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Preface

1 Description

With the rapid development of the data mining and knowledge discovery, a key
issue which could significantly affect the real world applications of data mining is
the reliability issues of knowledge discovery. It is natural that people will ask if the
discovered knowledge is reliable. Why do we trust the discovered knowledge? How
much can we trust the discovered knowledge? When it could go wrong. All these
questions are very essential to data mining. It is especial crucial to the real world
applications.
One of the essential requirements of data mining is validity. This means both the

discovery process itself and the discovered knowledge should be valid. Reliability
is a necessary but not sufficient condition for validity. Reliability could be viewed
as stability, equivalence and consistency in some ways.
This special volume of the book on the reliability issues of Data Mining and

Knowledge Discovery will focus on the theory and techniques that can ensure the
discovered knowledge is reliable and to identify under which conditions the discov-
ered knowledge is reliable or in which cases the discovery process is robust. In the
last 20 years, many data mining algorithms have been developed for the discovery
of knowledge from given data bases. However in some cases, the discovery process
is not robust or the discovered knowledge is not reliable or even incorrect in cer-
tain cases. We could also find that in some cases, the discovered knowledge may
not necessary be the real reflection of the data. Why does this happen? What are
the major factors that affect the discovery process? How can we make sure that the
discovered knowledge is reliable? What are the conditions under which a reliable
discovery can be assured? These are some interesting questions to be investigated
in this book.
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2 Scope and Topics of this Book

The topics of this book covers the following:

• The theories on reliable knowledge discovery
• Reliable knowledge discovery methods
• Reliability measurement criteria of knowledge discovery
• Reliability estimation methods
• General reliability issues on knowledge discovery
• Domain specific reliability issues on knowledge discovery
• The criteria that can be used to assess the reliability of discovered knowledge.
• The conditions under which we can confidently say that the discovered knowl-
edge is reliable.

• The techniques which can improve reliability of knowledge discovery
• Practical approaches that can be used to solve reliability problems of data mining
systems.

• The theoretical work on data mining reliability
• The practical approaches which can be used to assess if the discovered knowl-
edge is reliable.

• The analysis of the factors that affect data mining reliability
• How reliability can be assessed
• In which condition, the reliability of the discovered knowledge is assured.

3 The Theme and Related Resources

The main purpose of this book is to encourage the use of Reliable Knowledge Dis-
covery from Databases (RKDD) in critical-domain applications related to society,
science, and technology. The book is intended for practitioners, researchers, and
advanced-level students. It can be employed primarily as a reference work and it is
a good compliment to the excellent book on reliable prediction Algorithmic learn-
ing in a random world by Vladimir Vovk, Alex Gammerman, and Glenn Shafer
(New York: Springer, 2005). Extra information sources are the proceedings of the
workshops Reliability Issues in Knowledge Discovery held in conjunction with the
IEEE International Conferences on Data Mining. Other relevant conferences are
the Annual ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD), the International Conference on Machine Learning (ICML), The pacific-
Asia Conference on Knowledge Discovery (PAKDD), and the European Confer-
ence on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECML PKDD). Many AI-related journals regularly publish work
in RKDD. Among others it is worth mentioning the Journal of Data Mining and
Knowledge Discovery, the Journal of Machine Learning Research, and the Journal
of Intelligent Data Analysis.
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4 An Overview of the Book

This book presents the recent advances in the emerging field ofReliable Knowledge
Discovery from Data (RKDD). In this filed the knowledge is considered as reliable
in the sense that its generalization performance can be set in advance. Hence, RKDD
has a potential for a broad spectrum of applications, especially in critical domains
like medicine, finance, military etc. The main material presented in the book is based
on three consequent workshops Reliability Issues in Knowledge Discovery held in
conjunction with the IEEE International Conferences on Data Mining (ICDM) in
2006, 2008, and 2010, respectively. In addition we provided an opportunity to au-
thors to publish the results of their newest research related to RKDD.

This book is organized in seventeen chapters divided into four parts.

Part I includes three chapters on Reliability Estimation.

Chapter 1 provides an overview of typicalness and transductive reliability estimation
frameworks. The overview is employed for introducing an approach for accessing
reliability of individual classifications called joint confidence machine. Chapter 1
describes an approach that compensates the weaknesses of typicalness-based con-
fidence estimation and transductive reliability estimation by integrating them into
a joint confidence machine. It provides better interpretation of the performance of
any classifiers. Experimental results performed with different machine learning al-
gorithms in several problem domains show that there is no reduction of discrimina-
tion performance and is more suitable for applications with risk-sensitive problems
with strict confidence limits.
Chapter 2 introduces new approaches to estimating and correcting individual

predictions in the context of stream mining. It investigates the online reliability
estimation of individual predictions. It proposes different strategies and explores
techniques based on local variance and local bias, of local sensitivity analysis and
online bagging of predictors. Comparison results on benchmark data are given to
demonstrate the improvement of prediction accuracy.
Chapter 3 deals with the problem of quantifying the reliability in the context of

neural networks. It elaborates on new approaches to estimation of confidence and
prediction intervals for polynomial neural networks.
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Part II includes seven chapters on Reliable Knowledge

Discovery Methods.

Chapter 4 investigates outliers in regression targeting robust diagnostic regression.
The chapter discusses both robust regression and regression diagnostics, presents
several contemporary methods through numerical examples in linear regression.
Chapter 5 presents a conventional view on the definition of reliability; points out

the three major categories of factors that affect the reliability of knowledge discov-
ery, examined the impact of model complexity, weak links, varying sample sizes
and the ability of different learners to the reliability of graphical model discovery,
proposed reliable graph discovery approaches.
Chapter 6 provides a generalization of version spaces for reliable classification

implemented using support vector machines.
Chapter 7 presents a unified generative model ONM which characterizes the life

cycle of a ticket. The model uses maximum likelihood estimation to capture reliable
ticket transfer profiles which can reflect how the information contained in a ticket is
used by human experts to make reliable ticket routing decisions.
Chapter 8 applies the methods of aggregation functions for the reliable web based

knowledge discovery from network trafic data.
Chapter 9 gives two new versions of SVM for the regression study of features in

the problem domain. It provides means for feature selection and weighting based on
the correlation analysis to give better and reliable result.
Chapter 10 describes in detail an application of transductive confidence machines

for reliable handwriting recognition. It introduces a TCM framework which can
enhance classifiers to reduce the computational costs and memory consumption re-
quired for updating the non-conformity scores in the offline learning setup of TCMs.
Results are found to have outperformed previous methods on both relatively easy
data and on difficult test samples.

PART III includes four Chapters on Reliability Analysis.

Chapter 11 addresses the problem of reliable feature selection. It introduces a
generic-feature-selection measure together with a new search approach for globally
optimal feature-subset selection. It discusses the reliability in the feature-selection
process of a real pattern-recognition system, provides formal measurements and al-
lows consistent search for relevant features in order to attain global optimal solution.
Chapter 12 provides three detailed case studies to show how the reliability of

an induced classifier can be influenced. The case study results reveal the impact of
data-oriented factors to the relaibility of the discovered knowledge.
Chapter 13 analyzes recently-introduced instance-based penalization techniques

capable of providing more accurate predictions.
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Chapter 14 investigates subsequence frequency measurement and its impact on
the reliability of knowledge discovery in single sequences.

PART IV includes three chapters on Reliability Improvement

Methods.

Chapter 15 proposed to use the inexact field learning method and parameter opti-
mized one-class classifiers to improving reliability of unbalanced text mining by
reducing performance bias.
Chapter 16 proposes a formal description technique for ontology representation

and verification using a high level Petri net approach. It provides the capability of
detection and identification of potential anomalies in ontology for the improvement
of the discovered knolwedge.
Chapter 17 presents an UGDSS framework to provide reliable support for multi-

criteria decision making in uncertainty problem domain. It gives the system design
and architecture.
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Chapter 1

Transductive Reliability Estimation for

Individual Classifications in Machine Learning

and Data Mining

Matjaž Kukar

Abstract Machine learning and data mining approaches are nowadays being used
in many fields as valuable data analysis tools. However, their serious practical use is
affected by the fact, that more often than not, they cannot produce reliable and un-
biased assessments of their predictions’ quality. In last years, several approaches for
estimating reliability or confidence of individual classifiers have emerged, many of
them building upon the algorithmic theory of randomness, such as (historically or-
dered) transduction-based confidence estimation, typicalness-based confidence es-
timation, and transductive reliability estimation. In the chapter we describe typical-
ness and transductive reliability estimation frameworks and propose a joint approach
that compensates their weaknesses by integrating typicalness-based confidence es-
timation and transductive reliability estimation into a joint confidence machine. The
resulting confidence machine produces confidence values in the statistical sense
(e.g., a confidence level of 95% means that in 95% the predicted class is also a
true class), as well as provides us with a general principle that is independent of to
the particular underlying classifier

1.1 Introduction

Usually machine learning algorithms output only bare predictions (classifications)
for the new unclassified examples. While there are ways for almost all machine
learning algorithms to at least partially provide quantitative assessment of the par-
ticular classification, so far there is no general method to assess the quality (confi-
dence, reliability) of a single classification. We are interested in the assessment of
classifier’s performance on a single example and not in average performance on an

Matjaž Kukar
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independent dataset. Such assessments are very useful, especially in risk-sensitive
applications (medical diagnosis, financial and critical control applications) because
there it often matters, how much one can rely upon a given prediction. In such cases
an overall quality measure of a classifier (e.g. classification accuracy, mean squared
error, . . . ) with respect to the whole input distribution would not provide the desired
value. Another possible use of quality assessment of single classifications is in en-
sembles of machine learning algorithms for selecting or combining answers from
different classifiers [24].
There have been numerous attempts to assign probabilities to machine learning

classifiers’ (decision trees and rules, Bayesian classifiers, neural networks, nearest
neighbour classifiers, . . . ) in order to interpret their decision as a probability dis-
tribution over all possible classes. In fact, we can trivially convert every machine
learning classifier’s output to a probability distribution by assigning the predicted
class the probability 1, and 0 to all other possible classes. The posterior probability
of the predicted class can be viewed as a classifier’s confidence (reliability) of its
prediction. However, such estimations may in general not be good due to inherent
applied algorithm’s biases.1

1.2 Related work

In statistics, estimation for individual predictions is assessed by confidence val-
ues and intervals. On the same basis, the reliability estimation was implemented
in machine learning methods, where properties of predictive models were utilized
to endow predictions with corresponding reliability estimates. Although these ap-
proaches are specific for a particular predictive model and cannot be generalized,
they provide favorable results to the general approaches. Such reliability estimates
were developed for the Support Vector Machines [10, 33] the ridge regression model
[28], the multilayer perceptron [27], the ensembles of neural networks [15, 7] and
others.
In contrast to the former group of methods, general (model-independent) meth-

ods utilize approaches, such as local modeling of prediction error based on input
space properties and local learning [2, 11], meta-predicting the leave-one-out error
of a single example [39], transductive reasoning [31, 24], and sensitivity analysis
[6, 18, 19, 5, 4].
Sensitivity analysis aims at determining how much the variation of input can in-

fluence the output of a system. The idea for putting the reliability estimation in the
context of the sensitivity analysis framework is, therefore, in observing the changes
in model outputs by modifying its inputs. Treating the predictive model as a black
box, the sensitivity analysis approach, therefore, indirectly analyzes qualitatively
describable aspects of the model, such as generalization ability, bias, resistance to
noise, avoidance of overfitting, and so on. The motivation came from the related

1 An extreme case of inherent bias can be found in a trivial constant classifier that blindly labels
any example with a predetermined class with self-proclaimed confidence 1.
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fields of data perturbation [9] and co-learning (using unlabeled examples in super-
vised learning) [3]. Transductive reliability estimation can be viewed as an inter-
section of these two fields, as it perturbs the training set with as single unlabelled
example.

1.2.1 Transduction

Several methods for inducing probabilistic descriptions from training data, figur-
ing the use of density estimation algorithms, are emerging as an alternative to more
established approaches for machine learning. Frequently kernel density estimation
[43] is used for density estimation of input data using diverse machine learning
paradigm such as probabilistic neural networks [37], Bayesian networks and clas-
sifiers [17], decision trees [36]. By this approach a chosen paradigm, coupled with
kernel density estimation, is used for modelling the probability distribution of in-
put data. Alternatively, stochastically changing class labels in the training dataset is
proposed [13] in order to estimate conditionally class probability.
There is some ongoing work for constructing classifiers that divide the data space

into reliable and unreliable regions [1]. Such meta-learning approaches have also
been used for picking the most reliable prediction from the outputs of an ensemble
of classifiers [35].
Meta learning community is partially dealing with predicting the right machine

learning algorithm for a particular problem [30] based on performance and charac-
teristics of other, simpler learning algorithms. In our problem of confidence estima-
tion such an approach would result in learning to predict confidence value based on
characteristics of single examples.
A lot of work has been done in applications of the transduction methodology

[33], in connection with algorithmic theory of randomness. Here, approximations
of randomness deficiency for different methods (SVMs, ridge regression) have been
constructed in order to estimate confidence of single predictions. The drawback of
this approach is that confidence estimations need to be specifically designed for each
particular method and cannot be applied to other methods.
Another approach to reliability estimation, similarly based on the transduction

principle, has been proposed in [24]. While it is general and independent of the un-
derlying classifier, interpretation of its results isn’t always possible in the statistical
sense of confidence levels.
A few years ago typicalness has emerged as a complementary approach to trans-

duction [26, 31, 16]. By this approach, a “strangeness” measure of a single example
is used to calculate its typicalness, and consequently a confidence in classifier’s
prediction. The main drawback of this approach is that for each machine learning
algorithm it needs an appropriately constructed strangeness measure.
In the chapter we present a further development of the latter two approaches

where transductive reliability estimation serves as a generic strangeness measure in
the typicalness framework. We compare the experimental results to that of kernel
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density estimation and show that the proposed method significantly outperforms it.
We also suggest how basic transduction principle can be used to significantly im-
prove results of kernel density estimation so it almost reaches results of transductive
typicalness.
The chapter is organized as follows. In Sec. 1.3 we describe the basic ideas of

typicalness and transduction, outline the process of their integration, and review
kernel density estimation methods used for comparison. In Sec. 1.4 we evaluate
how our methodology compares to other approaches in 15 domains with 6 machine
learning algorithms. In Sec. 1.5 we present some conclusions and directions for
future work.

1.3 Methods and materials

Reliability estimation of a classification (ỹ) of a single example (x), given its true
class (y) should have the following property:

Rel(ỹ‖x) = t⇒ P(ỹ �= y)≤ 1− t (1.1)

If Eq. 1.1 holds, or even better, if it approaches equality, a reliability measure can
be treated as a confidence value [26].
The produced confidence values should be valid in the following sense. Given

some possible label space Ỹ , if an algorithm predicts some set of labels Y ⊆ Ỹ with
confidence t for a new example which is truly labelled by y ∈ Ỹ , then we would
expect the following to hold over randomization of the training set and the new
example:

P(y /∈ Y )≤ 1− t (1.2)

Note that Eq. 1.2 is very general and valid for both classification (Y is predicted
set of classes) and regression problems (Y is a predicted interval). As we deal only
with single predictions in this chapter, Eq. 1.2 can be simplified to a single predicted
class value (Y = {ỹ}):

P(y �= ỹ)≤ 1− t (1.3)

1.3.1 Typicalness

In the typicalness framework [26, 28, 33] we consider a sequence of examples
(z1, . . . ,zn) = ((x1,y1), . . . ,(xn,yn)), together with a new example xn+1 with un-
known label ỹn+1, all drawn independently from the same distribution over Z =
X ×Y where X is an attribute space and Y is a label space. Our only assumption is
therefore that the training as well as new (unlabelled) examples are independently
and identically distributed (iid assumption).
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We can use the typicalness framework to gain confidence information for each
possible labelling for a new example xn+1. We postulate some labels ỹn+1 and for
each one we examine how likely (typical) it is that all elements of the extended se-
quence ((x1,y1), . . . ,(xn+1, ỹn+1)) might have been drawn independently from the
same distribution or how typically iid the sequence is. The more typical the se-
quence, the more confident we are in ỹn+1. To measure the typicalness of sequences,
we define, for every n ∈ N, a typicalness function t : Zn → [0,1] which, for any
r ∈ [0,1] has the property

P((z1, . . . ,zn) : t(z1, . . . ,zn)≤ r)≤ r (1.4)

If a typicalness function returns 0.05 for a given sequence, we know that the se-
quence is unusual because it will be produced at most 5% of the time by any iid
process. It has been shown [26] that we can construct such functions by considering
the “strangeness” of individual examples. If we have some family of functions

f : Zn×{1,2, . . . ,n}→ R, n ∈ N . . . , (1.5)

then we can associate a strangeness value

α(zi) = f ({z1, . . . ,zn}; i), i = 1,2, . . .n (1.6)

with each example and define the following typicalness function

t((z1, . . . ,zn)) =
#{α(zi) : α(zi)≥ α(zn)}

n
(1.7)

We group individual strangeness functions αi into a family of functions An : n ∈ N,
where An :Zn→R

n for all n. This is called an individual strangeness measure if, for
any n, any permutation π : {1, . . . ,n} → {1, . . . ,n}, any sequence (z1, . . . ,zn) ∈ Zn,
and any (απ(1), . . . ,απ(n)) ∈ R

n) it satisfies the following criterion [26]:

(α1, . . . ,αn) = An(z1, . . . ,zn) =⇒ (απ(1), . . . ,απ(n)) = An(zπ(1), . . . ,zπ(n)) (1.8)

The meaning of this criterion is that the same value should be produced for each
individual element in sequence, regardless of the order in which their individual
strangeness values are calculated. This is a very important criterion, because it can
be proven [26] that the constructed typicalness function (1.7) satisfies the condition
from (1.4), provided that the individual strangeness measure satisfies the criterion
(1.8).
From a practical point of view it is advisable [26] to use positive strangeness

measures, ranging between 0 for most typical examples, and some positive upper
bound, (up to +∞), for most untypical examples.
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1.3.1.1 Typicalness in machine learning

In the machine learning setup, for calculating the typicalness of a new example
zn+1 = (xn+1, ỹn+1) described with attribute values xn+1 and labelled with ỹn+1,
given the training set (z1, . . . ,zn), Eq. 1.7 changes to

t((z1, . . . ,zn+1)) =
#{α(zi) : α(zi)≥ α(zn+1)}

n+1
(1.9)

Note that on the right-hand side of Eq. 1.9, zi belongs to the extended sequence, i.e.
zi ∈ {z1, . . . ,zn+1}. For a given machine learning algorithm, first we need to con-
struct an appropriate strangeness measure and modify the algorithm accordingly.2

Then, for each new unlabelled example x, all possible labels ỹ ∈ Y are considered.
For each label ỹ a typicalness of labelled example t((x, ỹ)) = t((z1, . . . ,zn,(x, ỹ)))
is calculated. Finally, the example is labelled with “most typical” class, that is the
one that maximizes {t((x, ỹ))}. By Eq. 1.7 the second largest typicalness is an upper
bound on the probability that the excluded classifications are correct [31]. Conse-
quently, the confidence is calculated as follows:

confidence((x, ỹ)) = 1− typicalness of second most typical label. (1.10)

1.3.2 Transductive reliability estimation

Transduction is an inference principle that takes a training sample and aims at es-
timating the values of a discrete or continuous function only at given unlabelled
points of interest from input space, as opposed to the whole input space for induc-
tion. In the learning process the unlabelled points are suitably labelled and included
into the training sample. The usefulness of unlabelled data has also been advocated
in the context of co-training. It has been shown [3] that for every better-than-random
classifier its performance can be significantly boosted by utilizing only additional
unlabelled data.
It has been suggested [40] that when solving a given problem one should avoid

solving a more general problem as an intermediate step. The reasoning behind this
principle is that, in order to solve a more general task, resources may be wasted
or compromises made which would not have been necessary for solving only the
problem at hand (i.e. function estimation only on given points). This common-sense
principle reduces a more general problem of inferring a functional dependency on
the whole input space (inductive inference) to the problem of estimating the values
of a function only at given points (transductive inference).

2 This is the main problem of the typicalness approach, as the algorithms need do be considerably
changed.
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1.3.2.1 A formal background

Let X be a space of attribute descriptions of points (examples) in a training sample
(dataset), and Y a space of labels (continuous or discrete) assigned to each point.
Given a probability distribution P , defined on the input space X ×Y , a training
sample

S = {(x1,y1), . . . ,(xl ,yl)} (1.11)

consisting of l points, is drawn iid (identically independently distributed) according
to P . Additional m data points (working sample)

W = {xl+1, . . . ,xl+m} (1.12)

with unknown labels are drawn in the same manner. The goal of transductive infer-
ence is to label all the points from the sample W using a fixed set H of functions
f : X 
→ Y in order to minimize an error functional both in the training sample S
and in the working sample W (effectively, in S∪W ). In contrast, inductive infer-
ence aims at choosing a single function f ∈ H that is best suited to the unknown
probability distribution P .
At this point there arises a question how to calculate labels of points from a work-

ing sample. This can be done by labelling every point from a working sample with
every possible label value; however given m working points this leads to a combi-
natorial explosion yielding nm possible labellings. For each possible labelling, an
induction process on S∪W is run, and an error functional (error rate) is calculated.
By leveraging the iid sampling assumption and transductive inference, one can

for each labelling estimate its reliability (also referred to as confidence, a probabil-
ity that it is correct). If the iid assumption holds, the training sample S as well as
the joint correctly labelled sample S∪W should both reflect the same underlying
probability distribution P .
If one could measure a degree of similarity between probability distributions

P(S) and P(S∪W ), this could be used as a measure of reliability of the particu-
lar labelling. Unfortunately, this problem in general belongs to the non-computable
class [25], so approximation methods have to be used [42, 22].
Evaluation of prediction reliability for single points in data space has many uses.

In risk-sensitive applications (medical diagnosis, financial and critical control appli-
cations) it often matters, how much one can rely upon a given prediction. In such a
case a general reliability measure of a classifier (e.g. classification accuracy, mean,
squared error, . . . ) with respect to the whole input distribution would not provide
the desired warranty. Another use of reliability estimations is in combining answers
from different predictors, weighed according to their reliability.

1.3.2.2 Why is transduction supposed to work?

There is a strong connection between the transduction principle and the algorithmic
(Kolmogorov) complexity. Let the sets S and S∪W be represented as binary strings
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u and v, respectively. Let l(v) be the length of the string v and C(v) its Kolmogorov
complexity, both measured in bits. We define the randomness deficiency of the string
v as following [25, 42]:

δ (v) = l(v)−C(v) (1.13)

Randomness deficiency measures how random is the respective binary string and
therefore the set it represents. The larger it is, more regular is the string (and the
set). If we could calculate the randomness deficiency (but we cannot, since it is not
computable), we could do it for all possible labellings of the set S∪W and select the
labelling of W with largest randomness deficiency as the most probable one [42].
That is, we would select the most regular one. We can also construct a universal
Martin-Löf’s test for randomness [25]:

∑{P(x|l(x) = n) : δ (x)≥ m} ≤ 2−m (1.14)

That is, for all binary strings of fixed length n, the probability of their randomness
deficiency δ being greater than m is less than 2−m. The value 2−δ (x) is therefore a
p-value function for our randomness test [42].
Unfortunately, as the definition of randomness deficiency is based on the Kol-

mogorov complexity, it is not computable. Therefore we need feasible approxima-
tions to use this principle in practice. Extensive work has been done by using Sup-
port Vector Machines [10, 33, 42], however no general approach exists so far.

1.3.2.3 A machine learning interpretation

In machine learning terms, the sets S and S∪W are represented by the induced
models MS and MS∪W . The randomness of the sets reflects in the (Kolmogorov)
complexity of the respective models. If for the set S∪W the labelling of W with
largest randomness deficiency is selected, it follows from our definition of random-
ness deficiency (Eq. 1.13) that since the length l(v) is constant, the Kolmogorov
complexity C(MS∪W ) is minimal. Therefore the model MS∪W is most similar to the
MS.
This greatly simplifies our view on the problem, namely it suffices to compare

the (finite) models MS and MS∪W . Greater difference between them means that the
set S∪W is more random than the set S and (under the assumption that S is sufficient
for learning effective model) thatW consist of (at least some) improperly labelled,
untypical examples.
Although the problem seems easier now, it is still a computational burden to

calculate changes between model descriptions (assuming that they can be efficiently
coded; black-box methods are thus out of question). However, there exists another
way.
Since transduction is an inference principle that aims at estimating the values of

a function only at given points of interest from input space (the setW ), we are inter-
ested only in model change considering this examples. Therefore we can compare
the classifications (or even better, probability distributions) of modelsMS and mod-
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elsMS∪W . Obviously, the labelling ofW that would minimally change the modelMS
is as given byMS. We will examine this approach in more detail in the next section.
The transductive reliability estimation process and its theoretical foundations

originating from Kolmogorov complexity are described in more detail in [24]. Ba-
sically, we have a two-step process, featuring an inductive step followed by a trans-
ductive step.

• An inductive step is just like an ordinary inductive learning process in machine
learning. A machine learning algorithm is run on the training set, inducing a
classifier. A selected example is taken from an independent dataset and classi-
fied using the induced classifier. An example, labelled with the classified class is
temporarily included into the training set.

• A transductive step is almost a repetition of an inductive step. Amachine learning
algorithm is run on the changed training set, transducing a classifier. The same
example as before is taken from the independent dataset and and classified using
the transduced classifier. Both classifications of the same example are compared
and their difference (distance) is calculated, thus approximating the randomness
deficiency.

• After the reliability is calculated, the example in question is removed from the
training set.

In practice the inductive step is performed only once, namely on the original
training set. New examples are not permanently included in the training set; this
would be improper since the correct class is at this point still unknown. Although
retraining for each new example seems to be highly time consuming, it is not such
a problem in practice, especially if incremental learners (such as naive Bayesian
classifier) are used.
A brief algorithmic sketch is given in Fig. 1.1. An intuitive explanation of trans-

ductive reliability estimation is that we disturb a classifier by inserting a new exam-
ple in a training set. A magnitude of this disturbance is an estimation of classifier’s
instability (unreliability) in a given region of its problem space.
Since a prerequisite for a machine learning algorithm is to represent its classifi-

cations as a probability distribution over all possible classes, we need a method to
measure the difference between two probability distributions. The difference mea-
sureD should ideally satisfy all requirements for a distance (i.e. nonnegativity, trian-
gle nonequality and symmetry), however in practice nonnegativity suffices. For cal-
culating the difference between probability distributions, a Kullback-Leibler diver-
gence is frequently used [12, 38]. Kullback-Leibler divergence, sometimes referred
to as a relative entropy or I-divergence, is defined between probability distributions
P and Q

I(P,Q) = −
n

∑
i=1

pi log2
pi

qi
(1.16)

In our experiments we use a symmetric Kullback-Leibler divergence, or J-divergence,
which is defined as follows:
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J(P,Q) = (I(P,Q)+ I(Q,P)) =
n

∑
i=1

(pi−qi) log2
pi

qi
(1.17)

J(P,Q) is limited to the interval [0,∞], where J(P,P) = 0. Since in this context we
require the values to be from the [0,1] interval we normalize it in the spirit of Martin-
Löf’s test for randomness.

JN(P,Q) = 1−2−J(P,Q) (1.18)

However, measuring the difference between probability distributions does not al-
ways perform well. There are at least a few exceptional classifiers (albeit trivial
ones) where the original approach utterly fails.

1.3.2.4 Assessing the classifier’s quality: the curse of trivial models

So far we have implicitly assumed that the model used by the classifier is good
(at the very least better than random). Unsurprisingly, our approach works very
well with random classifiers (probability distributions are randomly calculated) by
effectively labelling their classifications as unreliable [22, 23].

Input : machinelearningclassi f ier,atrainingsetandanunlabelledtest
example

Out put : Estimationo f testexample′sclassi f icationreliability

(1.15)

Inductive step:

• train a classifier from the provided training set
• select an unlabelled test example
• classify this example with an induced classifier
• label this example with a predicted class
• temporarily add the newly labelled example to the training set

Transductive step:

• train a classifier from the extended training set
• select the same unlabelled test example as above
• classify this example with a transduced classifier

Calculate a randomness deficiency approximation as a normalized difference
JN(P,Q) between inductive (P) and transductive (Q) classification.

Calculate the reliability of classification as in a universal Martin-Löf’s test for randomness

1-normalized difference

Fig. 1.1: The algorithm for transductive reliability estimation


