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Preface

The primary objective of this book series is to provide readers with practical

guidance on the application of pharmacokinetics as a drug development

science. Our goal has been, and continues to be, to provide the link between

the theoretical and the applied. We ask every author to write their chapter

with this question in the back of their mind: “If you were training someone

new to industry, what about this topic should they know?” In the first two

volumes, topics were chosen specifically for their relative “stability” and

they represented the core what we do as a profession. Though the approaches

and technologies may have advanced, the practical considerations for topics

like bioavailability study designs, analysis procedures for absorption data or

dose-proportionality, or the role of pharmacokinetics in early development

have remained relatively consistent over time. Some of the topics, however,

have changed and some become more prominent over time. With this

volume, we begin to address the more “adaptable” issues facing pharmaco-

kineticists and pharmacologists supporting new compound development.

The topics chosen for this volume were selected because they are some of

the current development or technological issues facing drug development

project teams. They regard the practical considerations for the assessment of

selected special development populations. For example, they include char-

acterization of drug disposition in pregnant subjects, for measuring arrhyth-

mic potential, for analysis of tumor growth modeling, and for disease

progression modeling. Practical considerations for metabolite safety testing,

transporter assessments, Phase 0 testing, and development and execution of

drug interaction programs reflect current regulatory topics meant to address

enhancement of both safety assessment and early decision-making during

new candidate selection. Important technologies like whole body autoradio-

graphy, digital imaging and dried blood spot sample collection methods are

introduced, as both have begun to take a more visible role in pharmacokinetic

departments throughout the industry.

We are very pleased to extend the goals of the series to this newest

volume. We remain committed to the aim of publishing material to fill the

gap between the academic sciences and the practical application of that

knowledge in drug development. Our grateful thanks goes out to the authors

who contributed their time (and more importantly) their opinions, thoughts,

authorship, and most of all, patience to this project. Without their hard work,

expertise, and keen knowledge of the subjects presented, it would not be

possible to have reached our shared goal.
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We would like to dedicate this book to the editors and authors’ families –

whose love for us and understanding for our obsession make it possible for us

to happily wander through the maze of our scientific dreams.

Research Triangle Park, NC Peter L. Bonate

East Hanover, NJ Danny R. Howard
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Modeling Tumor Growth in Oncology 1
Peter L. Bonate

Abstract

In cancer drug development, measurement of tumor growth is necessary

for preclinical assessment of anticancer activity and clinical assessment of

efficacy. This chapter reviews mathematical models of preclinical and

clinical tumor growth. Issues and models with regards to mouse xenograft

data will be highlighted.

1.1 Introduction

Cancer is one of the leading causes of death

worldwide. It is expected that in 2010, 1.5 MM

new cases of cancer will be diagnosed in the USA

and more than a half-million people will die from

their illness (1,500 persons each day), with pros-

tate, breast, lung, and colon having the greatest

incidence (American Cancer Society 2010). Vast

amounts of money, time, and effort are spent

every year to develop new drugs to treat cancer.

Unfortunately, the approval rating for new cancer

drugs is dismal; around 5% of drugs that enter the

clinic will be approved for use by doctors and

patients (Kola and Landis 2004). Certainly, one

way companies can improve their success rates

for achieving new drugs is to better leverage

their preclinical and clinical data and reduce

attrition via application of mathematical models

of disease. Prospective modeling of tumor growth

is an example of how pharmaceutical companies

are working to reach this goal.

As part of the drug development process for

cancer drugs, particularly with regards to solid

tumors, measurement of tumor burden and size,

both before and after therapy, is common at

different points in the development process to

assess the effectiveness of a drug. Preclinically,

mice are injected with tumor fragments that are

allowed to grow and are then administered the

new chemical entity (NCE) to determine whether

the NCE can retard or shrink tumor growth.

Tumor size or volume are later assessed in

humans to determine whether the NCE is effec-

tive and can prolong survival. Recent attention

has focused on modeling tumor growth to better

understand the exposure–response relationship

for NCEs. This chapter will review tumor growth

kinetics in both preclinical and clinical models

used to characterize the growth of tumors over

time. Tumor growth models are also described

by Mould in the chapter on Modeling the

Progression of Disease elsewhere in this book.

P.L. Bonate

Clinical Pharmacology, Modeling, and Simulation,

GlaxoSmithKline, 5 Moore Drive, 17.2259, Research

Triangle Park, Durham, NC 27709, USA

e-mail: Peter.l.bonate@gsk.com

P.L. Bonate and D.R. Howard (eds.), Pharmacokinetics in Drug Development,
DOI 10.1007/978-1-4419-7937-7_1, # American Association of Pharmaceutical Scientists 2011
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1.2 Xenograft Models

The preclinical models for measuring antitumor

activity are relatively straightforward. As part of

the drug discovery process, researchers will sub-

cutaneously implant human tumor fragments into

the flank of nude or severe combined immuno-

deficient (SCID) mice and allow the tumors to

grow. Once the tumors have reached a predefined

size (usually 100–300 mm3), the mice are rando-

mized to different treatment groups: these usu-

ally include a placebo, some dose of the NCE,

and a positive control of a drug already known

to have an antitumor effect at the given dose. The

doses are given and tumor size is measured over

a period of time defined by the protocol, usually

weeks. The effect of the NCE relative to the

placebo and active control is determined. Effec-

tive cancer agents are assumed to be those that

will reduce or shrink tumors. Such models are

referred to as xenograft models and are meant as

a model for human tumor growth.Most every drug

approved in cancer was first tested in a xenograft

model to determine its anticancer activity.

There are often two types of measurements

reported in these studies, tumor volume and

tumor weight, both of which are derived from the

same set of measurements. Because the volume or

weight of the tumors cannot be actually measured,

their length (the longest axis) and width (in mm) is

measured using calipers and then weight or vol-

ume is estimated using one of several formulas

based on these values. Assuming the tumor is a

prolate ellipsoid (which has a shape like a mono-

lithic dome or an egg cut along its shortest axis

at the middle, see http://www.monolithic.com/

stories/shapes-prolate-ellipsoid-vertical for exam-

ple, accessed July 2010), tumor volume (in mm3)

is estimated as 0.5 � length � width2. If it is

assumed that the tumor has unit volume, then

tumor weight (in mg) is equal to tumor volume

assuming a density of 1 mg/mm3 for tumor tissue.

For nonspherical tumors other equations are used

to estimate the volume. The reader is referred to

Clarke (1997) and Rygaard and Spang-Thomsen

(1997) for details. Plots of tumor weight or volume

over time are often used to show the effect of the

drugs on the tumors.

Figure 1.1 presents an example of a xenograft

study for ABT-263, a small molecule inhibitor of

Bcl-2, which has shown activity in cell-cultured

tumors. ABT-263 showed activity in a variety

of tumors under a once-daily dosing schedule

(Shoemaker et al. 2008). Figure 1.1 shows that

ABT-263 has similar or better activity than etopo-

side, cyclophosphamide, and carboplatin in SCLC

H146 xenografts and had activity in paclitaxel-

resistant H146 xenografts. AVT-263 also did not

exhibit resistance with multiple cycles of therapy.

ABT-263 is now currently in Phase 1/2a under a

daily dosing schedule (14 days on/7 days off or

continuous dosing) in patients with SCLC and

non-hematologic malignancies.

Although xenografts are relatively easy to per-

form, there are problems (Kelland 2004). First,

these are human tumors grown in mice and so

the mice must be immunocompromised for the

tumors to grow in order to prevent a severe trans-

plant reaction from occurring in the host animal.

Second, since these tumors are implanted in the

flank, they do not mimic tumors of other origins,

e.g., a lung cancer tumor grown in the flank of

mice may not be representative of a lung cancer

tumor in the lung. Recent interest has focused on

so-called orthotopic models, wherein tumors of

particular origin are grown at the origin of interest

(Garber 2010), and in transgenic mice, which

are thought to more faithfully mimic the human

cancer process (Sharpless and DePinho 2006).

There are problems and criticisms associated

with these models as well, the foremost being

that there is no proof that these models perform

any better at predicting human activity than con-

ventional approaches. There is also the question of

the relevance of the xenograft models with tar-

geted therapeutics. Last, xenograft models never

metastasize.

Xenografts have been criticized for their low

predictive value. A retrospective analysis done

by the National Cancer Institute showed that only

15 of 33 compounds that were in Phase 2 of drug

development had activity in more than one-third

of the xenograft models tested (p ¼ 0.04).

Also, activity in a particular tumor line did not

generally predict human activity in that cancer,

e.g., activity in breast cancer xenograft models

2 P.L. Bonate
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Fig. 1.1 Example of a xenograft study. (a) Efficacy of

ABT-263 in the H146 SCLC xenograft model relative to

several standard cytotoxic agents. Shown is data compiled

from seven independent experiments. In each trial, tumors

were size matched to 240–300 mm3 (day 0) and therapy

was initiated the following day. Open circles, cisplatin
given at 3 mg/kg, IP, thrice every 4 days; closed triangles,
etoposide given at 25 mg/kg, IP, q4d � 3; open squares,
carboplatin given at 50 mg/kg, IP, q4d � 4; open dia-
monds, cyclophosphamide given at 100 mg/kg, IP,

q4d � 3; closed circles, vincristine given at 0.5 mg/kg,

IV, q7d � 4; open triangles, paclitaxel given at 30 mg/kg,

IP, q4d � 3; closed squares, ABT-263 given at 100 mg/

kg, po, 21 doses daily (black bar); closed diamonds, cis-
platin vehicle. For simplicity, only one vehicle group has

been plotted. However, all statistics and analyses of effi-

cacy were conducted by comparing to the vehicle control

specific for each agent. All cytotoxic agents were given at

or near their maximum tolerated doses. All drugs exhib-

ited a statistically significant inhibition of tumor growth

throughout the study except for cyclophosphamide, which

was significant only on days 4, 8, and 16 postdose initia-

tion (p < 0.05, Wilcoxon rank sum test). (b) Treatment

with ABT-263 causes regression of large, established

H146 xenograft tumors. Tumors were allowed to reach

an average tumor volume of �1,000 mm3 before initia-

tion of therapy. Closed squares, ABT-263 was given

at 100 mg/kg, po, 17 doses daily (black bar); closed

triangles, docetaxel given at 30 mg/kg, IV, q7d � 2;

open squares, vehicle. ABT-263 treatment resulted in

92% TGI at the end of therapy with all tumors showing

at least an 80% reduction in tumor volume relative to

starting size (n ¼ 10 mice per group). (c) Analysis of

paclitaxel-resistant variant of H146. Parental H146 tumors

were initially treated with four doses of paclitaxel at

30 mg/kg/day. Tumors that relapsed after treatment were

propagated into new hosts and expanded into new lines.

The H146 variant line (H146-V) shown here was signifi-

cantly more resistant to paclitaxel treatment of 30 mg/kg/

day compared with the parental line. Closed diamonds,
ABT-263 given at 100 mg/kg, po, 21 doses daily; open
squares, paclitaxel given at 30 mg/kg, IP, q4d � 3; closed
squares, paclitaxel vehicle. Immunohistochemical analy-

sis of parental H146 and H146-V tumors showed that the

variant line expresses significantly higher levels of Pgp-1

(inset; magnification, �100). ABT-263 given at 100 mg/

kg/day still showed significant efficacy in the H146-V line

(p < 0.01, Wilcoxon rank sum test). (d) Efficacy of ABT-

263 in the H146 xenograft model after multiple cycles of

therapy. Tumors were randomized into groups of equal

tumor volume (�200 mm3) on day 0 with group A receiv-

ing ABT-263 at 100 mg/kg/day, po, from day 0 to day 4

and group B receiving vehicle. Additional 5-day cycles of

treatment with ABT-263 at 100 mg/kg/day were adminis-

tered as follows: group A, days 36–40, 63–67, 87–91,

119–123, 140–145, and 161–165; group B, days 87–91,

1 Modeling Tumor Growth in Oncology 3



did not predict activity in breast cancer in

humans, the exception being non-small cell

lung cancer which had a 45% predictive rate

(Johnson et al. 2001). What is interesting about

this argument about the predictive value of xeno-

grafts is the perceived need for a high prediction

rate. In toxicology, the overall concordance rate

between toxicity in man and similar toxicity

in animals is only 70%, with 30% of human

toxicities not predicted at all by animal studies

(Greaves et al. 2004), and yet few would suggest

we should not do toxicology studies prior to

first time in man. Although xenograft are not

completely predictive of activity, they are much

better at weeding out failures, as drugs that fail to

show efficacy in xenograft models very likely

will not be active clinically.

It has been argued that the predictive value of

xenograft models can be significantly improved

when the doses administered to mice produce

exposures similar to the exposures seen in the

clinic (Kerbel 2003; Inaba et al. 1988) since often

the doses given to mice are four- to fivefold

higher than the maximum tolerated dose (MTD)

seen in humans (Maruo et al. 1990; Inaba et al.

1989; Tashiro et al. 1989). The difficulty with

this approach is that prior to first time in man,

the MTD in humans is not known so the doses

studied in mice are often the MTD in mice. Later,

after the MTD has been established in man, the

dose in mice can be adjusted to produce pharma-

cokinetically equivalent exposures. Further test-

ing of this hypothesis needs to be performed.

1.3 Preclinical Models for Tumor
Growth

Modeling of tumor growth kinetics began in the

1960s with Anna Kane Laird (1964) who showed

that unperturbed tumor growth in a test tube

followed Gompertzian kinetics, which look

similar to the profiles produced by the sigmoid

Emax model familiar to most pharmacokineti-

cists. The proposed equation for cell growth was

YðtÞ ¼ Yð0Þ exp A

a
1� expð�atÞð Þ

� �
(1.1)

where, Y(t) is tumor size at time t, Y(0) is the

baseline tumor size, and A and a are constants.

For small values of at or when a ¼ 0, tumor

growth becomes exponential. Since Laird’s initial

report, Gompertzian growth has been shown for a

variety of tumors in different unperturbed situa-

tions both in vitro and in vivo. The first paper to

show that a Gompertz equation best described

tumor growth in animals was by Simpson-Herren

and Lloyd (1976) in a C3H mouse mammary

tumor and L1210 ascites tumor (often used as a

model for leukemia). The first paper to show that a

Gompertz equation applies to human tumor

growth was Sullivan and Salmon (1972).

It was a series of papers by Norton and Simon

(1976a,b) that really called attention to the use of

the Gompertz equation in describing tumor

growth (Norton 1988). Based on their studies,

they predicted that for chemotherapy, one could

increase cell kill by delivering treatments at

higher doses (increased dose intensity) through

minimization of tumor regrowth between cycles.

This hypothesis, referred to as the Norton–Simon

hypothesis, was confirmed in clinical trials

(Citron et al. 2003). Norton et al. (2005) later

showed how a Gompertz equation could be

modified to account for perturbation in the

presence of an active treatment and how to

optimize chemotherapeutic dose regimens under

Gompertzian growth. In the unperturbed state,

tumor volume could be modeled by

dY

dt
¼ aYðtÞ � a� LnðYðtÞÞ � YðtÞ (1.2)

Fig. 1.1 (continued) 119–123, and 140–144. Group B

was also treated with vehicle on days 36–40 and 63–67.

Black boxes, dosing periods for group A; white boxes,
dosing periods for group B. ABT-263 treatment resulted

in significant tumor regression, even after six previous

cycles of therapy. Regression of large (>2,000 mm3)

tumors was also seen after multiple therapy cycles. Rep-

rinted with permission from Shoemaker et al. (2008).

Copyright American Association of Cancer Research,

2008
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but in the presence of drug effect the equation is

modified to

dY

dt
¼ aYðtÞ � a� LnðYðtÞÞ � YðtÞ � ð1� DEÞ

(1.3)

where, DE is a drug effect function whose

domain is on the interval (0, 1). When the

model was applied to capecitabine, the point of

maximal drug effect was approximately 7 days

of treatment. The model predicts that dosing

after 7 days diminishes anticancer benefit but

increases the risk of toxicity. Preclinical studies

in xenograft models confirmed that a 7 day-on/

7 day-off regimen achieved a maximum tolerated

dose 1.5 times higher than the conventional

schedule (Traina et al. 2006). Based on these

preclinical results, a clinical trial was started

testing the safety of a 7 day-on/7 day-off

schedule for capecitabine and was found to be

safe and well tolerated (Traina et al. 2008). A

Phase 2 study to determine the efficacy under this

dosing schedule is on-going.

Miklavcic et al. (1995) modeled the effects

of bleomycin and electrotherapy in xenografts.

Four different models were tested: exponential,

Gompertz, Bertalanffy, and logisitic. Untreated

mice were modeled as

dY

dt
¼ lY Exponential

dY

dt
¼ Y a� bLn

Y

Y0

� �� �
Gompertz

dY

dt
¼ aY2=3 � bY Bertalanffy

dY

dt
¼ aY � bY2 Logistic

(1.4)

with initial conditions Y(0) ¼ Y0. Based on

goodness of fit measures, the Gompertz model

was chosen as best. Mice treated with bleomycin

were modeled as

dY

dt
¼ Y a� bLn

Y

Y0

� �
� gCt

� �
(1.5)

where g was a measure of drug effect and Ct was

the predicted tissue concentration based on a

three-compartment model.

Jackson et al. (2010) used a Gompertz model

to describe the tumor growth rate for A2780 mice

xenografts and the interaction between a targeted

therapeutic and cytotoxic chemotherapeutic

agent. Since only concentration data were avail-

able for the targeted therapeutic, a kinetic–

dynamic model was used to model the temporal

relationship with the cytotoxic agent. The authors

also included a biomarker model linking the

pharmacokinetic model for the targeted therapeu-

tic and its effect on tumor growth. The model

was able to discriminate between the effects of

the two agents and showed that the two agents

had an additive effect on tumor growth inhibition.

Although there has been some debate as to

whether Gompertz or logistic growth rates have

a biological basis (Xu 1987), their original use

was purely empirical. Marusic (1995) showed

that Gompertz, logistic, and Bertalanffy models

are in fact special cases of the generalized two

parameter model

dY

dt
¼ aYa � bYb: (1.6)

For example, in a logistic equation a ¼ 1 and

b ¼ 2. Other types of empirical models to

explain tumor growth include the nonlinear

mixed effects model proposed by Liang and

Sha (2004) wherein tumor growth was modeled

using a biexponential equation

YiðtijÞ ¼ expðpi1 � di1tijÞ � expðpi2 � di2tijÞ þ eij
(1.7)

where, the subscript i refers to the ith subject

at the jth timepoint. While useful to explain a

particular set of data, such empirical models are

difficult to extrapolate beyond the conditions

originally studied. Gompertzian models also

suffer from the fact that the plateau is difficult

to estimate because the mice are often killed

for ethical reasons when tumor sizes exceed

1 Modeling Tumor Growth in Oncology 5



a certain size (usually >1,000 mm3), which

often occurs prior to the plateau occurring.

More recent models attempt to account for

treatment effects through the use of mechanistic

or semi-mechanistic models. Yamazaki et al.

(2008) used a modified indirect response model

where tumor growth was described by

dY

dt
¼Kin 1� YðtÞ

TG50þYðtÞ
� �

� 1� Emax �Cn

ECn
50þCn

� �
YðtÞ�KoutYðtÞ

(1.8)

where, the additional Y(t) on Kin-side of the

equation allows for tumor growth and the

term 1� YðtÞ
TG50 þ YðtÞ

� �
allows tumor growth

to plateau. Using this model, the authors pre-

dicted the tumor growth profiles for GTL16 gas-

tric carcinoma and U87MG glioblastoma

xenografts following treatment at five different

dose levels with PF-02341066, a cMET tyrosine

kinase inhibitor. Interestingly, although they

modeled cMET phosphorylation levels in

tumors, they did not test whether cMET phos-

phorylation could be a driver of (1.8) instead of

plasma concentrations. Also, such a model

implies that the drug inhibits tumor growth with

no effect on cell death. It may be that in such a

case, the model needs to be modified to

dY

dt
¼ Kin 1� Emax � Cn

ECn
50 þ Cn

� �
YðtÞ

� Kout 1þ Emaxdeath � Cn

ECn
50;death þ Cn

 !
YðtÞ (1.9)

where a term is added to the Kout-side of the

equation to account for cell death.

A model that has seen rapid acceptance within

the pharmacometrics community is the Simeoni

tumor growth model. Using paclitaxel and 5-flur-

ouracil (5-FU) as probes, Simeoni et al. (2004a)

reported on a semi-mechanistic model of tumor

growth. In the unperturbed state, tumor growth is

expected to occur exponentially, at least initially,

followed by a linear growth phase that eventually

plateaus. Such tumor growth can be modeled using

a Gompertz or logistic model. In their data, a

plateau phase was never achieved and to account

for this detail, a model was developed to explain

the exponential and linear growth components.

The authors used a change point differential equa-

tion to account for the two different phases. In

terms of differential equations, tumor size Y was

modeled as

dY

dt
¼ l0YðtÞ; YðtÞ � Yt

dY

dt
¼ l1; YðtÞ> Yt

Yð0Þ ¼ Y0

(1.10)

where l0 and l1 are the parameters characteriz-

ing the exponential and linear rate of growth, and

Yt is the tumor size at which growth changes

from exponential to linear. Yt can be expressed

as a function of l0 and l1 where l0Yt ¼ l1. The
parameters l0 and l1 are considered an indication
of the aggressiveness of the tumor. The change

point model in (1.10) can be simplified to

dY

dt
¼ l0YðtÞ

1þ l0
l1

YðtÞ
� �C

" #1=C ; Yð0Þ ¼ Y0 (1.11)

For large values of C, (1.11) is a good repre-

sentation of (1.10) and for this reason C is fixed

to 20. When Y(t) < Yt, the system behaves expo-

nentially because the term (l0/l1)Y(t)
C is negli-

gible. On the other hand, when Y(t) > Yt, the
term of 1 in the denominator becomes negligible

and the system switches to linear growth.

In the perturbed state when animals are

treated with cancer drugs, the model needs to

account for the cells that are killed by the drug.

To do this, the proliferating cells are modeled

as a set of damaged cells and dead cells in a

transit compartment manner (top of Fig. 1.2).

This represents the semi-mechanistic part of the

model. Three transit compartments are used to

account for the damaged cells, representing the
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three degrees of damage. Mathematically, the

differential equations for the model become

dY1
dt

¼ l0Y1ðtÞ

1þ l0
l1

Y1ðtÞ
� �C

" #1=C � K2CðtÞY1ðtÞ

dY2
dt

¼ K2CðtÞY1ðtÞ � K1Y2ðtÞ
dY3
dt

¼ K1Y2ðtÞ � K1Y3ðtÞ
dY4
dt

¼ K1Y3ðtÞ � K1Y4ðtÞ
wðtÞ ¼ Y1ðtÞ þ Y2ðtÞ þ Y3ðtÞ þ Y4ðtÞ

Y1ð0Þ ¼ wð0Þ; Y2ð0Þ ¼ Y3ð0Þ ¼ Y4ð0Þ ¼ 0

CðtÞ ¼ 0; t � t0

(1.12)

where K2 is a parameter that represents the effi-

cacy of the drug at killing the tumor, K1 is the

rate of death of the drug, w(t) is the total tumor

weight and C(t) is the drug concentration at

time t, and t0 is the start of drug administration.

The number of transit compartments between

cell proliferation and cell death is empirical and

can in fact be changed depending on the tumor

type. The top of Fig. 1.3 shows a theoretical

tumor growth curve assuming a single intrave-

nous bolus of drug on day 9. Depending of the

value of K2, the drug can transiently retard

growth or completely shrink the tumor.

A number of secondary parameters can be

defined from the primary model parameters.

The average time to cell death is equal to n/K1.

A Time Efficacy Index (TEI), which can be inter-

preted as the time interval required to achieve a

predefined tumor weight animals during linear

growth, can be defined as

TEI ¼ K2 � AUC

l0
(1.13)

where, AUC is the total area under the curve

following a single dose administration. If ani-

mals are exposed to a constant drug concentra-

tion Css, the threshold concentration for tumor

eradication (CTE) can be estimated as l0/K2 such

Y2

Damaged Cells

K1 K1K1 Cell

Death

Y1
Proliferating

Cells
Feedback

K2 C(t)

Pharmacokinetic Model

f(Cp)

Y

g(Y)

X4

X4X3X2X1

Cell
Death

Y3 Y4

t t t t

Fig. 1.2 Schematic of the semi-mechanistic tumor growth model proposed by Simeoni et al. (2004a) (top) and the cell
transit model proposed by Lobo and Balthasar (2010) (bottom)
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Fig. 1.3 Top plot shows the theoretical effect of K2 on

simulated tumor growth curves: the simulations were per-

formed assuming a single intravenous bolus given on day

9; l0 ¼ 0.0154/day; l1 ¼ 0.0211 g/day; w(0) ¼ 0.0162 g;

K1 ¼ 0.0265/day. l0, first-order rate constant of tumor

growth; l0, zero-order rate constant of tumor growth; w
(0), tumor weight at the inoculation time; K1, first-order

rate constant of transit; K2, measure of drug potency.

Bottom two plots show the observed and model-fitted

tumor growth curves obtained in two different experiments

in nude mice given intravenously either the vehicle or

paclitaxel [experiment 1 (exp 1), 30 mg/kg every 4 days

for 3 days from day 8; experiment 2 (exp 2), 30 mg/kg

every 4 days for 3 days from day 13]. Middle plot shows

the fitting of the pharmacokinetic data of paclitaxel given

as repeated intravenous bolus doses at 30mg/kg dose level;

Conc., concentration. Reprinted with permission from

Simeoni et al. (2004a). Copyright American Association

of Cancer Research, 2004
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that if Css < CTE then the tumor will grow to the

asymptotic weight of l1/(K2 � Css). If Css >

CTE, then the tumor size will decrease. In exam-

ining the product of CTE and human total

systemic clearance, a linear relationship on a

log–log scale was noted for ten different drugs

and further when K2 was plotted against the

maximum tolerated dose, a linear log–log rela-

tionship was again seen (Rochetti et al. 2007).

Using this model, Simeoni et al. modeled

a variety of tumor growth curves for paclitaxel,

5-FU, and a NCE. The bottom of Fig. 1.3 shows

the observed and predicted growth curves for

two different experiments in mice bearing

A2780 tumors following paclitaxel administra-

tion. From this initial report, a number of further

examinations of the usefulness of the model have

been reported by the authors (Magni et al. 2006;

Rocchetti et al. 2005; Simeoni et al. 2004b;

Poggesi et al. 2004), and by others outside the

group (Goteti et al. 2010).

It should be pointed out, however, that the

Simeoni model is not without its flaws. First,

unlike the Gompertz model, the Simeoni model

has no plateau and continues linear growth to

infinity. In reality, tumors have a self-limiting

size and when the animal does not die before

that limit is reached, a plateau is evident in

tumor size and/or weight. The Simeoni model

cannot account for a plateau. Second, although

the model is touted as a semi-mechanistic model,

the actual growth function is empirical based

on observation. Also, the model is new to phar-

macologists who perform the xenograft studies.

Gompertzian growth has 40 years of experience

behind it; pharmacologists are comfortable with

it. The Simeoni model is new and untested and

the comfort level is not the same when it is used.

Despite these, however, the model still has its

advantages and good modeling practice would

be to compare a variety of models (Simeoni,

Gompertz, logistic, etc.) before choosing an

appropriate form.

Since these initial reports, the basic Simeoni

model has been expanded to other situations.

Stuyckens et al. (2007) extend the basic model

by allowing for drug resistance to occur either

through an empirical resistance function or

through a semi-mechanistic approach and further

show how the model can be expanded in a kine-

tic–dynamic model through which concentration

measurements are not necessary.

Koch et al. (2009) modified the Simeoni

model to allow a smooth transition between

exponential and linear growth by changing

dY1/dt in (1.12) to

dY1
dt

¼ 2l0l1Y1ðtÞ2
l1þ2l0Y1ðtÞð ÞwðtÞ�K2CðtÞY1ðtÞ (1.14)

All other equations remain the same. In the

studies is reported by Simeoni, none the drugs

examined were given in combination. Koch et al.

extend their model to account for combination

therapy when two drugs are getting together.

They replace K2 in (1.14) with a term they refer

to as the “total influence” function and change

the first two differential equations in the model to

dY1
dt

¼ 2l0l1Y1ðtÞ2
l1 þ 2l0Y1ðtÞð ÞwðtÞ
� Ka

2CaðtÞ þ Kb

2CbðtÞF
� �

Y1ðtÞ
dY2
dt

¼ Ka
2CaðtÞ þ Kb

2CbðtÞ
� �

Y1ðtÞ � K1Y2ðtÞ
(1.15)

where,Ka
2 and K

b
2 are the K2 values for Drug A and

Drug B and F is a synergy term such that F > 1

implies synergy, F ¼ 1 implies additive, and

F < 1 implies antagonism. It should be noted that

unless many different dose combinations of Drug

A and Drug B are given, F may be unestimable.

Bueno et al. (2008) reported a model

which characterized the pharmacokinetics of

LY2157299, a novel Type I receptor TGF-b kinase
antagonist, and tumor growth kinetics in Calu6 and

MX1 tumor types. The pharmacokinetic model

consisted of a two compartment model with first-

order absorption and first-order elimination. Since

tumor size did not plateau, the tumor model used

was the Simeoni growth model where the change

in tumor size (dY/dt) was characterized by

dY

dt
¼ l0ð1� INH2ÞYðtÞ

1þ l0
l1

YðtÞ
� �c

" #1=c : (1.16)
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INH2 was a zero to one time-delayed, normal-

ized inhibition effect related to the degree of

phosphorylated Smad, proteins that modulate the

activity of TGF-b agonists (Fig. 1.4). The authors

then used simulation to understand the relationship

of tumor growth inhibition and tumor growth delay

with steady-state concentrations of LY2157299

and different dosing schedule.

A competing model to the Simeoni model is

the proposed transit model approach by Lobo

and Balthasar (2010), which they developed to

account for the delay in tumor growth inhibition

versus methotrexate plasma concentrations. The

transit model they proposed is shown in the

bottom of Fig. 1.2. Mathematically, the model

proposed was

dY

dt
¼ gðYÞ � K4YðtÞ; Yð0Þ ¼ wð0Þ

dX1

dt
¼ t

KmaxCp

IC50 þ Cp

� X1ðtÞ
� �

dX2

dt
¼ t X1 � X2ð Þ

dX3

dt
¼ t X2 � X3ð Þ

dX4

dt
¼ t X3 � X4ð Þ

X1ð0Þ ¼ X2ð0Þ ¼ X3ð0Þ ¼ X4ð0Þ ¼ 0

(1.17)

where Y is the tumor size, t is the transit rate

constant (similar to K1 in the Simeoni model),

and g(.) is a tumor growth function. Sample

growth functions include a exponential growth

Peripheral
(V2)

Depot

Q

CL

Ka

Central
(V1)

pSmad(t)
Ksyn Kout

IC50, Imax, n

INH0 INH2INH1
Ktrd Ktrd Ktrd

Kgrowth,exp
Kgrowth,linear

Mean Signal Propogation Time

Tumor

pSmad(0)-pSmad(t)
pSmad(t)

g

Fig. 1.4 Schematic model for the tumor growth kinetics

following treatment with LY2157299 as presented by

Bueno et al. (2008). Gray circles denote biomarkers.

Best lines denote negative influence functions, e.g.,

plasma concentrations of LY2157299 inhibit phosphory-

lation of pSmad
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gð:Þ ¼ KgYðtÞ; (1.18)

exponential growth that plateaus

gð:Þ ¼ KgYðtÞ 1� YðtÞ
Ymax

� �
; (1.19)

or even a Simeoni type function

gð:Þ ¼ 1þ l0
l1

YðtÞ
� �C

" #1=C
: (1.20)

Lobo and Balthasar compared the transit

model to two established models for chemother-

apeutic effects, a phase-specific and phase-

nonspecific model. The transit model was found

to provide a superior goodness of fit compared

to the established models. Yang et al. (2010)

simulated data from the Simeoni model (which

they call the cell distribution model) and the

transit model (which they call the signal distribu-

tion model) and compared the simulated data

using the alternative model. Their analysis

revealed that the signal distribution model was

more flexible in fitting data derived from the

cell distribution model than vice versa. They con-

cluded that although the models appear similar,

they are in fact mechanistically distinct, are not

interchangeable, and that the cell transit model is

more robust, particularly when data are sparse.

Jumbe et al. (2010) recently reported a mod-

ified transit compartment model wherein tumor

cells were divided into two groups, those that

were insensitive to the drug and grow a constant

rate and those that were sensitive to the drug

and eventually die. The sensitive cells were

modeled as a progressive process of cell damage

whereby the cells stop replicating and then

eventually die. The total volume of the tumor

was the sum of the insensitive cells and sensitive

cells at the progressive stages of death. Using this

model, the authors were able to characterize the

effects of trastuzumab-DM1, an antibody–drug

conjugate under development for the treatment

of breast cancer, in two different mice xenograft

models of HER2-positive breast cancer speci-

fically designed to be trastuzumab resistant.

The effect of trastuzumab was shown to be

cell-cycle-phase nonspecific in its mechanism

of action.

A new model has recently been reported to

model the antitumor effect of antiangiogenic

agents. Ribba et al. (2010) used four ordinary

differential equations to describe the temporal

changes of non-hypoxic (P), hypoxic (Q), and

necrotic (N) tissue within a tumor. A latent

variable K, which they call the carrying capacity,

accounts for the process of angiogenesis. Using

sunitinib as a probe, the authors modeled the tumor

growth kinetics of HT29 lung and HCT116 colon

xenografts in mice using a kinetic–dynamic model

to account for temporal changes in sunitinib con-

centrations. It is too early at this point to determine

the value of the model in drug development but its

mechanistic nature holds promise.

1.4 Measuring Tumor Size
in Cancer Patients

There are many different ways to measure tumor

size, the most common being radiologic mea-

surement. Usually, the cross product measure-

ment of the two longest perpendicular diameters

seen on a cross-sectional image, like an X-ray,

ultrasound, CT, or MRI scan, is taken as the size

of the tumor. With new imaging techniques,

actual tumor volume can now be assessed, but

this is not often done (yet). For X-ray measure-

ment, diameter may be measured manually with

a caliper, but for imaging and digital X-rays,

computerized measurements can be made. The

difficulty with measuring perpendicular dia-

meters is when the legion of interest is not well

defined or is asymmetrical. For this reason, mea-

surment of tumor size in many pivotal trials is

done by a standardized review, sometimes using

just a single reviewer, to reduce intersubject

variability and increase reproducibility.

Being able to accurately measure tumor size is

important for many reasons. A patient’s initial

tumor size is used to stage the patient for many

types of cancers. For example, breast cancer

patients having a tumor size of 2–5 cm are clas-

sified as T-2. Tumors>5 cm are classified as T-3.
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How a patient is treated depends upon their

staging. Once a patient initiates therapy, treat-

ment is dependent on how the tumor shrinks in

response to a therapy. A tumor may show initial

shrinkage with a drug but then may start to grow

again, a process known as disease progression,

at which point the physician may change the

course of treatment. Without an accurate tumor

size measurement physicians are treating blind.

Tumor size is also an important indicator for

survival. For example, patients with lung tumors

<2 cm in size have a higher survival rate than

patients with larger sized tumors.

In most cases, multiple lesions are measured

and the sum of these lesions is returned as a

composite measure of tumor burden; this is

often called the sum of longest diameters. Nearly

30 years ago, the World Health Organization

(WHO) (Miller et al. 1981) reported on guide-

lines to standardized tumor measurements across

studies. Under the WHO criteria, patients can

be defined into one of five response types: “com-

plete response” (CR), “partial response” (PR),

“stable disease” (SD), “progressive disease”

(PD), or “not evaluable.”

While a huge step forward there were still

problems with the WHO guidelines, like lack

of specification of the number of lesions to be

reviewed, definitions for what constitutes pro-

gressive disease, and how to handle new imaging

modalities. In 2000, several research groups

updated the WHO guidelines and created the

Response Evaluation Criteria in Solid Tumors

(RECIST) guidelines (Therasse et al. 2000).

The core of RECIST is standardized tumor size

measurement. In 2009, RECIST Version 1.1 was

released as a means to further improve consis-

tency and standardization across clinical trials

(Eisenhauer et al. 2009). RECIST 1.1 has a few

changes to version 1. These include reducing the

number of measured lesions to be assessed from

a maximum of ten to five, reducing the number

of measured lesions from a maximum of five to

two in a particular organ, new guidelines for

assessment of measuring the lymph nodes, guide-

lines on defining disease progression, and new

guidelines on imaging (interestingly, in the first

version of RECIST no radiologists were included

in developing the guidelines). Table 1.1 presents

definitions for the response criteria under

RECIST 1.1.

The overall response rate (ORR) for a trial is

the proportion of patients that achieve a specified

reduction in tumor size for a predefined period

of time (at least 4 weeks) that includes both CR

and PR (McKee et al. 2010). Stable disease is not

included in ORR, but is included in the Disease

Control Rate, which is the proportion of patients

achieving a PR, CR, or SD. Response duration

is defined as the time from initial response to

the time of documented disease progression. In

considering a drug’s ORR, the FDA considers

magnitude, percent of CRs, and duration of

response.

Table 1.1 Summary of response criteria under RECIST 1.1

Response Definition

Complete response Complete disappearance of all lesions lasting at least 4 weeks; lymph nodes

must be non-pathological in size

Partial response A 30% decrease in sum of longest diameters lasting at least 4 weeks taking

as a reference the baseline tumor size

Stable disease Neither partial response or progressive disease criteria met taking as a

reference the smallest sum of diameters as the reference

Progressive disease 20% increase in tumor size using the smallest sum of diameters as the

reference (which may be the baseline) with no complete response, partial

response, or stable disease documented before increased disease and a

minimum increase of at least 5 mm or appearance of new lesions

Not evaluable When no measurement is available or incomplete measurements are done
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Tumor measurements are often made every

few weeks, usually 4–8 weeks, depending on

the cancer type. From these, the best overall

response is determined (which in itself is compli-

cated, see Eisenhauer et al. (2009) Tables 1–3 for

details) and then based on when, and if, progres-

sion occurs, time to progression (TTP) is deter-

mined, which is formally defined as the time

from randomization to documented, objective

disease progression (McKee et al. 2010). TTP is

related to progression-free survival (PFS), which

is defined as the time from randomization to

disease progression or death. Should a patient

die during study, TTP is censored. TTP can be

used as a primary endpoint in a clinical trial in

which the majority of patients who die on the

study are not expected to be to the cancer itself,

although PFS is preferred since it is expected to

better correlate with overall survival, the gold

standard of primary endpoints in oncology.

While standardized criteria certainly have

their advantages, there are still unresolved issues

with regards to standardization. Examples

include when there are more than five lesions,

radiologists do not consistently choose the same

five lesions to assess. Reproducibility is still

an issue, with interobserver and intraobserver

variabilities of 15% and 6% for measurements

of tumor size in three dimensions using CT

(Schwartz et al. 2000). And, there are some ques-

tions as to whether RECIST applies to pediatric

oncology (McHugh and Kao 2003).

1.5 Clinical Models for Tumor
Growth

There have been few published models that have

examined the relationship between exposure and

tumor growth over time in humans. The goals of

these studies have been to relate short-term

changes in tumor size to long-term changes in

outcome or to confirm the presence of a concen-

tration-effect relationship. Both of these goals

have utility. The success rate in Phase 3 oncology

studies is not as large as one would think, about

50%. Being able to leverage the information

from Phase 2 may increase the probability of

success in Phase 3. Being able to establish a

concentration-tumor size relationship may be

useful as supporting data in a registration dossier

with only a single well-controlled study.

Tham et al. (2008) presented a model for tumor

growth in non-small cell lung cancer (NSCLC)

patients using a kinetic–dynamic model. Under

this empirical model, an effect compartment was

used to transduce dose into an “effect concentra-

tion” which was then used as an input into an

indirect response type-model. Using this model,

the authors were able to predict tumor size follow-

ing treatment with gemcitabine.

Wang et al. (2009) modeled four randomized

clinical trials for NSCLC. Tumor size Y was

modeled using a mixed exponential decay and

linear growth function

YðtÞ ¼ Yð0Þ expð�StÞ þ kt (1.21)

where, Y(0) is the baseline tumor size, S is the

exponential tumor rate shrinkage constant, and

k is the linear growth rate constant. The exponen-

tial portion of the model explains the rate of

tumor shrinkage, while the linear growth func-

tion explains the rate of tumor growth after

tumors have ceased shrinking. Random effects

were added to the model by allowing the base-

line, S, and k to be log normally distributed. An

exponential error model was used to account

for unexplained residual variability. Figure 1.5

presents a goodness of fit plots for six represen-

tative patients. The model appears to capture the

general tendencies of the observed data.

Simply modeling tumor size was not the goal

of the Wang et al. paper. The goal was to incor-

porate changes in tumor size as a predictor of

survival and to determine whether short-term

changes in tumor size could be used to predict

long-term overall survival. The authors found

that overall survival could be modeled using a

parametric lognormal survival model in which

the mean survival time was a function of ECOG

(Eastern Cooperative Oncology Group) perfor-

mance status, baseline tumor size, and percent
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change from baseline 8 weeks after initiating

therapy. Wang et al. did not link the tumor size

model to a particular pharmacokinetic model

because the studies used to develop the model

were different drugs. But future analyses could

link a pharmacokinetic model with a tumor

model. Similarly, for NCEs being developed for

NSCLC, a model could be developed explaining

change in tumor size as a function of that drug’s

pharmacokinetics, which could then be linked to

the Wang et al. survival model to predict overall

survival based on short-term efficacy studies,

thus leveraging information.

Claret et al. (2009) developed a kinetic–

pharmacodynamic model linking capecitabine

exposure to tumor growth inhibition in patients

with colorectal cancer. Using data from Phase II

and Phase III data, the authors modeled tumor

size Y at time t using the equation

dY

dt
¼ Kgrowth � YðtÞ � Kdeath � Dose

� expð�ltÞ � YðtÞ (1.22)

where, Kgrowth is the tumor growth rate, Kdeath is

the tumor death rate, Dose is the daily dose

administered, and exp(�lt) is the progression

rate at time t, where l is the estimated progres-

sion appearance factor. Because no pharmaco-

kinetic data were available, dose was used as the

exposure measure affecting tumor death.

Between-subject variability was accounted for

by allowing Kgrowth, Kdeath, and l to be treated as
log normally distributed random effects. Similar

to the Wang et al. paper, the authors then devel-

oped a survival model linking percent change in

tumor size 7 weeks after treatment to overall

survival but with a twist. The twist was that

they did not have a survival data with capecita-

bine, but they did have survival data with 5-FU

so they developed their survival model using the

5-FU data and then piggybacked the models

together (Fig. 1.6). Hence, one part of their

model was drug-specific while the other part

of their model was disease-specific. Using sim-

ulation, the authors validated their model using

an independent Phase 3 study. Based on these

Fig. 1.5 The time course of NSCLC tumor size change

for representative individual patients. The symbols repre-
sent the observed tumor sizes, the solid line represents

the mean tumor size for the overall population, and

the broken line represents the individual predicted tumor

size. Figure reprinted from Wang et al. (2009). Reprinted

by permission from Nature Publishing Group [Clinical

Pharmacology and Therapeutics, 2004]
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results the authors have developed a framework

for predicting the Phase 3 survival based on

Phase 2 data which might be useful when decid-

ing whether to pursue further development of

the compound.

Houk et al. (2009) expanded on the Claret et al.

model and reported on the tumor growth kinetics

in patients with metastatic renal cell cancer

(mRCC) and gastrointestinal stromal tumors

(GIST) following treatment with sunitinib.1

Tumor growth kinetics (dY/dt), as measured by

the sum of longest diameters, for each tumor type

was described by

dY

dt
¼ Kgrowth � YðtÞ � Kdeath � CðtÞ

� expð�ltÞ � YðtÞ (1.23)

where, C(t) is the plasma concentration of suniti-

nib. This time, exposure was modeled as a func-

tion of drug concentration. Their models showed a

different rate of growth and death for mRCC and

GIST. Patients with mRCC had a Kgrowth twofold

higher than patients with GIST and threefold

higher Kdeath. The rate of progression was 1.5-

times faster in mRCC than in GIST. Simulations

showed that 38% more of mRCC patients and

23% more of GIST patients would show a partial

response (at the least a 30% decrease from

baseline in tumor size) when sunitinib was admi-

nistered 50 mg once-daily compared to 25 mg

once-daily. Combining this efficacy model with

a variety of different adverse event models, the

authors generated a composite efficacy – adverse

event profile for sunitinib. It should be noted that

one difficulty with this model is the estimation

of Kgrowth. Since most patients, once they start to

show signs of disease progression, are taken off

the study drug, an estimate of Kgrowth is often

unavailable or imprecisely estimated.
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Fig. 1.6 Schematic of the

kinetic–dynamic-survival

model of Claret et al.

(2009). Gray boxes are
model outputs

1Houk et al. discussed this model in another chapter in this

book.
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1.6 Modeling Response in Humans

Under RECIST criteria, patients are assigned a

best overall response. It is often of interest to

model best overall tumor response as a function

of exposure. The usual method is to treat the

responses as an ordinal variable such that CR >

PR > SD > PD and then use ordinal logistic

regression to model response as a function of

exposure. An example of this approach is the

exposure–response analysis reported for suniti-

nib in mRCC patients as reported by Houk et al.

(2009) in which there was a significant relation-

ship between sunitinib exposure and the proba-

bility of either a CR or PR (p < 0.0001). In GIST

patients a trend toward significance was observed

but did not reach statistical significance. In both

cases there was a trend towards decreasing tumor

size with increasing sunitinib exposure.

There are pros and cons to this approach. The

pros are that the results have direct interpretation

and is relevant, e.g., increasing exposure in-

creases the probability of a complete response.

The con is that RECIST collapses a dynamic

measure (tumor growth) into a single endpoint,

which always results in loss of information and

decreased statistical power at detecting covariate

effects. Further research is needed in the link

between dynamic models of tumor growth and

logistic regression of best overall response.

1.7 Mathematical Models
of Cancer

A handful of reports have been published on theo-

retical models of cancer growth and progression,

some of which were reviewed in Sanga et al.

(2006). Araujo and McElwain (2004) present a

history of these type of mathematical models.

These models do not use the traditional ordinary

differential equation framework familiar to most

pharmacokineticists and instead use partial differ-

ential equations, which take into account both time

and space. For example, Sinek et al. (2009) rep-

orted on the effect of doxorubicin and cisplatin using

a partial differential multicompartment model of

concentrations in the extracellular, cytosolic, and

nuclear compartments. From this they were able

to predict DNA-bound drug concentrations, drug

concentrations at various cell depths, cell inhibi-

tion, and cell survival. Sanga et al. argue that “the

multifaceted nature of cancer requires sophisti-
cated, nonlinear mathematical models to capture

more realistic growth dynamics and morpholo-

gies”. Although none of these models have yet to

show utility in drug development, with the rise of

systems biology it is only a matter of time before

these nonlinear time- and space-models of cellular

dynamics link with pharmacokinetic–pharmaco-

dynamic models to lead to an integrative holistic

model of drug response and effect.

Conclusions

The difficulties and challenges associated

with understanding the dynamics of cancer

may benefit from mathematical modeling.

Indeed, the role of mathematical modeling in

drug development is becoming more main-

stream and accepted. In the March 2010

issue of Forbes magazine, there was a cover

item that said “Can Math Cure Cancer?” and

inside was a story called “The Mathematics of

Cancer”. The main focus of the article was on

Larry Norton, of the Norton–Simon hypothesis,

and how he thinks that “adding more mathe-

matics to the crude science of cancer therapy
will help”. Forbes is not a scientific magazine,

it is not even oriented towards professional

economists. The target audience for Forbes is

the everyday investor and yet here is a story

discussing the role of modeling in drug devel-

opment and how it could help cure cancer.

Modeling tumor growth may prove to

be an advantageous tool in cancer drug devel-

opment since modeling allows for greater

understanding of mechanisms and allow for

predictions outside the domain of the studies

used to develop the model. And yet, there are

still many limitations to the models we use.

The linear ordinary differential equations used

to characterize tumor growth are a gross sim-

plification and have only a small face validity

in their use. True tumor growth is nonlinear
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and stochastic and requires much more com-

plex models involving partial differential

equations. Still, modeling provides a means

to understand data from a variety of complex

sources and across many different data types.

Early leveraging of preclinical information

(even if the model is a simplification of the

true underlying data generating process)

and later application of modeling in drug

development will allow companies make

better decisions, hopefully earlier. The use

of mathematical modeling in oncology is

relatively new and is ripe for research with

a need for new innovative modeling methods,

techniques, and applications.
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