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Foreword

The authors of this work asked me to read it and write a foreword. I did so with
pleasure because differential geometry of foliations was one of my research subjects
decades ago.

Foliations, i.e., partitions into submanifolds of a constant, lower dimension, are
beautiful structures on manifolds that encode a lot of geometric information. The
topological study of foliations was initiated by Ch. Ehresmann and G. Reeb in the
1940s and soon became a research subject of many mathematicians. In particular,
the study of the smooth case and of the differential geometric aspects became an
important part of foliation theory, developed in the early stages by B. Reinhart,
R. Bott, F. Kamber, Ph. Tondeur, P. Molino, and many others.

The present work is a research monograph and is addressed to readers who have
enough knowledge of differential and Riemannian geometry. Its first two chapters
are devoted to the development of a computational machinery that provides integral
and variational formulas for the most general, extrinsic invariants of the leaves of a
foliation of a Riemannian manifold. The third chapter defines a very general notion
of extrinsic geometric flow and studies the evolution of the leaf-wise Riemannian
metric along the trajectories of this flow. The authors give existence theorems and
estimations of the maximal evolution time and make a study of soliton solutions.

The authors of the present monograph are well known specialists in the field, with
previously published books and papers on the differential geometry of foliations of
Riemannian manifolds. Here, they succeed a technical tour de force, which will lead
to important geometric results in the future and I recommend this work to all those
who have an interest in the differential geometry of submanifolds and foliations of
Riemannian manifolds. They will find methods and results that bring profit to their
research.

University of Haifa, Israel Izu Vaisman
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Preface

The subject and the history. Foliation theory is about 60 years old. The notion of a
foliation appeared in the 1940s in a series of papers of G. Reeb and Ch. Ehresmann,
culminating in the book [40]. Since then, the subject has enjoyed a rapid develop-
ment. Foliations relate with such topics as vector fields, integrable distributions,
almost-product structures, submersions, fiber bundles, pseudogroups, Lie groups
actions, and explicit constructions (Hopf and Reeb foliations).

Reeb also published a paper [41] on extrinsic geometry of foliation in which he
proved that the integral of the mean curvature of the leaves of any codimension-one
foliation on any closed Riemannian manifold equals zero. By extrinsic geometry
we mean properties of foliations on Riemannian manifolds which can be expressed
in terms of the second fundamental form of the leaves and its invariants (principal
curvatures, scalar mean curvature, higher mean curvatures, and so on).

More precisely, if F is a smooth foliation of a Riemannian manifold (M,g) then
the second fundamental forms BL of all the leaves {L} of F provide a vector-valued
symmetric tensor B on M defined by:

B(X ,Y ) = (∇XY )⊥,

where ∇ is the Levi-Civita connection on (M,g), X and Y are tangent to F , and ( ·)⊥
denotes the projection of the tangent bundle TM onto the orthogonal complement
T⊥F of the bundle TF consisting of all the vectors tangent to (the leaves of)
F . The tensor B can be extended to the whole tangent bundle of M by B(N, ·) = 0
whenever N is orthogonal to F . If F is of codimension 1 and transversely oriented,
B induces a symmetric scalar (0,2)-tensor field b (the second fundamental form)
given by

b(X ,Y ) = g(B(X ,Y ),N)

for all X and Y . All the properties of F which can be expressed in terms of B
(respectively, b) belong to extrinsic geometry. For example, a foliation F is called
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x Preface

totally geodesic when B ≡ 0,

minimal when the mean curvature vector H = 1
n Tr g(B) of F vanishes,

umbilical when B(X ,Y ) = H ·g(X ,Y) for all X ,Y ∈ TF , and so on.

One of the principal problems of extrinsic geometry of foliations reads as follows:
Given a foliation F on a manifold M and an extrinsic geometric property (P), does
there exist a Riemannian metric g on M such that F enjoys (P) with respect to g?

Similarly, one may ask the following, analogous question:
Given a manifold M and an extrinsic geometric property (P), does there exist a foli-
ation F and a Riemannian metric g on M such that F enjoys (P) with respect to g?

Such problems (first posed by H. Gluck for geodesic foliations) were studied
already in the 1970s when Sullivan [50] provided a topological condition (called
topological tautness) for a foliation, equivalent to geometrical tautness, that is
existence of a Riemannian metric making all the leaves minimal. From classical
theorem of Novikov [32] and results of Sullivan, it follows directly that the three-
dimensional sphere S3 admits no two-dimensional foliations which are minimal with
respect to any Riemannian metric. For instance, there is no metric making a Reeb
foliation FR on a three-dimensional sphere minimal.

Umbilizable foliations on M3 are transversely holomorphic, hence, see [11]: If a
closed orientable M3 admits an umbilical foliation then it is diffeomorphic to the
total space of a Seifert fibration (all one-dimensional leaves are closed) or of a torus
bundle over the circle. For example, since S3 is the total space of a Seifert fibration,
there exist metrics making a Reeb foliation (S3,FR) umbilical. Another example
of this type may be found in a recent paper by Langevin and the second author
[30]: closed Riemannian spaces of negative Ricci curvature admit no codimension-1
umbilical foliations.

In recent decades, several tools providing results of this sort have been developed.
Among them, one may find Sullivan’s [49] foliated cycles and several Integral
Formulae ([3, 9, 45, 46, 54], etc.), the very first of which is G. Reeb’s vanishing of
the integral of the mean curvature mentioned earlier.

The authors also have been interested in extrinsic geometry of foliations for a
long time (see, for example, [42–44, 54–58]) and this work is, in some sense, a
continuation of this interest.

The contents. The book includes several topics in Extrinsic Geometry of Foliations.
The first topic presented in the book (Chap. 1) is a series of new Integral Formulae,
for a codimension-one foliation on a closed Riemannian manifold. The formulae
depend on the Weingarten operator, the Riemannian curvature tensor (e.g., Jacobi
operator), and their scalar invariants. Integral formulae begin with the classic
formula by Reeb, for manifolds of constant curvature they reduce, to known
formulae by Brito et al. [9], and Asimov [4]. Integral formulae can be useful for
the following problems: prescribing higher mean curvatures (or other symmetric
functions of principal curvatures) of foliations; minimizing volume and energy



Preface xi

defined for vector or plane fields on manifolds; existence of foliations whose
leaves enjoy a given geometric property such as being totally geodesic, umbilical,
minimal, etc.

The central topic of the book is Extrinsic Geometric Flow (EGF, for short, see
Chap. 3) on foliated manifolds (M,F ), codim F = 1, which may provide more
results on geometry of foliations. EGFs arise as solutions to the partial differential
equation (PDE)

∂t gt = h(bt),

where (gt), t ∈ [0,T ), are Riemannian metrics on M along the leaves and h(bt)
the symmetric (0,2)-tensors along the leaves expressed in terms of the second
fundamental form bt of F on (M,gt ); h(bt) being identically zero in the direction
orthogonal to F . In particular, EGF – for suitable choice of the right-hand side in
the EGF equation – may provide families (gt) of Riemannian structures on a given
foliated manifold (M,F ) converging as t → T to a metric gT for which F satisfies
a given geometric property (P), say, is umbilical, minimal, or just totally geodesic.

A Geometric Flow is an evolution of a given geometric structure under a
differential equation associated to a functional on a manifold which has geometric
interpretation, usually associated with some (either extrinsic or intrinsic) curvature.
Geometric flows play an essential role in many fields of mathematics and physics.
They all correspond to dynamical systems in the infinite dimensional space of all
possible geometric structures (of given type) on a given manifold.

The strong interest of scientists in GF of various types is demonstrated by
Annual International Workshops (GF in Mathematics and Physics, 2006 – 2011,
BIRS Banff; GF in finite or infinite dimension, 2011, CIRM; Geometric Evolution
Equations, 2011, University of Constance; GF and Geometric Operators, 2009,
Centro De Giorgi, Pisa, and so on).

To some extent, the idea of EGF is analogous to that of the famous Ricci
flow. In the Ricci flow equation, the configuration space is a single manifold and
the Riemannian structures are deformed by quantities which belong to intrinsic
geometry, in the case of EGFs, the configuration space is a foliated manifold while
the Riemannian structures are deformed by invariants of extrinsic geometry. In
both cases, the (EGF or Ricci flow) equation makes sense because both its sides
are symmetric tensors of the same type. Notice that the study of the Ricci flow
provided the proof of outstanding conjectures: Poincaré Conjecture and Thurston
Geometrization Conjecture.

To apply EGF to various problems of extrinsic geometry, one needs variational
formulae (see Chap. 2) which express variation of different quantities belonging to
extrinsic geometry of a fixed foliation under variation of the Riemannian structure
of the ambient manifold. Also, some special solutions (called extrinsic geometric
solitons here, EGS, for short, see Sect. 3.8) of the EGF equation are of great interest
because, in several cases, they provide Riemannian structures with very particular
geometric properties of the leaves.
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Throughout the book, (Mn+1,gt) is a Riemannian manifold with a codimension
one transversely oriented foliation F , ∇t the Levi-Civita connection of gt ,

2gt(∇t
XY,Z) = X(gt(Y,Z))+Y (gt(X ,Z))−Z(gt(X ,Y ))

+gt([X ,Y ],Z)−gt([X ,Z],Y )−gt([Y,Z],X)

for all the vector fields X ,Y,Z on M, N the positively oriented unit normal to F
with respect to any gt , A : X ∈ TF �→ −∇t

X N the Weingarten operator of the leaves,
which we extend to a (1,1)-tensor field on T M by A(N) = 0.

Observe that the difference of two connections is always a tensor, hence Πt :=
∂t∇t is a (1, 2)-tensor field on (M,gt). Differentiating with respect to t the above
classical formula yields the known formula, which allows us to express Πt by:

2gt(Πt(X ,Y ),Z) = (∇t
X S)(Y,Z)+ (∇t

Y S)(X ,Z)− (∇t
ZS)(X ,Y ),

where S = ∂t gt is time-dependent symmetric (0,2)-tensor field and X ,Y,Z ∈ T M.
The definition of the F -truncated (r,k)-tensor field Ŝ (where r = 0,1, and ̂

denotes the TF -component) will be helpful in Chaps. 2 and 3,

Ŝ(X1, . . . ,Xk) = S(X̂1, . . . , X̂k) (Xi ∈ TM).
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