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Preface

Since the beginning of the preparation of this book, which is the second edition of a
previous book printed in 1992, we have been strongly convinced that temperature and
pressure measurements should not be separated, particularly in different applications
at low temperatures. This approach has been followed in the preparation of this second
edition because advanced applications and modern experimental investigations in
science and technology need the combination of various professional experiences,
and this is particularly true for the thermodynamic quantities as temperature and
pressure.

Although the book is divided in two parts (Part I by Franco Pavese and Part II
by Gianfranco Molinar Min Beciet), plus the new Chap. 11 common to the two, we
always tried to correlate low temperatures with low-medium pressures as much as
possible.

This second edition book has been substantially revised in respect of the first
edition, by considering new measurement methods, new systems and devices of the
last 20 years. This reflects as well new achievements of metrology in general as
the treatment of uncertainty, that is now more stable and well defined, and atten-
tion was posed as well to the effects of the BIPM-CIPM 1999 Mutual Recognition
Arrangement (MRA) that have produced since 1999 many key comparison results
and approval of many calibration and measurement capabilities.

We are pleased to acknowledge our debt to our research group colleagues at the
Istituto di Metrologia Gustavo Colonnetti of CNR (IMGC-CNR), merged in 2006
within Istituto Nazionale di Ricerca Metrologica (INRIM) and to many persons at
international level to which we have gladly cooperated. In particular, Franco Pavese
acknowledges the competent help kindly obtained from INRIM colleague Peter P.M.
Steur for the revision of Chaps. 3–5.

However, the persons that we really want to thank are our families; they have been
always supporting us and they were able to create around us the “perfect atmosphere”
in order to be relaxed and able of working always with great pleasure.
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vi Preface

The first edition of our book was dedicated to our wives and sons (Ghita, Carlo
and Matteo Pavese; Dida and Daniele Molinar Min Beciet).

This second edition is particularly dedicated to our—present—grand children’s
(Nicolai, Leonardo, Luca and Viola Pavese; Matteo Molinar Min Beciet) as they are
the future of our dreams.

Torino (Italy) Franco Pavese
Gianfranco Molinar Min Beciet
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Introduction

The use of substances that are gaseous at room temperature for temperature
measurements and for standards realization is traditional in the cryogenic field.
Vapor-pressure thermometry and gas thermometry have been since a long time ago
the commonest nonelectrical methods for temperature measurements in physics and
chemistry. Correspondingly, specific primary and secondary standards have been
developed to measure with improved accuracy pressure in gaseous media.

Most of the studies on thermophysical properties of these substances were carried
out in the first half of the twentieth century, but work, though with less momentum,
progressed especially at NIST (formerly NBS) in the USA and in Russia also in the
second half. As far as its use in metrology is concerned, the adoption of the IPTS-68
in 1968 stimulated a new activity both intensive and extensive, as some of these
properties form the basis of low-temperature thermometry, which led to the adoption
of the new International Temperature Scale which came into effect on 1 January 1990
(ITS-90). Now, after more than 20 years that this scale is adopted, revisions have
started. However, with the shift in 2006 of the meaning of “temperature scale” in the
definition of the unit kelvin, caused by the introduction of the concept of “mise en
pratique” of the kelvin, adjustments are now possible without having to promulgate
a new ITS-xx.

This activity resulted in a sizeable upgrading of the accuracy in the determination
of the gas properties relevant to temperature standards and on standards traceability to
the thermodynamic temperature. New techniques were also developed, which greatly
improved the reliability of fixed point realization; the possibility of simplifying the
use of the existing standards and of adopting new gas-based standards was explored
and it is now extensively exploited.

This book is intended to collect up-to-date information on the latest developments
in thermometry and manometry that involve the use of gaseous substances and that are
likely to be valid methods also in the future.At present, this information is dispersed in
a large number of papers published in international journals and most of it is probably
available only to a limited number of specialists. While other books on thermometry
deal, in a comparable number of pages, with the whole range of temperatures and
techniques, the part of the present work devoted to thermometry intends, in the first
place, to introduce selected methods, leaving the general description of thermometry
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xiv Introduction

to textbooks. Secondly, being limited to low-temperature and gas-based techniques,
the present book intends to supply the reader with information about the very tools
for their implementation. Instead of the usual “Problems”, a synopsis of “Solutions”
to problems of thermometry implementation is therefore added at the end of each
chapter.

As regards to manometry and pressure measurements in general, this book fills a
gap in the international literature, as no other recent book provides a comprehensive
survey of methods for pressure measurements in gaseous media used in the medium-
to-low pressure range closely connected with thermometry.

Although the two parts of the book on temperature and on pressure measurements
both give special attentions to future-oriented techniques, their approach to deal with
the subject is very different. Part I deals with thermometric techniques for which,
apart few recent exceptions, no commercial devices are available: individual users
must directly implement these types of thermometers. Consequently, most of the
information collected is intended to help them to select the best design, from both
standpoints of simplicity and accuracy, and to be self-sufficient to supply all data nec-
essary for their implementation. On the contrary, for most of the pressure-measuring
techniques dealt with in Part II, commercially apparatuses, particularly in the case
of modern pressure balances and pressure transducers are available. Accordingly,
users can find the basic description of such instruments and all the data necessary for
appropriate criteria of selection, in view especially of their use at the best possible
accuracy for thermometry and manometry applications.

The methods and the instruments dealt with, which allow medium-to-high tem-
perature and pressure accuracy to be achieved, are not intended only for applications
which need the top measurement accuracy of interest for standard laboratories
(though the error analysis is always pushed to this level), but they can be used
in a broader range of applications. However, the book does not include methods
or instruments intrinsically limited to low accuracy. This second edition book was
revised according to different advances made in the last 20 years in metrology, par-
ticularly to give evidence of the important role that the CIPM-MRA have assumed
since its starting in 1999.

In Part I, basic concepts of temperature and temperature scale are first introduced
together with a short review of the different temperature definitions, so that the reader
may be made aware of the difficulties involved in defining temperature, especially
when it becomes lower and lower.

The use of well-specified thermodynamic states of condensed gases as temperature
fixed points (within the temperature range of 2.2–220 K) are then illustrated, and the
most effective method for their realization, the sealed-cell method, is fully described,
also concerning the further improvement obtained from year 2000 on thermal issues
and on the effect of isotopic composition of the substances used.

In the subsequent chapters, thermometric methods exploiting a pressure-
temperature relationship are described. For the gaseous state and for the range
1–300 K, the different types of gas thermometry are discussed, with special emphasis
being given to the constant-volume type, not only as an absolute thermometer, but
also as an interpolating thermometer (as required by the ITS-90, but in a broader
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temperature range) and as a simple and practical self-contained device. Also, the
more recent progress in acoustic thermometry is extensively illustrated.

In connection with condensed gases, vapor-pressure thermometry is described for
the helium-isotopes in the range 0.3–5 K and for its implementation with other gases
in the range up to 300 K; special attention is given to simplified realizations using
sealed devices.

The 3He melting-curve thermometry is then introduced as the official, accurate
temperature-measuring means below the present range of the ITS-90.

The last chapter of Part I offers a survey of the hardware specifically required for
the implementation of these thermometry’s and it considers in particular the modern
use of closed-cycle refrigerators above 4 K and uses of gases in temperature control.

In Part II, gas pressure measurements are considered in the range from 100 Pa
to 100 MPa, in connection with the former applications to thermometry. Modern
primary standards for accurate pressure measurements of gaseous media are first
reviewed with a detailed and comprehensive description of their best use.

Liquid-column manometers are described for absolute, gauge, and differential
pressure measurements in the range from few pascal to less than 0.3 MPa. Sub-
sequently, modern gas-operated pressure balances are extensively discussed for
absolute pressure measurements up to about 5 MPa, relative pressure measurements
up to 100 MPa and differential pressure measurements.

Liquid manometers and pressure balances will be particularly described analyzing
each physical quantity affecting pressure measurement uncertainty.

A survey is made of pressure transducers, particularly of those used for differential
measurements and others that can directly be employed in a cryogenic environment.
Problems involved in the assessment of their metrological characteristics, mostly
stability with time and thermal cycling, are discussed connected with their use as
transfer standards. Typical procedures to be used for a correct data acquisition and
calibration of significant parameters of pressure transducers are given.

The gas-based fixed points (triple points, critical points,) available in the consid-
ered pressure range are reviewed from the standpoint of their use as transfer standards
for interlaboratory comparisons.

Physical quantities and phenomena that affect pressure measurements are thor-
oughly discussed, as they must be taken into account to obtain top accuracy when
using primary standards. In this context, special attention is devoted to a spe-
cific and controversial problem of cryogenic measurements: the thermomolecular
pressure-difference effect.

The last chapter of this book, common to both Part I and II, is new and deals
with the CIPM-MRA, putting into evidence the effort that NMIs made to realize
pressure and temperature key comparisons, that are shortly reviewed, and the prepa-
ration of calibration and measurements capabilities (CMC) available to users in many
application fields. Full text of CIPM-MRA is given in Appendix G.

AppendixA introduces the commented text of the International Temperature Scale
of 1990 (ITS-90) below 273.15 K, while the modifications contained in the Technical
Annex to the mise en pratique are reported and commented in the text. Its implemen-
tation, which always requires gas-based thermometry below 0 ◦C, is deeply discussed
in Part I.
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Reference data are extensively supplied too in Appendices B, C, D, E, F, G and
H. They include: a comprehensive list of temperature (with values in ITS-90) and
pressure fixed points; relevant thermophysical data and advices for their specific use
in thermometric and manometry fields, given in the form of data sheets for each of
15 substances commonly used in manometry and thermometry; tables for the main
manometry and pressure balances corrections (according to ITS-90) with specific
examples of uncertainty evaluation; the text of the MRA; general terminology in
measurements.

Finally, an extensive Bibliography is provided covering all the subjects dealt with,
and including a “Further Readings” section for the main topics.
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equivalent to uc in the GUM notation.
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Q Amount of heat (energy) (J, joule)
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c, cp, cV Specific heats
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k Boltzmann constant = 1.380 6488(13) × 10−23 (J K−1) (CODATA

2010)
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Chapter 2
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sL Surface area of the liquid phase
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Xx Gap in a gas-filled heat switch
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C Conductance in the molecular regime (L s−1, liter per second)

Chapter 7

p Pressure
p0 Vacuum reference pressure
patm Atmospheric pressure
pv Mercury vapor pressure
pj Operating value of the jacket pressure in a controlled clearance piston-
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�p Differential pressure
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effective area Ae (in first approximation F = p × Ae)
p Pressure
pL Line pressure
�p Differential pressure
ptr. Pressure reading of a transducer
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t.p. Triple point
ptp Triple point pressure
T tp Triple point temperature
v.p. Vapor pressure
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η0(T 0, p) Gas viscosity at temperature T 0 and pressure p
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T 90, t90 Kelvin and Celsius temperature for ITS-90 scale
T 68, t68 Kelvin and Celsius temperature for IPTS-68 scale
T 76 Kelvin temperature for EPT-76 scale
W (T 90) Ratio R(T 90)/R(273.16 K)
W r(T 90) ITS-90 reference function

Symbols used specifically in particular areas of application or used to define constants
or calculation parameters are explained in the text.



Notes to the Reader

1. All temperature data are referred to the new International Temperature Scale 1990
(ITS-90). This is correct except when otherwise stated, because in some cases
there are real needs to express some relevant data with reference to the former
IPTS-68 temperature scale.

2. All the uncertainties are declared at the one sigma level (uc in the GUM notation),
except when otherwise stated because sometimes we are reporting data from liter-
ature where uncertainties either are not declared or it is impossible to recalculate
the one sigma level uncertainty. The expanded uncertainty U = kuc (k ≈ 2) is
also used.

3. All notations are made according to IUPAC recommendations (IUPAC Green
Book, third edition, 2009–2010). In some cases, however, American rather than
International spelling has been used (e.g., meter rather than metre and liter rather
than litre).
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Part I
Temperature Measurements in the Range

from 0.1 to 300 K

Introduction

In Part I, modern methods which are based on the use of substances gaseous at room
temperature, for measuring temperatures lower than 0 ◦C, are described. The lower
limit of the temperature range where these substances can be used is arbitrarily set
at ≈ 0.1 K, but 3He melting-curve thermometry, described in Chap. 5, extends down
to ≈ 0.001 K.

Figure 1.7 at the end of Chap. 1 shows the typical range for each of these gas-
based types of thermometry. The present state-of-the-art allows a top measurement
accuracy better than ± 100 μK for all of them. A recent short digest of the advances
in cryogenic thermometry in the last 50 years can be found in Pavese (2006).

Each of the fixed points described in Chap. 2 realizes a single temperature value.
Gas thermometry, described in its various forms below 0 ◦C in Chap. 3, can be used as
well above room temperature. Vapor pressure thermometry too, described in Chap. 4,
can be used above room temperature: each substance spans only a narrow interval
of the whole temperature range, and in some intervals no substance is available.

Finally, Chap. 6 describes thermostats that are used for performing all these ther-
mometric measurements and temperature controls, and devices that are based on the
use of gases.



Chapter 1
The Concept of Temperature

This monograph is intended for the use of low-temperature experimentalists, as well
as those individuals interested in one or more aspects of thermometry. The concept
of temperature, therefore, will only be given a brief introduction and review in this
section. For a more complete treatment, the reader is directed to the textbooks listed
in the section “Further Readings Part I” after the References.

However, an introduction of the concept of temperature seems desirable for two
reasons, one general and one specific. In general, each course or textbook presenting
an introduction to thermodynamics or thermometry makes the choice of introducing
only one of the several methods of defining temperature. As a consequence, the stu-
dent or the reader obtains an oversimplified impression of the problems involved with
this basic physical quantity, missing some of its more subtle features and developing
little sensitivity in dealing experimentally with the associated problems. We will,
therefore, provide a brief account of several different approaches to its definition, in
order to stimulate further understanding and study.

The range of temperatures considered in cryogenics appears quite small, a few
hundred kelvins, when compared with the millions of degrees required to attain the
plasma region. However, absolute zero in nature can only be approached asymptoti-
cally. Therefore, a logarithmic scale of temperature values is a more realistic way to
portray the temperature scale (Fig. 1.1). Since absolute zero is approached as infinity,
it becomes similar to the upper boundary of the temperature scale. In the very low
temperature range, conditions far away from human experience occur. Temperatures
far below the minimum existing in nature (background cosmic radiation, 2.75 K) are
commonly attained in laboratories, where equilibrium temperature values may be
different for either the lattice or the sublattice (e.g., spin) populations and specific
temperature gradients may occur during heat transfer (Kapitza conductance). These
conditions directly affect the capability of measuring temperature. Since this text is
concerned with temperature measurements based on gases, the concept of the “ideal
gas” will be introduced, and before dealing with “the real thing,” the limits and
limitations of this model relative to the definition of temperature will be elucidated.

F. Pavese, G. Molinar Min Beciet, Modern Gas-Based Temperature 3
and Pressure Measurements, International Cryogenics Monograph Series,
DOI 10.1007/978-1-4419-8282-7_1, © Springer Science+Business Media New York 2013



4 1 The Concept of Temperature

Fig. 1.1 The logarithmic natural scale of temperatures

1.1 Definitions of Temperature

It has long been recognized that people—including scientists and teachers—are
divided into two immiscible clusters: “les esprits de justesse” and “les esprits de
géométrie” (Pascal 1670). Each of them believes that there is only one approach for
explaining the concept of temperature. They follow approaches that are quite dif-
ferent, although consistent. We call the former the phenomenological approach, the
latter the axiomatic approach. A short account will also be given of a third approach,
the microscopic approach, which is based on the structure of matter.

1.1.1 The Phenomenological Approach

In history, the phenomenological approach came first, but its introduction has not
been very straightforward. In fact, the concept of temperature was not separated
from the concept of heat until the middle of nineteenth century. This occurred
shortly after heat was recognized as not being a substance—the caloric—but energy
(a recent concept too). In this respect, Joule’s experiment first published in 1845,
is traditionally considered crucial. It recognized the relationship between heat and


