S is the (directed) graph I' with vertex set G and edge set E = {(x,y) |y —x € S}.
Now I is regular with in- and outvalency |S|. The graph I" will be undirected when
S=-S.

It is easy to compute the spectrum of finite Cayley graphs (on an Abelian group).
Let x be a character of G, that is, a map y : G — C* such that y (x+y) = x (x) x (»).
Then ¥, . x(y) = (Zses X (5)) x (x), so the vector (x(x))xec is aright eigenvector of
the adjacency matrix A of I' with eigenvalue y (S) := X cs x(s). The n = |G| distinct
characters give independent eigenvectors, so one obtains the entire spectrum in this
way.

For example, the directed pentagon (with in- and outvalency 1) is a Cayley graph
for G = Zs and S = {1}. The characters of G are the maps i — ' for some fixed
fifth root of unity {. Hence the directed pentagon has spectrum {{ | {3 = 1}.

The undirected pentagon (with valency 2) is the Cayley graph for G = Zs and
S = {—1,1}. The spectrum of the pentagon becomes {{ 4+ ¢! | {3 = 1}, that is,
consists of 2 and £ (—14+/5) (both with multiplicity 2).

1.5 Decompositions

Here we present two nontrivial applications of linear algebra to graph decomposi-
tions.



