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Preface

This book is a description of research and data analysis carried out by the authors
with substantial funding from the National Center for Education Statistics (NCES)
and the Institute of Education Sciences (IES), divisions of the U.S. Department of
Education, in partnership with the American Institutes for Research (AIR). The pur-
pose of this work was to evaluate a new approach to the analysis and reporting of the
large-scale surveys for the National Assessment of Educational Progress (NAEP)
carried out for the NCES.

The new approach was based on a full statistical and psychometric model for
students’ responses to the test items, taking into account the design of the survey,
the backgrounds of the students, and the classes, schools and communities in which
the students were located.

The need for a new approach was driven by two unrelated issues: the demands
for secondary analysis of the survey data by educational and other researchers who
needed analyses more detailed than those published by NCES, and the need to ac-
celerate the processing and publication of results from the surveys.

The modeling approach is complex and computationally intensive, but less so
than the existing methods used for these surveys, and it has the twin advantages of
efficiency in the statistical sense – making full use of the information in the data –
and optimality : given the validity of the statistical model, this form of analysis is
superior to any other non-Bayesian analysis in terms of precision of the estimates of
group differences and regression coefficients of important variables.

The use of a full statistical model avoids the ad hoc methods that are otherwise
necessary for the analysis of the data. It is dependent, for successful adoption, on
efficient computational implementations in generally available software. Develop-
ments in this area have been rapid in the last ten years: we began our analyses in
2003 using Gllamm in Stata (Rabe-Hesketh and Skrondal 2005); see the Website.

http://www.gllamm.org

By 2008 we were able to use the very fast Latent Gold program which makes large-
scale model fitting straightforward for NAEP data sets; see the Website.
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http://www.statisticalinnovations.com/products
/latentgold_v4.html

The following chapters, apart from the first, are set out in a sequence representing
the main aspects of the NAEP surveys and the development of methods for fitting
the increasingly complex models resulting from the incorporation of these aspects.
The content of the book is drawn mostly from our NCES research reports, which
are described briefly in Chapter 4. We generally do not give references to specific
reports in the text, as the chapters draw from many of the reports. The full reports
themselves are available on our Website, as described in Chapter 4.

The models and analysis approach are illustrated with detailed results from two
NAEP surveys. The first is from the 1986 national NAEP mathematics test and in-
cludes results on the set of 30 items from the Numbers and Operations: Knowl-
edge and Skills subscale, for age 9/grade 3 children. The “explanatory” regression
model fitted is quite small and was chosen to nearly replicate the tables of “reporting
group” variables published by NCES for this survey. We extended this analysis to
all 79 test items on three scales.

The second survey is from the 2005 national NAEP mathematics test and in-
cludes results on the set of 70 items from the Numbers and Operations scale for
age 10/grade 4 children. We fitted a much larger regression model with variables
from the student, teacher and school questionnaires. We analysed the California and
Texas state subsamples with more complex item response models.

Chapter 1 is an introduction to the current theories of data analysis used for
large-scale surveys. It may surprise non-statistician readers to find that there are
major disputes within the statistics profession about the role of statistical models in
official (national government) survey analysis. We describe the critical theoretical
issues that divide the several theories, and give an indication of the extent to which
each theory is used in current official practice.

Chapter 2 describes the current method of analysis of NAEP surveys. This has
changed several times; we give the analysis that was used for the 1986 survey, which
we use as an illustration in later chapters, and note the changes that have occurred
since then. The design and analysis of the 1986 survey were very complicated, and
we have omitted aspects of the design that are not critical to the analysis. Some
complex sections (for example, jackknifing) have been described at length because
these are critical for the comparison with our approach.

Chapter 3 sets out the psychometric models used in the NAEP analysis, gives
some extensions of them using mixture distributions for student ability, discusses
the survey designs used in the surveys, and gives the multilevel model representation
of the designs.

Chapter 4 summarises the main conclusions from our extensive simulation stud-
ies, which showed the improvement in precision and the reduction in bias resulting
from the fully model-based analysis of small-scale models compared with the cur-
rent approach. References to the full reports on this work are given there.

Chapter 5 sets out the series of analyses we used with the range of models from
Chapter 3 for the 30-item scale from the 1986 math test for age 9/grade 3 children.
Chapter 6 extends these analyses to the full set of 79 items on the test. Chapter 7
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applies more complex analyses to the 2005 national NAEP subsample for Texas for
age 10/grade 4 children. Chapter 8 applies the same analyses to the 2005 subsample
for California for age 10/grade 4 children.

Chapter 9 discusses the results of the analyses and draws conclusions about the
benefits and limitations of fully model-based large-scale survey analysis.
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Chapter 1
Theories of Data Analysis and Statistical
Inference

1.1 Introduction

Every survey, in any field, begins conceptually with a population list, a sampling
plan or sample design by which an appropriate sample is to be drawn from the pop-
ulation, a measurement instrument specifying the information – response variables
and covariates or explanatory variables – to be obtained from the sampled popu-
lation members, and an analysis plan by which the response variables, and their
relation to the covariates or explanatory variables, are to be analysed.

In the NAEP surveys that we describe and analyse, the population list is of school
students of several ages and grades, the sampling plan is a complex clustered and
stratified design, and the measurement instrument is a set of test items measuring
achievement in mathematics or another subject (the response variables in many anal-
yses, including ours) and a set of questionnaire items describing students, their home
background, and teacher and school characteristics that we use as covariates for
achievement, though many may be response variables in other analyses.

We use from now on the term covariates, rather than explanatory variables, as the
NAEP surveys we discuss are observational studies in which the issue of causality
– of whether variation in the covariates causes or explains variations in the out-
come variables – cannot be assessed from the surveys, as these are not experimental
studies involving randomisation of students to classes or to educational and family
contexts.

The analysis plan is the subject of this book, which discusses in this chapter the
different philosophies in the statistics profession about how data from such studies
should be analysed. Our view of analysis is model-based: defined by a full statistical
model – in contrast to the current analysis of these surveys, which is a mixture of
model-based and design-based: defined by hypothetical replications of the survey
design.

In describing and discussing the important differences in these approaches, we
adapt the discussion in Chapter 1 of Aitkin (2010) and use several very simple ex-
amples that, however, make clear the importance of the philosophical differences.

1M. Aitkin, I. Aitkin, Statistical Modeling of the National Assessment of Educational Progress, 
Statistics for Social and Behavioral Sciences,
DOI 10.1007/978-1-4419-9937-5_1, © Murray Aitkin and Irit Aitkin 2011
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1.2 Example

We have a simple random sample of size 40 from a finite population of 648 families
and for each family record the family income for the previous tax year. From this
sample, we wish to draw an inference about the population mean family income for
that tax year. How is this to be done? The sample of incomes, reported to the nearest
thousand dollars, is given below.

Family income, in units of 1000 dollars
--------------------------------------------------
26 35 38 39 42 46 47 47 47 52 53 55 55 56 58 60 60
60 60 60 65 65 67 67 69 70 71 72 75 77 80 81 85 93
96 104 104 107 119 120
--------------------------------------------------

Theories of data analysis and inference can be divided into two classes: those
that use the likelihood function (defined below) as an important, or the sole, basis
for the theory and those that do not give the likelihood any special status.

Within the first class, there is a division between theories that regard the likeli-
hood as the sole function of the data that provides evidence about the model param-
eters and those that interpret the likelihood using other factors.

Within the second class, there is a division between theories that take some ac-
count of a statistical model for the data and those based exclusively on the properties
of estimates of the parameters of interest in repeated sampling of the population.
Comprehensive discussions of the main theories can be found in Welsh (1996) and
Lindsey (1996), to which we refer frequently. We illustrate these theories with ref-
erence to the income problem above.

1.3 Statistical models

Theories that use the likelihood require a statistical model for the population from
which the sample is taken, or more generally for the process that generates the data.
Inspection of the sample income values shows that (in terms of the measurement unit
of $1000) they are integers, as are the other unsampled values in the population. So
the population of size N can be expressed in terms of the population counts NJ at
the possible distinct integer values of income YJ or, equivalently by the population
proportions pJ = NJ/N at these values.

A (simplifying) statistical model is an approximate representation of the pro-
portions pJ by a smooth probability distribution depending on a small number of
model parameters. The form of the probability function is chosen (in this case of a
large number of distinct values of Y ) by matching the cumulative distribution func-
tion (cdf) of the probability distribution to the empirical cdf of the observed values.
Figure 1.1 shows the empirical cdf of the sample values. A detailed discussion of
this process is given in Aitkin et al. (2005) and Aitkin et al. (2009). We do not give
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details here, but the matching process leads to the choice of an approximating con-
tinuous cdf model F(y |λ ) and corresponding density function f (y |λ ) = F ′(y |λ );
the probability pJ of YJ is approximated by F(YJ +δ/2 |λ )−F(YJ −δ/2 |λ ), where
δ is the measurement precision (which equals 1 in the units of measurement). When
the variable Y is inherently discrete on a small number of values, as with count data,
the values pJ are approximated directly by a discrete probability distribution model.

Figure 1.2 shows the cdf of a normal distribution with the same mean (67.1) and
standard deviation (22.4) as the sample income data, superimposed on the empirical
cdf. Figure 1.3 shows the same cdfs, but on the vertical probit scale of Φ−1(p).
On this scale it is clearer that the income sample has some degree of skew, with a
longer right-hand tail of large values, so an approximating model with right skew
might be appropriate. The gamma, lognormal, and Weibull distributions are possible
choices. However, to establish which of several possible models is most appropriate
for sample data requires advanced model comparison methods, which we discuss in
later chapters.

Here we will assume that the normal distribution with parameters μ (the mean)
and σ (the standard deviation) is a reasonable model, where μ is the parameter of
interest and σ is a nuisance parameter – we want to draw conclusions about the
parameter of interest, μ , but the model depends as well on the nuisance parameter
σ :

f (y |μ ,σ) =
1√

2πσ
exp

{
− 1

2σ2 (y− μ)2
}
.
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