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Series Preface

Mathematics is playing an ever more important role in the physical and
biological sciences, provoking a blurring of boundaries between scientific
disciplines and a resurgence of interest in the modern as well as the clas-
sical techniques of applied mathematics. This renewal of interest, both in
research and teaching, has led to the establishment of the series: Texts in
Applied Mathematics (TAM ).

The development of new courses is a natural consequence of a high level of
excitement on the research frontier as newer techniques, such as numerical
and symbolic computer systems, dynamical systems, and chaos, mix with
and reinforce the traditional methods of applied mathematics. Thus, the
purpose of this textbook series is to meet the current and future needs of
these advances and to encourage the teaching of new courses.

TAM will publish textbooks suitable for use in advanced undergraduate
and beginning graduate courses, and will complement the Applied Math-
ematical Sciences (AMS ) series, which will focus on advanced textbooks
and research-level monographs.

Pasadena, California J.E. Marsden
Providence, Rhode Island L. Sirovich
College Park, Maryland S.S. Antman



Preface

This textbook has grown out of a course which we teach periodically at the
University of Iowa. We have beginning graduate students in mathematics
who wish to work in numerical analysis from a theoretical perspective, and
they need a background in those “tools of the trade” which we cover in
this text. In the past, such students would ordinarily begin with a one-
year course in real and complex analysis, followed by a one or two semester
course in functional analysis and possibly a graduate level course in ordi-
nary differential equations, partial differential equations, or integral equa-
tions. We still expect our students to take most of these standard courses.
The course based on this book allows these students to move more rapidly
into a research program.

The textbook covers basic results of functional analysis, approximation
theory, Fourier analysis and wavelets, calculus and iteration methods for
nonlinear equations, finite difference methods, Sobolev spaces and weak
formulations of boundary value problems, finite element methods, elliptic
variational inequalities and their numerical solution, numerical methods for
solving integral equations of the second kind, boundary integral equations
for planar regions with a smooth boundary curve, and multivariable poly-
nomial approximations. The presentation of each topic is meant to be an
introduction with a certain degree of depth. Comprehensive references on a
particular topic are listed at the end of each chapter for further reading and
study. For this third edition, we add a chapter on multivariable polynomial
approximation and we revise numerous sections from the second edition to
varying degrees. A good number of new exercises are included.



x Preface

The material in the text is presented in a mixed manner. Some topics are
treated with complete rigour, whereas others are simply presented without
proof and perhaps illustrated (e.g. the principle of uniform boundedness).
We have chosen to avoid introducing a formalized framework for Lebesgue
measure and integration and also for distribution theory. Instead we use
standard results on the completion of normed spaces and the unique ex-
tension of densely defined bounded linear operators. This permits us to
introduce the Lebesgue spaces formally and without their concrete realiza-
tion using measure theory. We describe some of the standard material on
measure theory and distribution theory in an intuitive manner, believing
this is sufficient for much of the subsequent mathematical development.
In addition, we give a number of deeper results without proof, citing the
existing literature. Examples of this are the open mapping theorem, Hahn-
Banach theorem, the principle of uniform boundedness, and a number of
the results on Sobolev spaces.

The choice of topics has been shaped by our research program and inter-
ests at the University of Iowa. These topics are important elsewhere, and
we believe this text will be useful to students at other universities as well.

The book is divided into chapters, sections, and subsections as appropri-
ate. Mathematical relations (equalities and inequalities) are numbered by
chapter, section and their order of occurrence. For example, (1.2.3) is the
third numbered mathematical relation in Section 1.2 of Chapter 1. Defini-
tions, examples, theorems, lemmas, propositions, corollaries and remarks
are numbered consecutively within each section, by chapter and section. For
example, in Section 1.1, Definition 1.1.1 is followed by an example labeled
as Example 1.1.2.

We give exercises at the end of most sections. The exercises are numbered
consecutively by chapter and section. At the end of each chapter, we provide
some short discussions of the literature, including recommendations for
additional reading.

During the preparation of the book, we received helpful suggestions
from numerous colleagues and friends. We particularly thank P.G. Ciar-
let, William A. Kirk, Wenbin Liu, and David Stewart for the first edition,
B. Bialecki, R. Glowinski, and A.J. Meir for the second edition, and Yuan
Xu for the third edition. It is a pleasure to acknowledge the skillful editorial
assistance from the Series Editor, Achi Dosanjh.
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1
Linear Spaces

Linear (or vector) spaces are the standard setting for studying and solv-
ing a large proportion of the problems in differential and integral equa-
tions, approximation theory, optimization theory, and other topics in ap-
plied mathematics. In this chapter, we gather together some concepts and
results concerning various aspects of linear spaces, especially some of the
more important linear spaces such as Banach spaces, Hilbert spaces, and
certain function spaces that are used frequently in this work and in applied
mathematics generally.

1.1 Linear spaces

A linear space is a set of elements equipped with two binary operations,
called vector addition and scalar multiplication, in such a way that the
operations behave linearly.

Definition 1.1.1 Let V be a set of objects, to be called vectors; and let
K be a set of scalars, either R, the set of real numbers, or C, the set of
complex numbers. Assume there are two operations: (u, v) 7→ u + v ∈ V
and (α, v) 7→ αv ∈ V , called addition and scalar multiplication respectively,
defined for any u, v ∈ V and any α ∈ K . These operations are to satisfy
the following rules.

1. u+ v = v + u for any u, v ∈ V (commutative law);

2. (u + v) + w = u+ (v + w) for any u, v, w ∈ V (associative law);

©  Springer Science + Business Media, LLC 2009
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2 1. Linear Spaces

3. there is an element 0 ∈ V such that 0+v = v for any v ∈ V (existence
of the zero element);

4. for any v ∈ V , there is an element −v ∈ V such that v + (−v) = 0
(existence of negative elements);

5. 1v = v for any v ∈ V ;

6. α(βv) = (αβ)v for any v ∈ V , any α, β ∈ K (associative law for
scalar multiplication);

7. α(u + v) = αu + αv and (α + β)v = αv + βv for any u, v ∈ V , and
any α, β ∈ K (distributive laws).

Then V is called a linear space, or a vector space.

When K is the set of the real numbers, V is a real linear space; and when
K is the set of the complex numbers, V becomes a complex linear space. In
this work, most of the time we only deal with real linear spaces. So when
we say V is a linear space, the reader should usually assume V is a real
linear space, unless explicitly stated otherwise.

Some remarks are in order concerning the definition of a linear space.
From the commutative law and the associative law, we observe that to add
several elements, the order of summation does not matter, and it does not
cause any ambiguity to write expressions such as u + v + w or

∑n
i=1 ui.

By using the commutative law and the associative law, it is not difficult
to verify that the zero element and the negative element (−v) of a given
element v ∈ V are unique, and they can be equivalently defined through
the relations v + 0 = v for any v ∈ V , and (−v) + v = 0. Below, we write
u− v for u+(−v). This defines the subtraction of two vectors. Sometimes,
we will also refer to a vector as a point.

Example 1.1.2 (a) The set R of the real numbers is a real linear space
when the addition and scalar multiplication are the usual addition and
multiplication. Similarly, the set C of the complex numbers is a complex
linear space.

(b) Let d be a positive integer. The letter d is used generally in this work for
the spatial dimension. The set of all vectors with d real components, with
the usual vector addition and scalar multiplication, forms a linear space
Rd. A typical element in Rd can be expressed as x = (x1, . . . , xd)

T , where
x1, . . . , xd ∈ R. Similarly, Cd is a complex linear space.

(c) Let Ω ⊂ Rd be an open set of Rd. In this work, the symbol Ω always
stands for an open subset of Rd. The set of all the continuous functions on
Ω forms a linear space C(Ω), under the usual addition and scalar multipli-
cation of functions: For f, g ∈ C(Ω), the function f + g defined by

(f + g)(x) = f(x) + g(x), x ∈ Ω,
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belongs to C(Ω), as does the scalar multiplication function αf defined
through

(αf)(x) = αf(x), x ∈ Ω.

Similarly, C(Ω) denotes the space of continuous functions on the closed set
Ω. Clearly, any C(Ω) function is continuous on Ω, and thus can be viewed as
a C(Ω) function. Conversely, if f ∈ C(Ω) is uniformly continuous on Ω and
Ω is bounded, then f can be continuously extended to ∂Ω, the boundary
of Ω, and the extended function belongs to C(Ω). Recall that f defined on
Ω is uniformly continuous if for any ε > 0, there exists a δ = δ(f, ε) > 0
such that

|f(x) − f(y)| < ε

whenever x,y ∈ Ω with ‖x−y‖ < δ. Note that a C(Ω) function can behave
badly near ∂Ω; consider for example f(x) = sin(1/x), 0 < x < 1, for x near
0.

(d) A related function space is C(D), containing all functions f : D → K
which are continuous on a general set D ⊂ Rd. The arbitrary set D can
be an open or closed set in Rd, or perhaps neither; and it can be a lower
dimensional set such as a portion of the boundary of an open set in Rd.
When D is a closed and bounded subset of Rd, a function from the space
C(D) is necessarily bounded.

(e) For any non-negative integer m, we may define the space Cm(Ω) as the
set of all the functions, which together with their derivatives of orders up
to m are continuous on Ω. We may also define Cm(Ω) to be the space of all
the functions, which together with their derivatives of orders up to m are
continuous on Ω. These function spaces are discussed at length in Section
1.4.

(f) The space of continuous 2π-periodic functions is denoted by Cp(2π). It
is the set of all f ∈ C(−∞,∞) for which

f(x+ 2π) = f(x), −∞ < x <∞.

For an integer k ≥ 0, the space Ck
p (2π) denotes the set of all functions

in Cp(2π) which have k continuous derivatives on (−∞,∞). We usually
write C0

p (2π) as simply Cp(2π). These spaces are used in connection with
problems in which periodicity plays a major role. �

Definition 1.1.3 A subspace W of the linear space V is a subset of V
which is closed under the addition and scalar multiplication operations of
V , i.e., for any u, v ∈W and any α ∈ K , we have u+v ∈ W and αv ∈W .

It can be verified that W itself, equipped with the addition and scalar
multiplication operations of V , is a linear space.
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Example 1.1.4 In the linear space R3,

W = {x = (x1, x2, 0)T | x1, x2 ∈ R}
is a subspace, consisting of all the vectors on the x1x2-plane. In contrast,

Ŵ = {x = (x1, x2, 1)T | x1, x2 ∈ R}

is not a subspace. Nevertheless, we observe that Ŵ is a translation of the
subspace W ,

Ŵ = x0 +W

where x0 = (0, 0, 1)T . The set Ŵ is an example of an affine set. �

Given vectors v1, . . . , vn ∈ V and scalars α1, . . . , αn ∈ K , we call

n∑

i=1

αivi = α1v1 + · · · + αnvn

a linear combination of v1, . . . , vn. It is meaningful to remove “redundant”
vectors from the linear combination. Thus we introduce the concepts of
linear dependence and independence.

Definition 1.1.5 We say v1, . . . , vn ∈ V are linearly dependent if there
are scalars αi ∈ K , 1 ≤ i ≤ n, with at least one αi nonzero such that

n∑

i=1

αivi = 0. (1.1.1)

We say v1, . . . , vn ∈ V are linearly independent if they are not linearly
dependent, in other words, if (1.1.1) implies αi = 0 for i = 1, 2, . . . , n.

We observe that v1, . . . , vn are linearly dependent if and only if at least
one of the vectors can be expressed as a linear combination of the rest of
the vectors. In particular, a set of vectors containing the zero element is
always linearly dependent. Similarly, v1, . . . , vn are linearly independent if
and only if none of the vectors can be expressed as a linear combination of
the rest of the vectors; in other words, none of the vectors is “redundant”.

Example 1.1.6 In Rd, d vectors x(i) = (x
(i)
1 , . . . , x

(i)
d )T , 1 ≤ i ≤ d, are

linearly independent if and only if the determinant
∣∣∣∣∣∣∣∣

x
(1)
1 · · · x

(d)
1

...
. . .

...

x
(1)
d · · · x

(d)
d

∣∣∣∣∣∣∣∣

is nonzero. This follows from a standard result in linear algebra. The con-
dition (1.1.1) is equivalent to a homogeneous system of linear equations,
and a standard result of linear algebra says that this system has (0, . . . , 0)T

as its only solution if and only if the above determinant is nonzero. �
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Example 1.1.7 Within the space C[0, 1], the vectors 1, x, x2, . . . , xn are
linearly independent. This can be proved in several ways. Assuming

n∑

j=0

αjx
j = 0, 0 ≤ x ≤ 1,

we can form its first n derivatives. Setting x = 0 in this polynomial and its
derivatives will lead to αj = 0 for j = 0, 1, . . . , n. �

Definition 1.1.8 The span of v1, . . . , vn ∈ V is defined to be the set of all
the linear combinations of these vectors:

span{v1, . . . , vn} =

{
n∑

i=1

αivi

∣∣∣ αi ∈ K , 1 ≤ i ≤ n

}
.

Evidently, span {v1, . . . , vn} is a linear subspace of V . Most of the time,
we apply this definition for the case where v1, . . . , vn are linearly indepen-
dent.

Definition 1.1.9 A linear space V is said to be finite dimensional if there
exists a finite maximal set of independent vectors {v1, . . . , vn}; i.e., the
set {v1, . . . , vn} is linearly independent, but {v1, . . . , vn, vn+1} is linearly
dependent for any vn+1 ∈ V . The set {v1, . . . , vn} is called a basis of the
space. If such a finite basis for V does not exist, then V is said to be infinite
dimensional.

We see that a basis is a set of independent vectors such that any vector
in the space can be written as a linear combination of them. Obviously a
basis is not unique, yet we have the following important result.

Theorem 1.1.10 For a finite dimensional linear space, every basis for V
contains exactly the same number of vectors. This number is called the
dimension of the space, denoted by dimV .

A proof of this result can be found in most introductory textbooks on
linear algebra; for example, see [6, Section 5.4].

Example 1.1.11 The space Rd is d-dimensional. There are infinitely many
possible choices for a basis of the space. A canonical basis for this space
is {ei}d

i=1, where ei = (0, . . . , 0, 1, 0, . . . , 0)T in which the single 1 is in
component i. �

Example 1.1.12 In the space Pn of the polynomials of degree less than
or equal to n, {1, x, . . . , xn} is a basis and we have dim(Pn) = n+1. In the
subspace

Pn,0 = {p ∈ Pn | p(0) = p(1) = 0} ,
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a basis is given by the functions x (1 − x), x2(1 − x), . . . , xn−1(1 − x). We
observe that

dim(Pn,0) = dim(Pn) − 2.

The difference 2 in the dimensions reflects the two zero value conditions at
0 and 1 in the definition of Pn,0. �

We now introduce the concept of a linear function.

Definition 1.1.13 Let L be a function from one linear space V to another
linear space W . We say L is a linear function if
(a) for all u, v ∈ V ,

L(u+ v) = L(u) + L(v);

(b) for all v ∈ V and all α ∈ K ,

L(αv) = αL(v).

For such a linear function, we often write L(v) for Lv.

This definition is extended and discussed extensively in Chapter 2. Other
common names are linear mapping, linear operator, and linear transforma-
tion.

Definition 1.1.14 Two linear spaces U and V are said to be isomorphic,
if there is a linear bijective (i.e., one-to-one and onto) function ℓ : U → V .

Many properties of a linear space U hold for any other linear space V
that is isomorphic to U ; and then the explicit contents of the space do
not matter in the analysis of these properties. This usually proves to be
convenient. One such example is that if U and V are isomorphic and are
finite dimensional, then their dimensions are equal, a basis of V can be
obtained from that of U by applying the mapping ℓ, and a basis of U can
be obtained from that of V by applying the inverse mapping of ℓ.

Example 1.1.15 The set Pk of all polynomials of degree less than or equal
to k is a subspace of continuous function space C[0, 1]. An element in the
space Pk has the form a0 + a1x + · · · + akx

k. The mapping ℓ : a0 + a1x+
· · · + akx

k 7→ (a0, a1, . . . , ak)T is bijective from Pk to Rk+1. Thus, Pk is
isomorphic to Rk+1. �

Definition 1.1.16 Let U and V be two linear spaces. The Cartesian prod-
uct of the spaces, W = U × V , is defined by

W = {w = (u, v) | u ∈ U, v ∈ V }
endowed with componentwise addition and scalar multiplication

(u1, v1) + (u2, v2) = (u1 + u2, v1 + v2) ∀ (u1, v1), (u2, v2) ∈ W,

α (u, v) = (αu, α v) ∀ (u, v) ∈W, ∀α ∈ K .
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It is easy to verify thatW is a linear space. The definition can be extended
in a straightforward way for the Cartesian product of any finite number of
linear spaces.

Example 1.1.17 The real plane can be viewed as the Cartesian product
of two real lines: R2 = R × R. In general,

Rd = R × · · · × R︸ ︷︷ ︸
d times

.
�

Exercise 1.1.1 Show that the set of all continuous solutions of the differential
equation u′′(x) + u(x) = 0 is a finite-dimensional linear space. Is the set of all
continuous solutions of u′′(x) + u(x) = 1 a linear space?

Exercise 1.1.2 When is the set {v ∈ C[0, 1] | v(0) = a} a linear space?

Exercise 1.1.3 Show that in any linear space V , a set of vectors is always lin-
early dependent if one of the vectors is zero.

Exercise 1.1.4 Let {v1, . . . , vn} be a basis of an n-dimensional space V . Show
that for any v ∈ V , there are scalars α1, . . . , αn such that

v =
nX

i=1

αivi,

and the scalars α1, . . . , αn are uniquely determined by v.

Exercise 1.1.5 Assume U and V are finite dimensional linear spaces, and let
{u1, . . . , un} and {v1, . . . , vm} be bases for them, respectively. Using these bases,
create a basis for W = U × V . Determine dimW .

1.2 Normed spaces

The previous section is devoted to the algebraic structure of spaces. In this
section, we turn to the topological structure of spaces. In numerical analy-
sis, we need to frequently examine the closeness of a numerical solution to
the exact solution. To answer the question quantitatively, we need to have a
measure on the magnitude of the difference between the numerical solution
and the exact solution. A norm of a vector in a linear space provides such
a measure.

Definition 1.2.1 Given a linear space V , a norm ‖ · ‖ is a function from
V to R with the following properties.

1. ‖v‖ ≥ 0 for any v ∈ V , and ‖v‖ = 0 if and only if v = 0;
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2. ‖αv‖ = |α| ‖v‖ for any v ∈ V and α ∈ K ;

3. ‖u+ v‖ ≤ ‖u‖ + ‖v‖ for any u, v ∈ V .

The space V equipped with the norm ‖·‖, (V, ‖·‖), is called a normed linear
space or a normed space. We usually say V is a normed space when the
definition of the norm is clear from the context.

Some remarks are in order on the definition of a norm. The three axioms
in the definition mimic the principal properties of the notion of the ordinary
length of a vector in R2 or R3. The first axiom says the norm of any vector
must be non-negative, and the only vector with zero norm is zero. The
second axiom is usually called positive homogeneity. The third axiom is
also called the triangle inequality, which is a direct extension of the triangle
inequality on the plane: The length of any side of a triangle is bounded by
the sum of the lengths of the other two sides. With the definition of a norm,
we can use the quantity ‖u − v‖ as a measure for the distance between u
and v.

Definition 1.2.2 Given a linear space V , a semi-norm | · | is a function
from V to R with the properties of a norm except that |v| = 0 does not
necessarily imply v = 0.

One place in this work where the notion of a semi-norm plays an impor-
tant role is in estimating the error of polynomial interpolation.

Example 1.2.3 (a) For x = (x1, . . . , xd)T , the formula

‖x‖2 =

(
d∑

i=1

x2
i

)1/2

(1.2.1)

defines a norm in the space Rd (Exercise 1.2.6), called the Euclidean norm,
which is the usual norm for the space Rd. When d = 1, the norm coincides
with the absolute value: ‖x‖2 = |x| for x ∈ R .
(b) More generally, for 1 ≤ p ≤ ∞, the formulas

‖x‖p =

(
d∑

i=1

|xi|p
)1/p

for 1 ≤ p <∞, (1.2.2)

‖x‖∞ = max
1≤i≤d

|xi| (1.2.3)

define norms in the space Rd (see Exercise 1.2.6 for p = 1, 2,∞, and Exercise
1.5.7 for other values of p). The norm ‖ · ‖p is called the p-norm, and ‖ · ‖∞
is called the maximum or infinity norm. It can be shown that

‖x‖∞ = lim
p→∞

‖x‖p
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FIGURE 1.1. The unit circle Sp = {x ∈ R2 | ‖x‖p = 1} for p = 1, 2,∞

either directly or by using the inequality (1.2.6) given below. Again, when
d = 1, all these norms coincide with the absolute value: ‖x‖p = |x|, x ∈ R.
Over Rd, the most commonly used norms are ‖ · ‖p, p = 1, 2,∞. The unit
circle in R2 for each of these norms is shown in Figure 1.2. �

Example 1.2.4 For p ∈ [1,∞], the space ℓp is defined as

ℓp = {v = (vn)n≥1 | ‖v‖ℓp <∞} (1.2.4)

with the norm

‖v‖ℓp =





(
∞∑

n=1

|vn|p
)1/p

if p <∞,

sup
n≥1

|vn| if p = ∞.

Proof of the triangle inequality of the norm ‖ ·‖ℓp is the content of Exercise
1.5.11. �

Example 1.2.5 (a) The standard norm for C[a, b] is the maximum norm

‖f‖∞ = max
a≤x≤b

|f(x)|, f ∈ C[a, b].

This is also the norm for Cp(2π) (with a = 0 and b = 2π), the space of
continuous 2π-periodic functions introduced in Example 1.1.2 (f).

(b) For an integer k > 0, the standard norm for Ck[a, b] is

‖f‖k,∞ = max
0≤j≤k

‖f (j)‖∞, f ∈ Ck[a, b].

This is also the standard norm for Ck
p (2π). �
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With the notion of a norm for V we can introduce a topology for V , and
speak about open and closed sets in V .

Definition 1.2.6 Let (V, ‖·‖) be a normed space. Given v0 ∈ V and r > 0,
the sets

B(v0, r) = {v ∈ V | ‖v − v0‖ < r},
B(v0, r) = {v ∈ V | ‖v − v0‖ ≤ r}

are called the open and closed balls centered at v0 with radius r. When r = 1
and v0 = 0, we have unit balls.

Definition 1.2.7 Let A ⊂ V be a set in a normed linear space. The set A
is open if for every v ∈ A, there is an r > 0 such that B(v, r) ⊂ A. The
set A is closed in V if its complement V \A is open in V .

1.2.1 Convergence

With the notion of a norm at our disposal, we can define the important
concept of convergence.

Definition 1.2.8 Let V be a normed space with the norm ‖ ·‖. A sequence
{un} ⊂ V is convergent to u ∈ V if

lim
n→∞

‖un − u‖ = 0.

We say that u is the limit of the sequence {un}, and write un → u as
n→ ∞, or limn→∞ un = u.

It can be verified that any sequence can have at most one limit.

Definition 1.2.9 A function f : V → R is said to be continuous at u ∈ V
if for any sequence {un} with un → u, we have f(un) → f(u) as n → ∞.
The function f is said to be continuous on V if it is continuous at every
u ∈ V .

Proposition 1.2.10 The norm function ‖ · ‖ is continuous.

Proof. We need to show that if un → u, then ‖un‖ → ‖u‖. This follows
from the backward triangle inequality (Exercise 1.2.1)

| ‖u‖ − ‖v‖ | ≤ ‖u− v‖ ∀u, v ∈ V, (1.2.5)

derived from the triangle inequality. �
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Example 1.2.11 Consider the space V = C[0, 1]. Let x0 ∈ [0, 1]. We
define the function

ℓx0(v) = v(x0), v ∈ V.

Assume vn → v in V as n→ ∞. Then

|ℓx0(vn) − ℓx0(v)| ≤ ‖vn − v‖V → 0 as n→ ∞.

Hence, the point value function ℓx0 is continuous on C[0, 1]. �

We have seen that on a linear space various norms can be defined. Dif-
ferent norms give different measures of size for a given vector in the space.
Consequently, different norms may give rise to different forms of conver-
gence.

Definition 1.2.12 We say two norms ‖ · ‖(1) and ‖ · ‖(2) are equivalent if
there exist positive constants c1, c2 such that

c1‖v‖(1) ≤ ‖v‖(2) ≤ c2‖v‖(1) ∀ v ∈ V.

With two such equivalent norms, a sequence {un} converges in one norm
if and only if it converges in the other norm:

lim
n→∞

‖un − u‖(1) = 0 ⇐⇒ lim
n→∞

‖un − u‖(2) = 0.

Conversely, if each sequence converging with respect to one norm also con-
verges with respect to the other norm, then the two norms are equivalent;
proof of this statement is left as Exercise 1.2.15.

Example 1.2.13 For the norms (1.2.2)–(1.2.3) on Rd, it is straightforward
to show

‖x‖∞ ≤ ‖x‖p ≤ d1/p‖x‖∞ ∀x ∈ Rd. (1.2.6)

So all the norms ‖x‖p, 1 ≤ p ≤ ∞, on Rd are equivalent. �

More generally, we have the following well-known result. For a proof, see
[15, p. 483].

Theorem 1.2.14 Over a finite dimensional space, any two norms are
equivalent.

Thus, on a finite dimensional space, different norms lead to the same
convergence notion. Over an infinite dimensional space, however, such a
statement is no longer valid.
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Example 1.2.15 Let V be the space of all continuous functions on [0, 1].
For u ∈ V , in analogy with Example 1.2.3, we may define the following
norms

‖v‖p =

[∫ 1

0

|v(x)|pdx
]1/p

, 1 ≤ p <∞, (1.2.7)

‖v‖∞ = sup
0≤x≤1

|v(x)|. (1.2.8)

Now consider a sequence of functions {un} ⊂ V , defined by

un(x) =





1 − nx, 0 ≤ x ≤ 1

n
,

0,
1

n
< x ≤ 1.

It is easy to show that

‖un‖p = [n(p+ 1)]−1/p, 1 ≤ p <∞.

Thus we see that the sequence {un} converges to u = 0 in the norm ‖ · ‖p,
1 ≤ p <∞. On the other hand,

‖un‖∞ = 1, n ≥ 1,

so {un} does not converge to u = 0 in the norm ‖ · ‖∞. �

As we have seen in the last example, in an infinite dimensional space,
some norms are not equivalent. Convergence defined by one norm can be
stronger than that by another.

Example 1.2.16 Consider again the space of all continuous functions on
[0, 1], and the family of norms ‖ · ‖p, 1 ≤ p < ∞, and ‖ · ‖∞. We have, for
any p ∈ [1,∞),

‖v‖p ≤ ‖v‖∞ ∀ v ∈ V.

Therefore, convergence in ‖ · ‖∞ implies convergence in ‖ · ‖p, 1 ≤ p < ∞,
but not conversely (see Example 1.2.15). Convergence in ‖ · ‖∞ is usually
called uniform convergence. �

With the notion of convergence, we can define the concept of an infinite
series in a normed space.

Definition 1.2.17 Let {vn}∞n=1 be a sequence in a normed space V . Define
the partial sums sn =

∑n
i=1 vi, n = 1, 2, · · · . If sn → s in V , then we say

the series
∑∞

i=1 vi converges, and write

∞∑

i=1

vi = lim
n→∞

sn = s.
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Definition 1.2.18 Let V1 ⊂ V2 be two subsets in a normed space V . We
say the set V1 is dense in V2 if for any u ∈ V2 and any ε > 0, there is a
v ∈ V1 such that ‖v − u‖ < ε.

Example 1.2.19 Let p ∈ [1,∞) and Ω ⊂ Rd be an open bounded set.
Then the subspace C∞

0 (Ω) is dense in Lp(Ω). The subspace of all the poly-
nomials is also dense in Lp(Ω). �

We now extend the definition of a basis to an infinite dimensional normed
space.

Definition 1.2.20 Suppose V is an infinite dimensional normed space.
(a) We say that V has a countably-infinite basis if there is a sequence
{vi}i≥1 ⊂ V for which the following is valid: For each v ∈ V , we can find
scalars {αn,i}n

i=1, n = 1, 2, . . . , such that

∥∥∥∥∥v −
n∑

i=1

αn,ivi

∥∥∥∥∥→ 0 as n→ ∞.

The space V is also said to be separable. The sequence {vi}i≥1 is called a
basis if any finite subset of the sequence is linearly independent.
(b) We say that V has a Schauder basis {vn}n≥1 if for each v ∈ V , it is
possible to write

v =

∞∑

n=1

αnvn

as a convergent series in V for a unique choice of scalars {αn}n≥1.

We see that the normed space V is separable if it has a countable dense
subset. From Example 1.2.19, we conclude that for p ∈ [1,∞), Lp(Ω) is
separable since the set of all the polynomials with rational coefficients is
countable and is dense in Lp(Ω).

From the uniqueness requirement for a Schauder basis, we deduce that
{vn} must be independent. A normed space having a Schauder basis can
be shown to be separable. However, the converse is not true; see [77] for an
example of a separable Banach space that does not have a Schauder basis.
In the space ℓ2, {ej = (0, · · · , 0, 1j, 0, · · · )}∞j=1 forms a Schauder basis since

any x = (x1, x2, · · · ) ∈ ℓ2 can be uniquely written as x =
∑∞

j=1 xjej . It
can be proved that the set {1, cosnx, sinnx}∞n=1 forms a Schauder basis in
Lp(−π, π) for p ∈ (1,∞); see the discussion in Section 4.1.

1.2.2 Banach spaces

The concept of a normed space is usually too general, and special attention
is given to a particular type of normed space called a Banach space.
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Definition 1.2.21 Let V be a normed space. A sequence {un} ⊂ V is
called a Cauchy sequence if

lim
m,n→∞

‖um − un‖ = 0.

Obviously, a convergent sequence is a Cauchy sequence. In other words,
being a Cauchy sequence is a necessary condition for a sequence to converge.
Note that in showing convergence with Definition 1.2.8, one has to know the
limit, and this is not convenient in many circumstances. On the contrary,
it is usually relatively easier to determine if a given sequence is a Cauchy
sequence. So it is natural to ask if a Cauchy sequence is convergent. In the
finite dimensional space Rd, any Cauchy sequence is convergent. However,
in a general infinite dimensional space, a Cauchy sequence may fail to
converge, as is demonstrated in the next example.

Example 1.2.22 Let Ω ⊂ Rd be a bounded open set. For v ∈ C(Ω) and
1 ≤ p <∞, define the p-norm

‖v‖p =

[∫

Ω

|v(x)|pdx
]1/p

. (1.2.9)

Here, x = (x1, . . . , xd)
T and dx = dx1dx2 · · · dxd. In addition, define the

∞-norm or maximum norm

‖v‖∞ = max
x∈Ω

|v(x)|.

The space C(Ω) with ‖ · ‖∞ is a Banach space, since the uniform limit of
continuous functions is itself continuous.

The space C(Ω) with the norm ‖ · ‖p, 1 ≤ p <∞, is not a Banach space.
To illustrate this, we consider the space C[0, 1] and a sequence in C[0, 1]
defined as follows:

un(x) =





0, 0 ≤ x ≤ 1/2 − 1/(2n),

n x− (n− 1)/2, 1/2 − 1/(2n) ≤ x ≤ 1/2 + 1/(2n),

1, 1/2 + 1/(2n) ≤ x ≤ 1.

Let

u(x) =

{
0, 0 ≤ x < 1/2,

1, 1/2 < x ≤ 1.

Then ‖un − u‖p → 0 as n → ∞, i.e., the sequence {un} converges to u in
the norm ‖ · ‖p. But obviously no matter how we define u(1/2), the limit
function u is not continuous. �

Although a Cauchy sequence is not necessarily convergent, it does con-
verge if it has a convergent subsequence.
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Proposition 1.2.23 If a Cauchy sequence contains a convergent subse-
quence, then the entire sequence converges to the same limit.

Proof. Let {un} be a Cauchy sequence in a normed space V , with a subse-
quence {unj} converging to u ∈ V . Then for any ε > 0, there exist positive
integers n0 and j0 such that

‖um − un‖ ≤ ε

2
∀m,n ≥ n0,

‖unj − u‖ ≤ ε

2
∀ j ≥ j0.

Let N = max{n0, nj0}. Then

‖un − u‖ ≤ ‖un − uN‖ + ‖uN − u‖ ≤ ε ∀n ≥ N.

Therefore, un → u as n→ ∞. �

Definition 1.2.24 A normed space is said to be complete if every Cauchy
sequence from the space converges to an element in the space. A complete
normed space is called a Banach space.

Example of Banach spaces include C([a, b]) and Lp(a, b), 1 ≤ p ≤ ∞,
with their standard norms.

1.2.3 Completion of normed spaces

It is important to be able to deal with function spaces using a norm of our
choice, as such a norm is often important or convenient in the formulation of
a problem or in the analysis of a numerical method. The following theorem
allows us to do this. A proof is discussed in [135, p. 84].

Theorem 1.2.25 Let V be a normed space. Then there is a complete
normed space W with the following properties:
(a) There is a subspace V̂ ⊂W and a bijective (one-to-one and onto) linear

function I : V → V̂ with

‖Iv‖W = ‖v‖V ∀ v ∈ V.

The function I is called an isometric isomorphism of the spaces V and V̂ .
(b) The subspace V̂ is dense in W , i.e., for any w ∈W , there is a sequence

{v̂n} ⊂ V̂ such that

‖w − v̂n‖W → 0 as n→ ∞.

The space W is called the completion of V , and W is unique up to an
isometric isomorphism.
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The spaces V and V̂ are generally identified, meaning no distinction is
made between them. However, we also consider cases where it is important
to note the distinction. An important example of the theorem is to let V
be the rational numbers and W be the real numbers R . One way in which
R can be defined is as a set of equivalence classes of Cauchy sequences of
rational numbers, and V̂ can be identified with those equivalence classes of
Cauchy sequences whose limit is a rational number. A proof of the above
theorem can be made by mimicking this commonly used construction of
the real numbers from the rational numbers.

Theorem 1.2.25 guarantees the existence of a unique abstract completion

indeed desirable, to give a more concrete definition of the completion of a
given normed space; much of the subject of real analysis is concerned with
this topic. In particular, the subject of Lebesgue measure and integration
deals with the completion of C(Ω) under the norms of (1.2.9), ‖ · ‖p for
1 ≤ p <∞. A complete development of Lebesgue measure and integration
is given in any standard textbook on real analysis; for example, see Royden
[198] or Rudin [199]. We do not introduce formally and rigorously the
concepts of measurable set and measurable function. Rather we think of
measure theory intuitively as described in the following paragraphs. Our
rationale for this is that the details of Lebesgue measure and integration
can often be bypassed in most of the material we present in this text.

Measurable subsets of R include the standard open and closed intervals
with which we are familiar. Multi-variable extensions of intervals to Rd

are also measurable, together with countable unions and intersections of
them. In particular, open sets and closed sets are measurable. Intuitively,
the measure of a set D ⊂ Rd is its “length”, “area”, “volume”, or suitable
generalization; and we denote the measure of D by meas(D). For a formal
discussion of measurable set, see Royden [198] or Rudin [199].

To introduce the concept of measurable function, we begin by defining
a step function. A function v on a measurable set D is a step function if
D can be decomposed into a finite number of pairwise disjoint measurable
subsets D1, . . . , Dk with v(x) constant over each Dj . We say a function v
on D is a measurable function if it is the pointwise limit of a sequence of
step functions. This includes, for example, all continuous functions on D.

For each such measurable set Dj, we define a characteristic function

χj(x) =

{
1, x ∈ Dj,
0, x /∈ Dj.

A general step function over the decomposition D1, . . . , Dk of D can then
be written as

v(x) =

k∑

j=1

αjχj(x), x ∈ D (1.2.10)

of an arbitrary normed vector space. However, it is often possible, and


