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Preface 

 
 

As a research advisor to graduate students working on automotive projects, I 
have frequently felt the need for a textbook that summarizes common 
vehicle control systems and the dynamic models used in the development of 
these control systems. While a few different textbooks on ground vehicle 
dynamics are already available in the market, they do not satisfy all the 
needs of a control systems engineer. A controls engineer needs models that 
are both simple enough to use for control system design but at the same time 
rich enough to capture all the essential features of the dynamics. This book 
attempts to present such models and actual automotive control systems from 
literature developed using these models. 

The control system applications covered in the book include cruise 
control, adaptive cruise control, anti-lock brake systems, automated lane 
keeping, automated highway systems, yaw stability control, engine control, 
passive, active and semi-active suspensions, tire-road friction coefficient 
estimation, rollover prevention, and hybrid electric vehicles. A special effort 
has been made to explain the several different tire models commonly used in 
literature and to interpret them physically. 

In the second edition, the topics of roll dynamics, rollover prevention and 
hybrid electric vehicles have been added as Chapters 15 and 16 of the book. 
Chapter 8 on electronic stability control has been significantly enhanced. 

As the worldwide use of automobiles increases rapidly, it has become 
ever more important to develop vehicles that optimize the use of highway 
and fuel resources, provide safe and comfortable transportation and at the 
same time have minimal impact on the environment. To meet these diverse 
and often conflicting requirements, automobiles are increasingly relying on 
electromechanical systems that employ sensors, actuators and feedback 
control. It is hoped that this textbook will serve as a useful resource to 
researchers who work on the development of such control systems, both in 
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the automotive industry and at universities. The book can also serve as a 
textbook for a graduate level course on Vehicle Dynamics and Control. 

An up-to-date errata for typographic and other errors found in the book 
after it has been published will be maintained at the following web-site: 

http://www.menet.umn.edu/~rajamani/vdc.html 
I will be grateful for reports of such errors from readers. 
 

Rajesh Rajamani 
Minneapolis, Minnesota 

May 2005 and June 2011 

http://www.menet.umn.edu/~rajamani/vdc.html
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Chapter 1 

INTRODUCTION 

 
 

The use of automobiles is increasing worldwide. In 1970, 30 million vehicles 
were produced and 246 million vehicles were registered worldwide (Powers 
and Nicastri, 2000). By 2011, approximately 72 million vehicles are 
expected to be produced annually and more than 800 million vehicles could 
be registered. 

The increasing worldwide use of automobiles has motivated the need to 
develop vehicles that optimize the use of highway and fuel resources, pro-
vide safe and comfortable transportation and at the same time have minimal 
impact on the environment. It is a great challenge to develop vehicles that 
can satisfy these diverse and often conflicting requirements. To meet this 
challenge, automobiles are increasingly relying on electromechanical sub-
systems that employ sensors, actuators and feedback control. Advances in 
solid state electronics, sensors, computer technology and control systems 
during the last two decades have also played an enabling role in promoting 
this trend. 

This chapter provides an overview of some of the major electromechanical 
feedback control systems under development in the automotive industry and 
in research laboratories. The following sections in the chapter describe 
developments related to each of the following five topics: 

a) driver assistance systems 
b) active stability control systems 
c) ride quality improvement 
d) traffic congestion solutions and  
e) fuel economy and vehicle emissions 

R. Rajamani, Vehicle Dynamics and Control, Mechanical Engineering Series,
DOI 10.1007/978-1-4614-1433-9_1,
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2 Chapter 1 
 
1.1 DRIVER ASSISTANCE SYSTEMS 

On average, one person dies every minute somewhere in the world due to a 
car crash (Powers and Nicastri, 2000). In addition to the emotional toll of car 
crashes, their actual costs in damages equaled 3% of the world GDP and 
totaled nearly one trillion dollars in 2000. Data from the National Highway 
Safety Transportation Safety Association (NHTSA) show that approximately 
6 million accidents (with 35,000 fatalities) occur annually on US highways 
(NHTSA, 2010). Data also indicates that, while a variety of factors contribute 
to accidents, human error accounts for over 90% of all accidents (United 
States DOT Report, 1992). 

A variety of driver assistance systems are being developed by automotive 
manufacturers to automate mundane driving operations, reduce driver burden 
and thus reduce highway accidents. Examples of such driver assistance 
systems under development include  

a) collision avoidance systems which automatically detect slower 
moving preceding vehicles and provide warning and brake assist to 
the driver  

b) adaptive cruise control (ACC) systems which are enhanced cruise 
control systems and enable preceding vehicles to be followed 
automatically at a safe distance 

c) lane departure warning systems 
d) lane keeping systems which automate steering on straight roads 
e) vision enhancement/ night vision systems 
f) driver condition monitoring systems which detect and provide 

warning for driver drowsiness, as well as for obstacles and pedestrians 
g) safety event recorders and automatic collision and severity 

notification systems 

These technologies will help reduce driver burden and make drivers less 
likely to be involved in accidents. This can also help reduce the resultant 
traffic congestion that accidents tend to cause. 

Collision avoidance and adaptive cruise control systems are discussed in 
great depth in Chapters 5 and 6 of this book. Lane keeping systems are 
discussed in great detail in Chapter 3. 

1.2 ACTIVE STABILITY CONTROL SYSTEMS 

Vehicle stability control systems that prevent vehicles from spinning, drift-
ing out and rolling over have been developed and recently commercialized 
by several automotive manufacturers. Stability control systems that prevent 
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vehicles from skidding and spinning out are often referred to as yaw stability 
control systems and are the topic of detailed description in Chapter 8 of this 
book. Stability control systems that prevent roll over are referred to as active 
rollover prevention systems and are discussed in depth in Chapter 15 of the 
book. An integrated stability control system can incorporate both yaw 
stability and roll over stability control. 

 

 
Figure 1-1. The functioning of a yaw stability control system 

Figure 1-1 schematically shows the function of a yaw stability control 
system. In this figure, the lower curve shows the trajectory that the vehicle 
would follow in response to a steering input from the driver if the road were 
dry and had a high tire-road friction coefficient. In this case the high friction 
coefficient is able to provide the lateral force required by the vehicle to 
negotiate the curved road. If the coefficient of friction were small or if the 
vehicle speed were too high, then the vehicle would be unable to follow the 
nominal motion required by the driver – it would instead travel on a 
trajectory of larger radius (smaller curvature), as shown in the upper curve of 
Figure 1-1. The function of the yaw control system is to restore the yaw 
velocity of the vehicle as much as possible to the nominal motion expected 
by the driver. If the friction coefficient is very small, it might not be possible 
to entirely achieve the nominal yaw rate motion that would be achieved by 


