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Preface

Rough Set Theory was introduced by Pawlak in the early 1980’s. In the last quar-
ter century it has become an important part of soft computing and has proved its
relevance in many real-world applications.

While initially most of the articles on Rough Sets had been centered on theory,
currently the focus of the research has shifted to practical usage of mathematical
advances. A state of the art survey on Rough Sets from an application perspective is
highly desirable but still missing.

The book is written for business and industry professionals who would like to
evaluate the potential of Rough Sets. The intended readership includes (1) managers
looking for methods to improve their businesses, (2) researchers in industrial labo-
ratories and think tanks who are investigating new methods to enhance efficiency of
their solutions, (3) researchers at universities who want to use Rough Sets to solve
real-world problems and seek for guidance on how to describe their ideas in a way
understandable for the industry readers.

The approach to Rough Sets presented in the following chapters differs from the
most of articles in other publications on this subject. This book focuses on prac-
tical use cases backed by sound theory, in contrast to the presentation of a theory
applied to a problem. Furthermore, it provides a unified view and easily accessible
description of applications.

The book covers methods in data analysis, decision support, as well as manage-
ment and engineering in order to show the great potential of Rough Sets in almost
any domain. The number of real-world applications of Rough Sets has increased sig-
nificantly and goes probably into hundreds. Hence the book can only give a sample
of the selected practically relevant case studies.

The editors of the book would like to acknowledge the authors of all chapters for
their excellent contributions. Special thanks go to Mr. Sebastian Widz for his great
help with revising and indexing the materials.

Georg Peters
Pawan Lingras

Dominik Ślęzak
Yiyu Yao

Munich, Germany
Halifax, Canada
Warsaw, Poland
Regina, Canada
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Dominik Ślęzak Institute of Mathematics, University of Warsaw, Warsaw, Poland;
Infobright Inc., Poland, Warsaw, Poland

Roger Tagg School of Computer and Information Science, University of South
Australia, Adelaide, Australia

Richard Weber Department of Industrial Engineering, Universidad de Chile, San-
tiago, Chile

Sebastian Widz Systems Research Institute, Polish Academy of Sciences, Warsaw,
Poland; XPLUS SA, Warsaw, Poland

Yiyu Yao Department of Computer Science, University of Regina, Regina, Sas-
katchewan, Canada



Part I
Foundations of Rough Sets



An Introduction to Rough Sets

Yiyu Yao and Dominik Ślęzak

Abstract Fundamental philosophy, concepts and notions of rough set theory (RST)
are reviewed. Emphasis is on a constructive formulation and interpretation of rough
set approximations. We restrict our discussions to classical RST introduced by
Pawlak, with some brief references to the existing extensions. Whenever possible,
we provide multiple equivalent definitions of fundamental RST notions in order to
better illustrate their usefulness. We also refer to principles of RST based data anal-
ysis that can be used to mine data gathered in information tables.

1 Introduction

Rough set theory (RST) provides a mathematical formalism and means for rep-
resenting and analyzing data [1–4]. Several unique features of the theory make it
attractive to practitioners. RST is simple, elegant and, at the same time, flexible. It
has been successfully applied in many areas, including those described in this book
[5–10], as well as many others [11–14].

It is also worth mentioning that quite a few RST based data analysis software
packages have been developed, including LERS,1 ROSETTA,2 RSES3/RSES-lib4

1http://lightning.eecs.ku.edu/LERS.html.
2http://www.lcb.uu.se/tools/rosetta/.
3http://logic.mimuw.edu.pl/~rses/.
4http://rseslib.mimuw.edu.pl/.
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D. Ślęzak
Infobright Inc., Poland, Krzywickiego 34 pok. 219, 02-078 Warsaw, Poland
e-mail: slezak@infobright.com

G. Peters et al. (eds.), Rough Sets: Selected Methods and Applications in Management
and Engineering, Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-4471-2760-4_1, © Springer-Verlag London Limited 2012

3

http://lightning.eecs.ku.edu/LERS.html
http://www.lcb.uu.se/tools/rosetta/
http://logic.mimuw.edu.pl/~rses/
http://rseslib.mimuw.edu.pl/
mailto:yyao@cs.uregina.ca
mailto:slezak@mimuw.edu.pl
mailto:slezak@infobright.com
http://dx.doi.org/10.1007/978-1-4471-2760-4_1


4 Y. Yao and D. Ślęzak

and RoughICE.5 One can apply them to mine data sets in a tabular form, which can
be easily extracted from a relational database or derived using some extraction and
transformation techniques.

RST leads toward a unique methodology of intelligent knowledge discovery. It
may be useful in, for instance, categorization, approximation, concept formation
and inductive learning [15–18]. In this chapter, we focus on the following aspects
related to the foundations of RST:

– Description of concepts using a decision logic language.
– Discernibility of objects based on equivalence relations.
– Rough set approximations of sets and concepts.
– Dependencies between subsets of attributes.

We demonstrate basic notions and ideas through examples. A reader interested in
more details is referred to the seminal book by Pawlak [2].

2 Objects and Concepts

RST uses a simple knowledge and data representation scheme called an information
table (or an information system [19]). Two important notions related to the analy-
sis of data gathered in information tables are the decision logic language and the
indiscernibility of objects.

2.1 Information Tables

It is usually assumed that an information table contains a finite set of objects de-
scribed by using a finite set of attributes.

Definition 1 An information table is a tuple:

M = (U,At, {Va|a ∈ At}, {Ia|a ∈ At}), (1)

where U is a finite nonempty set of objects, At is a finite nonempty set of attributes,
Va is a nonempty set of values for an attribute a ∈ At, and Ia : U −→ Va is an
information function, which maps objects in U into values in Va .

The value of an object x ∈ U on an attribute a ∈ At is denoted by Ia(x). In
general, for a subset of attributes A ⊆ At, we use IA(x) to denote the vector of
values of x on A.

The notion of an information table can be extended in many ways. As an example
of such extension, consider the notion of a decision table (or a classification table) as

5http://www.mimuw.edu.pl/~bazan/roughice/?sLang=en.

http://www.mimuw.edu.pl/~bazan/roughice/%3FsLang=en
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Table 1 An information
table a b c d

o1 0 0 1 +
o2 0 0 1 +
o3 0 1 0 −
o4 1 0 0 +
o5 1 0 1 +
o6 1 1 2 +
o7 1 2 1 −
o8 1 2 1 −
o9 1 2 1 −

a special information table in which the set of attributes is divided into two disjoint
subsets called condition attributes C and decision (or classification) attributes D,
namely, At = C ∪D and C ∩D = ∅.

Example 1 Consider an information table illustrated by Table 1, in which rows
represent objects and columns represent attributes. The set of objects is given by
U = {o1, o2, . . . , o9}, the set of attributes by At = {a, b, c, d}, and the sets of at-
tribute values are Va = {0,1}, Vb = {0,1,2}, Vc = {0,1,2} and Vd = {−,+}. Each
cell in the information table is a value of an object on an attribute. For instance,
we have Ia(o1) = 0, Id(o3) = −, and so on. We have also I{a,b}(o1) = (0,0),
I{b,c,d}(o2) = (0,1,+) and so on. We can divide the set of attributes into two dis-
joint sets C = {a, b, c} and D = {d} to produce a decision table, where C is the set
of three condition attributes and D is the set containing a single decision attribute.

Another possible aspect of extending the original notion of an information table
relates to the values of attributes. If the information function Ia is a partial func-
tion, i.e., it is not defined or missing for certain objects, we obtain an incomplete
information table [20]. If Ia maps an object to a subset of attribute values, we obtain
a set-valued information table [21]. Some authors go even further and, for exam-
ple, combine the set-valued and interval-valued attributes within the framework of
incomplete information databases [22]. In this chapter, for the sake of clarity, we
only consider the simplest case of complete information tables. However, various
extensions may be useful for specific applications, without sacrificing the important
advantage of clarity of RST.

2.2 Decision Logic Language

One of the key aspects of RST relates to the notion of a concept. There are many
ways of interpreting concepts [4]. We adopt the view of representing a concept
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jointly by a pair of intension and extension [23]. The intension (also called the de-
scription) is an intrinsic property of a concept, based on which one can determine
if an object is an instance of the concept. The extension (also called the support) is
the set of instances of a concept. Orłowska [24] and Pawlak [2] use a decision logic
language L in order to define concepts in information tables. The intension and ex-
tension of a concept can be precisely defined as a formula in L and the meaning of
this formula, respectively [17].

Definition 2 A decision logic language L in an information table can be defined
as follows. An atomic formula is given by a descriptor (a = v), where a ∈ At and
v ∈ Va . Additional formulas of L are constructed recursively. If φ and ψ are in L,
then ¬(φ), (φ ∧ψ), (φ ∨ψ), (φ →ψ), and (φ ↔ψ) are in L.

In some applications, it is enough to use only a subset of logic operators. For
example, one may use the set of operators {∧,∨} or {∧}. In general, usage of the
decision logic language while formulating knowledge derived from data puts RST
based data analysis into a wider category of symbolic machine learning techniques
aimed at describing things in a user friendly fashion [1, 25].

One may also consider different forms of descriptors, depending on the types of
attributes. For instance, in case of the set-valued and interval-valued attributes (see
Sect. 2.1), it might be reasonable to consider inclusion or overlap instead of equality
in (a = v). Other examples may include descriptors with inequality operators for
attributes with ordered domains of values [26, 27] or descriptors based on degrees
of similarity and closeness [18, 28]. In this chapter, we restrict ourselves to the
simplest equality based descriptors.

Formulas in L are interpreted based on the notion of satisfiability. For a formula
φ, by x |= φ we denote that the object x satisfies φ.

Definition 3 The satisfiability of any formula is defined recursively as follows:

(0). x |= (a = v) iff Ia(x)= v,
(1). x |= ¬(φ) iff not x |= φ,
(2). x |= (φ ∧ψ) iff x |= φ and x |=ψ ,
(3). x |= (φ ∨ψ) iff x |= φ or x |=ψ ,
(4). x |= (φ →ψ) iff x |= ¬φ ∨ψ ,
(5). x |= (φ ↔ψ) iff x |= φ →ψ and x |=ψ → φ.

Definition 4 If φ is a formula, the set m(φ) defined by:

m(φ)= {x ∈U | x |= φ}, (2)

is called the meaning of the formula φ in an information table.

The meaning of a formula φ is indeed a set of all objects having the properties
expressed by the formula φ. This way, a connection between formulas and subsets
of U is established. The meanings of formulas can be computed recursively as well,
by drawing a correspondence between the logic and set operators.
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The decision logic language L provides a formal description of concepts. A con-
cept in an information table is represented as a pair (φ,m(φ)), where φ ∈ L and
m(φ)⊆ U . The formula φ is a description of m(φ) in M , i.e., the intension of con-
cept (φ,m(φ)), and m(φ) is the set of objects satisfying φ, namely, the extension of
(φ,m(φ)). The outcomes of RST based learning processes can be precisely formu-
lated based on formal representation of concepts.

Example 2 Consider the information table given in Table 1. Consider the following
formulas: a = 0, a = 1, b= 1, a = 0∧ b= 1, a = 0∨ b= 1, and a = 1∧¬(b= 1).
Their meaning sets are as follows:

m(a = 0)= {o1, o2, o3},
m(b= 1)= {o3, o6},
m(a = 0∧ b= 1)=m(a = 0)∩m(b= 1)= {o3},
m(a = 1)= {o4, o5, o6, o7, o8, o9},
m(a = 0∨ b= 1)=m(a = 0)∪m(b= 1)= {o1, o2, o3, o6},
m(a = 1∧¬(b= 1))=m(a = 1)∩ (m(b= 1))c = {o4, o5, o7, o8, o9}.

They define the following concepts in the information table:

(a = 0, {o1, o2, o3}),
(b= 1, {o3, o6}),
(a = 0∧ b= 1, {o3}),
(a = 1, {o4, o5, o6, o7, o8, o9}),
(a = 0∨ b= 1, {o1, o2, o3, o6}),
(a = 1∧¬(b= 1), {o4, o5, o7, o8, o9}).

The explicit expression of a concept as a pair of a formula and a set of objects,
enables us to analyze an information table in both logic and set-theoretic terms.
For example, we can refer to the concept (a = 0, {o1, o2, o3}) by either the formula
a = 0 or the set of objects {o1, o2, o3}. Of course the same set of objects can be
obtained using many formulas.

In RST based data analysis, one often considers only a subset of attributes
A ⊆ At, i.e., only attributes from A are used in forming formulas of the logic lan-
guage. We use L(A) to denote the language defined using only attributes from A.
All notions introduced so far for L can be reformulated for L(A).
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2.3 Indiscernibility Relations

Indiscernibility is another fundamental notion or RST. By the indiscernibility of
objects, one can granulate the universe into subsets of objects.

Definition 5 For a subset of attributes A ⊆ At, we can define an indiscernibility
relation IND(A) as follows:

x IND(A)y ⇐⇒ ∀a∈A(Ia(x)= Ia(y))

⇐⇒ IA(x)= IA(y). (3)

Two objects are indiscernible with respect to a subset of attributes A if they have the
same values on every a ∈A. It can be verified that IND(A) is reflexive, symmetric,
and transitive, namely, IND(A) is an equivalence relation on U . IND(A) induces a
partition of U , denoted by U/ IND(A) or U/A. Let

[x]IND(A) = [x]A = {y ∈U | x IND(A)y} (4)

denote the equivalence class of IND(A) that contains x. The partition is given by
U/A=U/ IND(A)= {[x]A | x ∈U}.

The notion of indiscernibility can be extended in many ways. Extensions may
be required to address the need of dealing with non-standard values (see Sect. 2.1)
and non-standard descriptors (see Sect. 2.2) that are supposed to correspond to in-
discernibility classes. We refer a reader to some tolerance based and fuzzy based
generalizations considered in, e.g. [29, 30].

Let us focus on the simplest type of indiscernibility. The set inclusion of equiva-
lence relations defines a partial order on the set of all partitions.

Definition 6 A partial order called refinement-coarsening relation on the set of all
partitions of U is defined according to set inclusion of the corresponding equiva-
lence relations as follows: for two relations E and E′ on U ,

U/E �U/E′ ⇐⇒ E ⊆E′, (5)

i.e., each block of U/E′ is the union of some blocks of U/E. Thus, U/E is called a
refinement of U/E′ and U/E′ is called a coarsening of U/E.

Different subsets of attributes may define different equivalence relations. Equiv-
alence relations defined by single attributes play an important role, as they can be
used to construct equivalence relations defined by any subset of attributes. For a
subset of attributes A⊆ At and x ∈U , we have:

IND(A)=
⋂

a∈A

IND({a}), [x]A =
⋂

a∈A

[x]{a}. (6)
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For two subsets of attributes A,A′ ⊆ At and x ∈U , we have:

IND(A∪A′)= IND(A)∩ IND(A′), [x]A∪A′ = [x]A ∩ [x]A′ . (7)

The partial order � on partitions defined by subsets of attributes is related to set-
inclusion of attributes, that is, for A,A′ ⊆ At and x ∈U , we have:

A⊆A′ =⇒ U/A′ �U/A∧ [x]A′ ⊆ [x]A. (8)

That is, the refinement-coarsening relation � is monotonic with respect to set inclu-
sion of subsets of attributes.

Example 3 Consider again Table 1. The partitions induced by subsets of attributes
{a}, {b}, {c}, {a, b} and {a, b, c} are given by:

U/{a} = {{o1, o2, o3}, {o4, o5, o6, o7, o8, o9}},
U/{b} = {{o1, o2, o4, o5}, {o3, o6}, {o7, o8, o9}},
U/{c} = {{o1, o2, o5, o7, o8, o9}, {o3, o4}, {o6}},
U/{a, b} = {{o1, o2}, {o3}, {o4, o5}, {o6}, {o7, o8, o9}},
U/{a, b, c} = {{o1, o2}, {o3}, {o4}, {o5}, {o6}, {o7, o8, o9}}.

It can be verified that U/{a, b, c} � U/{a, b} � U/{a}. For example, for object o1,
we have:

[o1]{a,b,c} = [o1]{a} ∩ [o1]{b} ∩ [o1]{c}
= {o1, o2, o3} ∩ {o1, o2, o4, o5} ∩ {o1, o2, o5, o7, o8, o9}
= {o1, o2}.

2.4 Definable Sets

For a given formula, one can obtain a unique subset of U as its meaning set. In
contrast, one may not find a formula that produces a given subset of U . As already
mentioned, it may also happen that some subsets of U have multiple representations
in L.

Example 4 In Table 1, the subset of objects {o1, o2, o3} is the meaning set of several
formulas, such as: a = 0, a = 0∧ b = 0 ∨ a = 0∧ b = 1, and a = 0 ∧ c = 1 ∨ b =
1 ∧ c = 0. That is, the set of objects {o1, o2, o3} has multiple representations in
terms of logic formulas. On the other hand, it is impossible to find a formula whose
meaning set is {o2, o3}.
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Definition 7 A subset X ⊆ U is called a definable set in an information table if
there exists a formula φ in the logic language L such that m(φ)=X; otherwise, X

is undefinable. A subset X ⊆ U is called a conditionally definable set with respect
to a subset of attributes A⊆ At if there exists φ in the logic language L(A) such that
m(φ)=X; otherwise, X is conditionally undefinable.

A definable set may be viewed as a conditionally definable set with respect to the
entire set of attributes, i.e., A= At. Let

DEFA(U)= {m(φ) | φ ∈ L(A)} (9)

denote the set of all definable sets with respect to attributes A⊆ At. It is important
to study the structure of DEFA(U). Consider the empty set ∅. By the definition of an
information table, we have m(a = v ∧ ¬(a = v))= ∅. Hence ∅ ∈ DEFA(U). Con-
sider the equivalence class [x]A, x ∈U . We have m(

∧
a∈A a = Ia(x))= [x]A. Thus,

[x]A ∈ DEFA(U). In fact, [x]A is a minimal nonempty definable set in DEFA(U).
DEFA(U) is also closed under set complement, intersection and union. In summary,
(DEFA(U),c ,∩,∪,∅,U) is an atomic Boolean algebra with the minimum element
∅, the maximum element U , and the set of atoms corresponding to U/A.

One may say that a decision logic language and the indiscernibility relation pro-
vide two ways for characterizing subsets of a universe, through definable sets in the
former and indiscernibility classes in the latter. The families of all definable sets
and all indiscernibility classes form the basic ingredients of RST based data analy-
sis. Let us note that definable sets can be equivalently expressed as unions of some
subsets of U/A, that is:

DEFA(U)=
{⋃

F
∣∣ F ⊆U/A

}
. (10)

It may be useful to operate exchangeably with formulations (9) and (10) while con-
sidering both foundations and applications of RST.

Example 5 Consider the set of attributes A = {a, b} in Table 1. The atoms of the
Boolean algebra (DEFA(U),c ,∩,∪,∅,U) are as follows:

U/{a, b} = {{o1, o2}, {o3}, {o4, o5}, {o6}, {o7, o8, o9}}.

Equivalence class [o1]A = [o2]A = {o1, o2} is defined by a formula a = 0 ∧ b = 0,
equivalence class [o3]A = {o3} is defined by a formula a = 0 ∧ b = 1, equivalence
class [o4]A = [o5]A = {o4, o5} is defined by a formula a = 1∧b= 0, and so on. The
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family of all definable sets takes the following form:

DEFA(U) = {∅,
// 1 atom {o1, o2}, {o3}, {o4, o5}, {o6}, {o7, o8, o9},
// 2 atoms {o1, o2, o3}, {o1, o2, o4, o5}, {o1, o2, o6}, {o1, o2, o7, o8, o9},

{o3, o4, o5}, {o3, o6}, {o3, o7, o8, o9}, {o4, o5, o6},
{o4, o5, o7, o8, o9}, {o6, o7, o8, o9},

// 3 atoms {o1, o2, o3, o4, o5}, {o1, o2, o3, o6}, {o1, o2, o3, o7, o8, o9},
{o1, o2, o4, o5, o6}, {o1, o2, o4, o5, o7, o8, o9},
{o1, o2, o6, o7, o8, o9}, {o3, o4, o5, o6}, {o3, o4, o5, o7, o8, o9},
{o3, o6, o7, o8, o9}, {o4, o5, o6, o7, o8, o9},

// 4 atoms {o1, o2, o3, o4, o5, o6}, {o1, o2, o3, o4, o5, o7, o8, o9},
{o1, o2, o3, o6, o7, o8, o9}, {o1, o2, o4, o5, o6, o7, o8, o9},
{o3, o4, o5, o6, o7, o8, o9},

// 5 atoms U}.
Each definable set can be expressed as a union of some equivalence classes. For
example, {o1, o2, o3, o4, o5} = {o1, o2} ∪ {o3} ∪ {o4, o5} is described by a formula
(a = 0 ∧ b = 1) ∨ (a = 0 ∧ b = 1) ∨ (a = 1 ∧ b = 0), which is a disjunction of
formulas defining three equivalence classes {o1, o2}, {o3} and {o4, o5}. In contrast,
an undefinable set cannot be expressed this way.

3 Rough Set Approximations

Approximations of sets are the fundamental construct that distinguishes RST from
other approaches. They are very important for applications developed within the
standard RST based data analysis [31], as well as for other examples of employing
RST, such as rough clustering [32], granular database engines [33] and complex
pattern learning based on domain knowledge [15].

3.1 Approximations of a Single Set

Each definable set can be represented by a logic formula and hence we can make
inference about definable sets. On the other hand, we cannot find a formula to rep-
resent an undefinable set. In order to make inference about undefinable sets, RST
considers an approximation of an undefinable set by definable sets. More specif-
ically, one can approximate the undefinable set from the below and the above by
using two definable sets. By properties of the set of all definable sets, such approxi-
mations are unique.

With respect to a subset of attributes A ⊆ At, one can either define a logic
language or an equivalence relation. As already mentioned, both of them pro-
duce the same definable sets in an information table. Thus, it is reasonable to ap-
ply atomic definable sets corresponding to the elements of U/A to approximate
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other sets. This idea can be formalized using the notion of an approximation space
aprA = (U, IND(A)) (or aprA = (U,DEFA(U))) [1, 2].

Below, if a subset of attributes A is understood, we may drop it by simply writing
apr = (U, IND) or apr = (U,DEF).

Definition 8 In an approximation space apr = (U, IND), a pair of lower and upper
approximations of a subset X ⊆U is defined by

apr(X)= the largest definable set in DEF(U) that is contained by X,

apr(X)= the smallest definable set in DEF(U) that contains X.
(11)

Example 6 Consider Table 1. The set of decision attribute D = {d} produces
a partition U/D = {X1 = m(d = +) = {o1, o2, o4, o5, o6},X2 = m(d = −) =
{o3, o7, o8, o9}}. The set of attributes {a, b} gives rise to an approximation space
apr{a,c}. The approximations of the two sets X1 and X2 are given by:

apr{a,c}(X1) = {o1, o2, o4, o6}, apr{a,c}(X2)= {o3},
apr{a,c}(X1) = {o1, o2, o4, o5, o6, o7, o8, o9},
apr{a,c}(X2) = {o3, o5, o7, o8, o9}.

Lower and upper approximations may be expressed also in other forms [34],
which are convenient when seeking for analogies between RST and other ap-
proaches to data analysis and knowledge representation.

Definition 9 In an approximation space apr = (U, IND), approximations can be
expressed in one of the following three equivalent ways:

– Element based definition

apr(X)= {x | x ∈U, [x]IND ⊆X}
= {x | x ∈U,∀y ∈U(x INDy =⇒ y ∈X)},

apr(X)= {x | x ∈U, [x]IND ∩X �= ∅}
= {x | x ∈U,∃y ∈U(x INDy, y ∈X)};

(12)

– Granule based definition

apr(X)=
⋃
{[x]IND | [x]IND ∈U/IND, [x]IND ⊆X},

apr(X)=
⋃
{[x]IND | [x]IND ∈U/IND, [x]IND ∩A �= ∅};

(13)

– Subsystem based definition

apr(X)=
⋃
{Y | Y ∈DEF(U),Y ⊆X},

apr(X)=
⋂
{Y |X ∈DEF(U),X ⊆ Y }.

(14)
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It is convenient to operate with the above three formalizations exchangeably
when applying and extending the original notions of RST. For instance, different
definitions of approximations provide different means for handling information ta-
bles with missing values [35]. For the case of complete information tables, lower
and upper approximations satisfy the following properties:

(L0) apr(X) ∈DEF(U) (U0) apr(X) ∈DEF(U)

(L1) X ∈DEF(U)=⇒ apr(X)=X (U1) X ∈DEF(U)=⇒ apr(X)=X

(L2) apr(X)⊆X (U2) X ⊆ apr(X)

(L3) apr(X)= (apr(Xc))c (U3) apr(X)= (apr(Xc))c

(L4) apr(X ∩ Y )= apr(X)∩ apr(Y ) (U4) apr(X ∪ Y )= apr(X)∪ apr(Y )

(L5) apr(X ∪ Y )⊇ apr(X)∪ apr(Y ) (U5) apr(X ∩ Y )⊆ apr(X)∩ apr(Y )

(L6) X ⊆ Y =⇒ apr(X)⊆ apr(Y ) (U6) X ⊆ Y =⇒ apr(X)⊆ apr(Y )

(L7) apr(X)= apr(apr(X)) (U7) apr(apr(X))= apr(X)

(L8) apr(X)= apr(apr(X)) (U8) apr(apr(X))= apr(X)

Properties (L0) and (U0) state that approximations of a set are definable sets. They
imply properties (L1) and (U1), namely, the approximations of a definable set are
the set itself. In general, according to Properties (L2) and (U2), a set falls within its
lower and upper approximations, namely, apr(X) ⊆ X ⊆ apr(X). Properties (L3)
and (U3) state that lower and upper approximations are a pair of dual operators
apr,apr : 2U −→ 2U [36]. Hence, properties labeled by the same number may be
interpreted as dual ones. The remaining properties formalize other important aspects
of RST such as, for instance, monotonicity of approximation operators with respect
to set inclusion or stability of outcomes of chains of successive approximations.

3.2 Rough Set Regions for a Single Set

Rough set approximations are often rephrased in terms of positive, negative and
boundary regions, which gather objects (or rather some classes or granules of ob-
jects) that, respectively, certainly satisfy, certainly do not satisfy, and maybe (do
not) satisfy the concepts represented by subsets of universe. Such regions are very
useful in RST based decision making [37] and many other rough set applications,
such as already mentioned granular database architecture [33], where, in a sense,
only boundary related blocks of data need to be accessed to execute some common
types of analytic SQL statements.

Definition 10 Based on lower and upper approximations, one can divide the uni-
verse U into the following positive, boundary and negative regions:

POS(X) = apr(X),

BND(X) = apr(X)− apr(X), (15)

NEG(X) = (apr(X))c.
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It is worth remembering that the above representations may not be equivalent any
longer for some extensions of standard RST notions briefly mentioned in Sect. 2.
However, in both of above cases, {POS(X),BND(X),NEG(X)} forms a partition
of the universe U .

Example 7 Let us continue Example 6. For the set of decision attributes D = {d}
and its corresponding partition classes X1 and X2, the set of attributes {a, b} induces
the following regions:

POS{a,c}(X1)= {o1, o2, o4, o6}, POS{a,c}(X2)= {o3},
BND{a,c}(X1)= {o5, o7, o8, o9}, BND{a,c}(X2)= {o5, o7, o8, o9},
NEG{a,c}(X1)= {o3}, NEG{a,c}(X2)= {o1, o2, o4, o6}.

One can notice a kind of duality of regions in the case of two sets that are com-
plementary to each other. The situation gets more complicated when the number of
classes increases. In such cases one may consider using, for example, generalized
decision functions introduced into RST for the purpose of dealing simultaneously
with larger collections of sets to be approximated [3].

The above-introduced regions can be employed to build the following repre-
sentations of the approximated sets, which—although mathematically equivalent—
support different intuitions of reasoning about data:

(i) (POS(X),BND(X),NEG(X))

(ii) (POS(X),POS(X)∪BND(X))

(iii) (POS(X),BND(X))

(iv) (POS(X),NEG(X))

Representation (ii) is the pair of rough set approximations. Representations (iii)
and (iv) emphasize the roles of boundary and negative regions, respectively. It is
also worth mentioning about some useful extensions of regions and approximations
based on combination of standard rough set methodology with, for instance, proba-
bility calculus [38, 39] and fuzzy sets [30, 40].

3.3 Approximations and Regions of a Partition

The approximation of a set can be easily extended to the approximation of a parti-
tion, also called a classification [2].

Definition 11 Let π = {X1, . . . ,Xn} be a partition of the universe U . Its approx-
imations can be defined as the families of approximations of particular partition
classes:

apr(π)= {apr(X1), . . . ,apr(Xn)},
apr(π)= {apr(X1), . . . ,apr(Xn)}.

(16)


