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PREFACE 

 

 

The European Interuniversity Diploma of Pharmaceutical Medicine is a 

postacademic course of  2-3 years sponsored by the Socrates program of the 

European Community. The office of this interuniversity project is in Lyon and the 

lectures are given there. The European Community has provided a building and will 

remunerate lecturers. The institute which provides the teaching is called the 

European College of Pharmaceutical Medicine, and is affiliated with 15 universities 

throughout Europe, whose representatives constitute the academic committee. This 

committee  supervises educational objectives. Start lectures February 2000.  

There are about 20 modules for the first two years of training, most of which are 

concerned with typically pharmacological and clinical pharmacological matters 

including pharmacokinetics, pharmacodynamics, phase III clinical trials, reporting, 

communication, ethics and, any other aspects of drug development.  Subsequent 

training consists of practice training within clinical research organisations, 

universities, regulatory bodies etc., and finally of a dissertation. The diploma, and 

degree are delivered by the Claude Bernard University in Lyon as well as the other 

participating universities.  

The module “Statistics applied to clinical trials” wil be taught in the form of a 3 to 6 

day yearly course given in Lyon and starting February 2000. Lecturers have to 

submit a document of the course (this material will be made available to students). 

Three or 4 lecturers are requested to prepare detailed written material for students as 

well as to prepare examination of the students. The module is thus an inportant part 

of a postgraduate course for physicians and pharmacists for the purpose of 

obtaining the European diploma of pharmaceutical medicine. The diploma should 

make for leading positions in pharmaceutical industry, academic drug research, as 

well as regulatory bodies within the EC. This module is mainly involved in the 

statistics of randomized clinical trials . 

The chapters 1-9, 11, 17, 18 of this book are based on the module “Medical 

statistics applied to clinical trials” and contain material that should be mastered by 

the students before their exams. The remaining chapters are capita selecta intended 

for excellent students and are not included in the exams. 

The authors believe that this book is innovative in the statistical literature because, 

unlike most introductory books in medical statistics, it provides an explanatory 

rather than mathematical approach to statistics, and, in addition, emphasizes non-

classical but increasingly frequently used methods for the statistical analyses of 

clinical trials, e.g., equivalence testing, sequential analyses, multiple linear 

regression analyses for confounding, interaction, and synergism.The authors are not 

aware of any other work published so far that is comparable with the current work, 

and, therefore, believe that it does fill a need. 

 

August 1999  

Dordrecht, Leiden, Delft 

 



 xiv 

 

In this second edition the authors have removed textual errors from the first edition. 

Also seven new chapters (chapters 8, 10, 13, 15-18) have been added. The 

principles of regression analysis and its resemblance to analysis of variance was 

missing in the first edition, and have been described in chapter 8. Chapter 10 

assesses curvilinear regression. Chapter 13 describes the statistical analyses of 

crossover data with binary response. The latest developments including statistical 

analyses of genetic data and quality-of-life data have been described in chapters 15 

and 16. Emphasis is given in chapters 17 and 18 to the limitations of statistics to 

assess non-normal data, and to the similarities between commonly-used statistical 

tests. Finally, additional tables including the Mann-Whitney and Wilcoxon rank 

sum tables have been added in the Appendix.  

 

December 2001, Dordrecht, Amsterdam, Delft  

 

 

 

The previous two editions of this book, rather than having been comprehensive, 

concentrated on the most relevant aspects of statistical analysis. Although well-

received by students, clinicians, and researchers, these editions did not answer all of 

their questions. This called for a third, more comprehensive, rewrite. In this third 

edition the 18 chapters from the previous edition have been revised, updated, and 

provided with a conclusions section summarizing the main points. The formulas 

have been re-edited using the Formula-Editor from Windows XP 2004 for enhanced 

clarity. Thirteen new chapters (chapters 8-10, 14, 15, 17, 21, 25-29, 31) have been 

added. The chapters 8-10 give methods to assess the problems of multiple testing 

and data testing closer to expectation than compatible with random. The chapters 14 

and 15 review regression models using an exponential rather than linear relationship 

including logistic, Cox, and Markow models. Chapter 17 reviews important 

interaction effects in clinical trials and provides methods for their analysis. In 

chapter 21 study designs appropriate for medicines from one class are discussed. 

The chapters 25-29 review respectively (1) methods to evaluate the presence of 

randomness in the data, (2) methods to assess variabilities in the data, (3) methods 

to test reproducibility in the data, (4) methods to assess accuracy of diagnostic tests, 

and (5) methods to assess random rather than fixed treatment effects. Finally, 

chapter 31 reviews methods to minimize the dilemma between sponsored research 

and scientific independence. This updated and extended edition has been written to 

serve as a more complete guide and reference-text to students, physicians, and 

investigators, and, at the same time, preserves the common sense approach to 

statistical problem-solving of the previous editions.        

 

August 2005, Dordrecht, Amsterdam, Delft  

PREFACE 

PREFA CE TO SECOND EDITION  

PREFACE TO THE THIRD EDITION 



 

 

 

In clinical medicine appropriate statistics has become indispensable to evaluate 

treatment effects. Randomized controlled trials are currently the only trials that 

truly provide evidence-based medicine. Evidence based medicine has become 

crucial to optimal treatment of patients. We can define randomized controlled trials 

by using Christopher J. Bulpitt’s definition “a carefully and ethically designed 

experiment which includes the provision of adequate and appropriate controls by a 

process of randomization, so that precisely framed questions can be answered”. The 

answers given by randomized controlled trials constitute at present the way how 

patients should be clinically managed. In the setup of such randomized trial one of 

the most important issues is the statistical basis. The randomized trial will never 

work when the statistical grounds and analyses have not been clearly defined 

beforehand. All endpoints should be clearly defined in order to perform appropriate 

power calculations. Based on these power calculations the exact number of 

available patients can be calculated in order to have a sufficient quantity of 

individuals to have the predefined questions answered. Therefore, every clinical 

physician should be capable to understand the statistical basis of well performed 

clinical trials. It is therefore a great pleasure that Drs. T. J. Cleophas,  

A.H. Zwinderman, and T.F. Cleophas have published a book on statistical analysis 

of clinical trials. The book entitled “Statistics Applied to Clinical Trials” is clearly 

written and makes complex issues in statistical analysis transparant. Apart from 

providing the classical issues in statistical analysis, the authors also address novel 

issues such as interim analyses, sequential analyses, and meta-analyses. The book is 

composed of 18 chapters, which are nicely structured. The authors have deepened 

our insight in the applications of statistical analysis of clinical trials. We would like 

to congratulate the editors on this achievement and hope that many readers will 

enjoy reading this intriguing book. 

 

E.E. van der Wall, MD, PhD, Professor of Cardiology, President Netherlands 

Association of Cardiology, Leiden, Netherlands   

FOREWORD  



CHAPTER 1 

 
HYPOTHESES, DATA, STRATIFICATION 

  
1. GENERAL CONSIDERATIONS 

 

Over the past decades the randomized clinical trial has entered an era of continuous 

improvement and has gradually become accepted as the most effective way of 

determining the relative efficacy and toxicity of new drug therapies. This book is 

mainly involved in the methods of prospective randomized clinical trials of new 

drugs. Other methods for assessment including open-evaluation-studies, cohort- 

and case-control studies, although sometimes used, e.g., for pilot studies and for 

the evaluation of long term drug-effects, are excluded in this course. Traditionally, 

clinical drug trials are divided into IV phases (from phase I for initial testing to 

phase IV after release for general use), but scientific rules governing different 

phases are very much the same, and can thus be discussed simultaneously.  

A. CLEARLY DEFINED HYPOTHESES 

Hypotheses must be tested prospectively with hard data, and against placebo 

or known forms of therapies that are in place and considered to be effective. 

Uncontrolled studies won’t  succeed to give a definitive answer if they are 

ever so clever. Uncontrolled studies while of value in the absence of scientific 

controlled studies, their conclusions represent merely suggestions and 

hypotheses. The scientific method requires to look at some controls to 

characterize the defined population. 

B. VALID DESIGNS 

Any research but certainly industrially sponsored drug research where 

sponsors benefit from favorable results, benefits from valid designs. A valid 

study means a study unlikely to be biased, or unlikely to include systematic 

errors. The most dangerous error in clinical trials are systematic errors 

otherwise called biases. Validity is the most important thing for doers of 

clinical trials to check. Trials should be made independent, objective, 

balanced, blinded, controlled, with objective measurements, with adequate 

sample sizes to test the expected treatment effects, with random assignment 

of patients. 

C. EXPLICIT DESCRIPTION OF METHODS 

Explicit description of the methods should include description of the 

recruitment procedures, method of randomization of the patients, prior 

statements about the methods of assessments of generating and analysis of the 

data and the statistical methods used, accurate ethics including written 

informed consent. 

1



CHAPTER 1 2

D. UNIFORM DATA ANALYSIS 

Uniform and appropriate data analysis generally starts with plots or tables of 

actual data. Statistics then comes in to test primary hypotheses primarily. 

Data that do not answer prior hypotheses may be tested for robustness or 

sensitivity, otherwise called precision of point estimates e.g., dependent upon 

numbers of outliers. The results of studies with many outliers and thus little 

precision should be interpreted with caution. It is common practice for studies 

to test multiple measurements for the purpose of answering one single 

question. E.g., the benefit to health of a new drug may be estimated by 

mortality in addition to various morbidity variables, and there is nothing 

wrong with that practice. We should not make any formal correction for 

multiple comparisons of this kind of data. Instead, we should informally 

integrate all the data before reaching  conclusions, and look for the trends 

without judging one or two low P-values among otherwise high P-values as 

proof. 

However, subgroup analyses involving post-hoc comparisons by dividing the data 

into groups with different ages, prior conditions, gender etc can easily generate 

hundreds of P-values. If investigators test many different hypotheses, they are apt 

to find significant differences at least 5% of the time. To make sense of these kinds 

of results, we need to consider the Bonferroni inequality, which will be emphasized 

in the chapters 7 and 8, and states that if k statistical tests are performed with the 

cut-off level for a test statistic, for example t or F, at the α level, the likelihood for 

observing a value of the test statistic exceeding the cutoff level is no greater than  

keeping the probability of making a mistake less than 5%, we have to use instead 

of α  = 5%  in this case α = 5/3% = 1.6% . With many more tests, analyses soon 

lose any sensitivity and do hardly prove anything anymore. Nonetheless a limited 

number of post-hoc analyses, particularly if a plausible theory is underlying, can be 

useful in generating hypotheses for future studies. 

 
2. TWO MAIN HYPOTHESES IN DRUG TRIALS: EFFICACY AND SAFETY 

 

Drug trials are mainly for addressing the efficacy as well as the safety of the drugs 

to be tested in them. For analyzing efficacy data formal statistical techniques are 

normally used. Basically, the null hypothesis of no treatment effect is tested, and is 

rejected when difference from zero is significant. For such purpose a great variety 

of statistical significance tests has been developed, all of whom report P values, 

and compute confidence intervals to estimate the magnitude of the treatment effect. 

The appropriate test depends upon the type of data and will be discussed in the 

next chapter. Of safety data, such as adverse events, data are mostly collected with 

the hope of demonstrating that the test treatment is not different from control. This 

concept is based upon a different hypothesis from that proposed for efficacy data, 

where the very objective is generally to show that there actually is a difference 

between test and control. Because the objective of collecting safety data is thus 

k timesα .  For example, if  we wish to do three comparisons with t-tests while 



HYPOTHESES, DATA, STRATIFICATION 

different, the approach to analysis must be likewise different. In particular, it may 

be less appropriate to use statistical significance tests to analyze the latter data. A 

significance test is a tool that can help to establish whether a difference between 

treatments is likely to be real. It cannot be used to demonstrate that two treatments 

are similar in their effects. In addition, safety data, more frequently than efficacy 

data, consist of proportions and percentages rather than continuous data as will be 

discussed in the next section. Usually, the best approach to analysis of these kinds 

of data is to present suitable summary statistics, together with confidence intervals. 

In the case of adverse event data, the rate of occurrence of each distinct adverse 

event on each treatment group should be reported, together with confidence 

intervals for the difference between the rates of occurrence on the different 

treatments. An alternative would be to present risk ratios or relative risks of 

occurrence, with confidence intervals for the relative risk. Chapter 3 mainly 

addresses the analyses of these kinds of data.    

Other aspects of assessing similarity rather than difference between treatments will 

be discussed separately in chapter 6 where the theory, equations, and assessments 

are given for demonstrating statistical equivalence. 

 
3. DIFFERENT TYPES OF DATA: CONTINUOUS DATA 

 

The first step, before any analysis or plotting of data can be performed, is to decide 

what kind of data we have. Usually data are continuous, e.g., blood pressures, heart 

rates etc. But regularly proportions or percentages are used for the assessment of 

part of the data. The next few lines will address how we can summarize and 

characterize these two different approaches to the data.   

 

 

Samples of continuous data are characterized by: 

 

Mean = Σx  = x , 

    n 

 

where Σ  is the summation, x are the individual data, n is the total number of data. 

                                                                                       

Variance between the data  = 
1

)( 2

−
−

n

xx
 

 

Standard deviation (SD)  = )(Variance  
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CHAPTER 1 4
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Figure 1.  Histogram and Gaussian curve representation of data. 

 
Continuous data can be plotted in the form of a histogram (Figure 1 upper graph). 

On the x-axis, frequently called z-axis in statistics, it has individual data. On the  

y-axis it has “how often”. For example, the mean value is observed most 

frequently, while the bars on either side gradually grow shorter. This graph 

adequately represents the data. It is, however, not adequate for statistical analyses. 

Figure 1 lower graph pictures a Gaussian curve, otherwise called normal 

(distribution) curve. On the x-axis we have, again, the individual data, expressed 

either in absolute data or in SDs distant from the mean. On the y-axis the bars have 

been replaced with a continuous line. It is now impossible to determine from the 

graph how many patients had a particular outcome. Instead, important inferences 

can be made. For example, the total area under the curve (AUC) represents 100% 

of the data, AUC left from mean represents 50% of the data, left from -1 SDs it has 

15.87% of the data, left from -2SDs it has 2.5% of the data. This graph is better for 

statistical purposes but not yet good enough.  
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Figure 2 gives two Gaussian curves, a narrow and a wide one.  Both are based on 
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Figure 2. Two examples of normal distributions. 

 

the same data, but with different meaning. The wide one summarizes the data of 

our trial. The narrow one summarizes the mean of many trials similar to our trial. 

We will not try to make you understand why this is so. Still, it is easy to conceive 

that the distribution of all means of many similar trials is narrower and has fewer 

outliers than the distribution of the actual data from our trial, and that it will center 

around the mean of our trial because our trial is assumed to be representative for 

the entire population. You may find it hard to believe but the narrow curve with 

standard errors of the mean (SEMs) or simply SEs on the x-axis can be effectively 

used for testing important statistical hypotheses, like (1) no difference between 

new and standard treatment, (2) a real difference, (3) the new treatment is better 

than the standard treatment, (4) the two treatments are equivalent. Thus, mean ± 2 

SDs (or more precisely 1.96 SDs) represents the AUC of the wide distribution, 

otherwise called the 95% confidence interval of the data, which means that 95% of 

the data of the sample are within. The SEM-curve (narrow one) is narrower than 

the SD-curve (wide one) because SEM = SD/ n  with n = sample size. Mean ± 2 

SEMs (or more precisely 1.96 SEMs) represents 95% of the means of many trials 

similar to our trial.  

SEM= SD / n  

As the size of SEM in the graph is about 1/3 times SD, the size of each sample is 

here about n = 10. The area under the narrow curve represents 100% of the sample 

means we would obtain, while the area under the curve of the wide graph 

represents 100% of all of the data of the samples. 

Why is this SEM approach so important in statistics. Statistics makes use of mean 

values and their standard error to test the null hypotheses of finding no difference 

5
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from zero in your sample. When we reject a null hypothesis at P<0.05, it literally 

means that there is < 5% chance that the mean value of our sample crosses the area 

of the null hypothesis where we say there is no difference. It does not mean that 

many individual data may not go beyond that boundary. So, actually it is just a 

matter of agreement. But it works well. 

 

So remember: 

Mean ±  2 SDs covers an area under the curve including 95% of the data of 

the given sample. 

Mean ±  2 SEMs  covers an area under curve including 95% of the means of 

many samples, and is,  otherwise, called the 95% confidence interval (CI).  
 

In statistical analysis we often compare different samples by taking their sums or 

differences. Again, this text is not intended to explain the procedures entirely. One 

more thing to accept unexplainedly is the following. The distributions of the sums 

as well as those of the difference of samples are again normal distributions and can 

be characterized by: 

 

Sum: )SD  (SDmeanmean 2

2

2

 121 +±+  

Difference: )SD  (SDmeanmean 2

2

2

 121 +±−  

 

 

)/nSD  /n(SDSEM 2

2

21

2

 1sum +=  

 

          SEMdifference  =               ” 

  

 

 

Sometimes we have paired data where two experiments are performed in one 

subject or in two members of one family. The variances with paired data are 

usually smaller than with unpaired because of the positive correlation between two 

observations in one subject (those who respond well the first time are more likely 

to do so the second). This phenomenon translates in a slightly modified calculation 

of variance parameters. 

 

)SDSDr  2SD  (SDSD 21

2

2

2

 1sum paired ⋅++=  

)SDSDr  2SD  (SDSD 21

2

2

2

 1edifferrenc  paired ⋅−+=  

 

Where r = correlation coefficient, a term that will be explained soon. 

 

 

 

 
Note: If the standard deviations are very different in size, then a more ade-

quate calculation of the pooled SEM is given on page 22.
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Note that SEM does not directly quantify variability in a population. A small SEM 

can be mainly due to a large sample size rather than tight data.    

With small samples the distribution of the means does not exactly follow a 

Gaussian distribution. But rather a t-distribution, 95% confidence intervals cannot 

be characterized as the area under the curve between mean ± 2 SEMs but instead 

the area under curve is substantially wider and is characterized as mean ± t.SEMs 

where t is close to 2 with large samples but 2.5-3 with samples as small as 5-10. 

The appropriate t for any sample size is given in the t-table. 
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Figure 3.  Family of t-distributions: with n = 5 the distribution 

is wide, with n = 10 and n = 1000 this is increasingly less so. 

 

Figure 3 shows that the t-distribution is wider than the Gaussian distribution with 

small samples. Mean ± t.SEMs presents the 95% confidence intervals of the means 

that many similar samples would produce.  

Statistics is frequently used to compare more than 2 samples of data. To estimate 

whether differences between samples are true or just chance we first assess 

variances in the data between groups and within groups. 
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                              Group        sample size        mean        SD 
                             _________________________________ 

                              Group 1      n 1                     mean 1      SD1 

                              Group 2      n 2                     mean 2      SD2 

                              Group 3      n 3                     mean 3      SD3 

 

This procedure may seem somewhat awkward in the beginning but in the next two 

chapters we will observe that variances, which are no less than estimates of noise 

in the data, are effectively used to test the probabilities of true differences between, 

e.g., different pharmaceutical compounds. The above data are summarized 

underneath. 

 

Between-group variance: 

 

Sum of squaresbetween = SSbetween =  n1 (mean1 – overall mean)2 + n2(mean2 – overall 

mean)2 + n3 (mean3 – overall mean)2 

 

Within-group variance: 

 

Sum of squareswithin = SSwithin =  (n1 1) SD1
2  + (n2 1) SD2

2 + (n3 1) SD3
2 

 

The ratio of  the sum of squares between-group/sum of squares within group  

(after proper adjustment for the sample sizes or degrees of freedom, a term which 

will be explained later on) is called the big F and determines whether variances 

between the sample means is larger than expected from the variability within the 

samples. If so, we reject the null hypothesis of no difference between the samples. 

With two samples the square root of big F, which actually is the test statistic of 

analysis of variance (ANOVA), is equal to the t of the famous t-test, which will 

further be explained in chapter 2. These 10 or so lines already brought us very 

close to what is currently considered the heart of statistics, namely ANOVA 

(analysis of variance).  

 
4. DIFFERENT TYPES OF DATA: PROPORTIONS, PERCENTAGES  

AND  CONTINGENCY TABLES 
 

Instead of continuous data, data may also be of a discrete character where two or 

more alternatives are possible, and, generally, the frequencies of occurrence of 

each of these possibilities are calculated. The simplest  and commonest type of 

such data are the binary data (yes/no etc). Such data are frequently assessed as 

proportions or percentages, and follow a socalled binomial distribution. If 0.1< 

proportion (p) <0.9 the binomial distribution becomes very close to the normal 

 

– – –

distribution. If p <0.1, the data will follow a skewed distribution, otherwise  
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called Poisson distribution. Proportional data can be conveniently laid-out as 

contingency tables.  The simplest contingency table looks like this: 

 

                                               numbers of subjects    numbers of subjects 

                                               with side Effect           without side effect  

 

  Test treatment (group1 )          a                                   b   

  Control treatment (group2 )  c                                   d 

 

 

The proportion of subjects who had a side effect in group1 (or the risk (R) or 

probability of having an effect):   

 

P = a / (a+b) , in group2   p = c / (c+d), 

 

The ratios a / (a+b) and c / (c+d) are called risk ratios (RRs) 

 

Note that the terms proportion, risk and probability are frequently used in 

statistical procedures but that they basically mean the same. 
 

Another approach is the odds approach a/b and c/d are odds and their ratio is the 

odds ratio (OR).  

In clinical trials we use ORs as surrogate RRs, because here a/(a+b) is simply 

nonsense. For example: 

                        treatment-group  control-group  entire-population 

sleepiness                32    a           4   b                  4000       

no sleepiness           24    c         52   d                52000 

 

We assume that the control group is just a sample from the entire population but 

that the ratio b/d is that of the entire population. So, suppose 4 = 4000 and 52 = 

52000, then we can approximate    a/(a+b)   =  a/b  = RR of the entire population.  

                                                        c/(c+d)        c/d 

 

Proportions can also be expressed as percentages:  

 

p.100% =  a/(a+b). (100%) etc 

 

Just as with continuous data we can calculate SDs and SEMs and 95% confidence 

intervals of rates ( or numbers, or scores) and of proportions or percentages. 

 

SD of number n = n  

SD of difference between two numbers n1 and n2 = )n(n)/n-(n 2121 +  
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SD proportion = )pp(1 −  

SEM proportion = n/)pp(1 −  

 

 

We assume that the distribution of proportions of many samples follows a normal 

distribution (in this case called the z-distribution) with 95% confidence intervals 

between:  

 

n/)p(1 p2p −±  

 

a formula looking very similar to the 95% CI intervals formula for continuous data  

 

n/ SD2mean 2±  

 

Differences and sums of the SDs and SEMs of proportions can be calculated 

similarly to those of continuous data: 

 

2

22

1

11
sdifference of

n

)p1(p

n

)p1(p
   SEM

−+−=  

 

 

with 95% CI intervals :   p1 –p2   ± 2. SEMs 

 

More often than with continuous data, proportions of different samples are 

assessed for their ratios rather than difference or sum. Calculating the 95% CI 

intervals of it is not simple. The problem is that the ratios of many samples do not 

follow a  normal distribution, and are extremely skewed. It can never be less than 0 

but can get very high. However, the logarithm of the relative risk is approximately 

symmetrical. Katz’s method takes advantage of this symmetry: 

 

b/a d/c
95% CI of log RR   log RR  2  

a b c d
= ± +

+ +
 

 

This equation calculates the CIs of the logarithm of the RR. Take the antilogarithm 

(10x ) to determine the 95% CIs of the RR. 
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Probability distribution 

 
Figure 4.  Ratios of proportions unlike continuous data usually do not 

follow a normal but a skewed distribution ( values vary from 0 to ∞). 

Transformation into the logarithms provides approximately symmetric 

distributions (thin curve). 

 
Figure 4 shows the distribution of RRs and the distribution of the logarithms of the 

RRs, and illustrates that the transformation from skewed data into their logarithms 

is a useful method to obtain an approximately symmetrical distribution, that can be 

analyzed according to the usual approach of SDs, SEMs and CIs. 

 
5. DIFFERENT TYPES OF DATA: CORRELATION COEFFICIENT 

 

The SD and SEM of paired data includes a term called r as described above. For 

the calculation of r, otherwise called R, we have to take into account that paired 

comparisons, e.g., those of two drugs tested in one subject generally have a 

different variance from those of comparison of two drugs in two different subjects. 

This is so, because between subject variability of symptoms is eliminated and 

because the chance of a subject responding beneficially the first time is more likely 

to respond beneficially the second time as well. We say there is generally a 

positive correlation between the response of one subject to two treatments. 

11
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Figure 5. A positive correlation between the 

response of one subject to two treatments. 
 
Figure 5 gives an example of this phenomenon. X-variables, e.g., blood pressures 

after the administration of compound 1 or placebo, y-variables blood pressures 

after the administration of compound 2 or test-treatment. 

The SDs and SEMs of the paired sums or differences of the x- and y-variables are 

relevant to estimate variances in the data and are just as those of continuous data 

needed before any statistical test can be performed. They can be calculated 

according to: 

)SDSDr  2SD  (SDSD 21

2

2

2

 1sum paired ⋅++=  

)SDSDr  2SD  (SDSD 21

2

2

2

 1edifferrenc  paired ⋅−+=  

 

where r = correlation coefficient, a term that will be explained soon. 

 

Likewise:  

 /n)SDSDr  2SD  (SDSEM 21

2

2

2

 1sum paired ⋅++=  

 /n)SDSDr  2SD  (SDSEM 21

2

2

2

 1edifferrenc  paired ⋅−+=  

 

where n = n1 = n2 

 

and that:                                                           

2 2

(x - x ) (y - y )
r

(x - x ) (y - y )
=         

 

 

r is between –1 and +1, and with unpaired data r = 0 and the SD and SEM formulas 

reduce accordingly (as described above). Figure 5 also shows a line, called the 
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regression line, which presents the best-fit summary of the data, and is the 

calculated method that minimizes the squares of the distances from the line.  
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Figure 6.  Example of a linear regression line of 2 paired variables  

(x- and y-values), the regression line provides the best fit line. 

The dotted curves are 95% CIs that are curved, although we do 

not allow for a nonlinear relationship between x and y variables. 
 
The 95% CIs of a regression line can be calculated and is drawn as area between 

the dotted lines in Figure 6. It is remarkable that the borders of the straight 

regression line are curved although we do not allow for a nonlinear relationship 

between the x-axis and y-axis variables. More details  on regression analysis will 

be given in chapters 2 and 3. 

In the above few lines we described continuous normally distributed or t-dis-

tributed data, and rates and their proportions or percentages. We did not yet 

address data ordered as ranks. This is a special method to transform skewed data 

into a approximately normal distribution, and is in that sense comparable with 

logarithmic transformation of relative risks (RRs). In chapter 3 the tests involving 

this method will be explained. 

 
6. STRATIFICATION ISSUES 

 

When published, a randomized parallel-group drug trial essentially includes a table 

listing all of the factors, otherwise called baseline characteristics, known possibly 

to influence outcome. E.g., in case of heart disease these will probably include 

apart from age and gender, the prevalence in each group of diabetes, hypertension, 

cholesterol levels, smoking history. If such factors are similar in the two groups, 

then we can go on to attribute any difference in outcome to the effect of test-

treatment over reference-treatment. If not, we have a problem. Attempts are made 

to retrieve the situation by multivariate analysis allocating part of the differences in 
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outcome to the differences in the groups, but there is always an air of uncertainty 

about the validity of the overall conclusions in such a trial. This issue is discussed 

and methods are explained in chapter 8. Here we discuss ways to avoid this 

problem. Ways to do so, are stratification of the analysis and minimization of 

imbalance between treatment groups, which are both techniques not well-known. 

Stratification of the analysis means that relatively homogeneous subgroups are 

analyzed separately. The limitation of this approach is that it can not account for 

more than two, maybe three, variables and that thus major covariates may be 

missed. Minimization can manage more factors. The investigators first classify 

patients according to the factors they would like to see equally presented in the two 

groups, then randomly assign treatment so that predetermined approximately fixed 

proportions of patients from each stratum receive each treatment. With this method 

the group allocation does not rely solely on chance but is designed to reduce any 

difference in the distribution of unsuspected contributing determinants of outcome 

so that any treatment difference can now be attributed to the treatment comparison 

itself. A good example of this method can be found in a study by Kallis et al.1 The 

authors stratified in a study of aspirin versus placebo before coronary artery 

surgery the groups according to age, gender, left ventricular function, and number 

of coronary arteries affected. Any other prognostic factors other than treatment can 

be chosen. If the treatments are given in a double-blind fashion, minimization 

influences the composition of the two groups but does not influence the chance of 

one group entering in a particular treatment arm rather than the other.  

There is an additional argument in favor of stratification/minimization that counts 

even if the risk of significant asymmetries in the treatment groups is small. Some 

prognostic factors have a particularly large effect on the outcome of a trial. Even 

small and statistically insignificant imbalances in the treatment groups may then 

bias the results. E.g., in a study of two treatment modalities for pneumonia2 

including 54 patients, 10 patients took prior antibiotic in the treatment group and 5 

did in the control group. Even though the difference between 5/27 and 10/27 is not 

statistically significant, the validity of this trial was being challenged, and the 

results were eventually not accepted. 

 
7. RANDOMIZED VERSUS HISTORICAL CONTROLS 

 

A randomized clinical trial is frequently used in drug research. However, there is 

considerable opposition to the use of this design. One major concern is the ethical 

problem of allowing a random event to determine a patient’s treatment. Freirich3 

argued that a comparative trial which shows major differences between two 

treatments is a bad trial because half of the patients have received an inferior 

treatment. On the other hand in a prospective trial randomly assigning treatments 

avoids many potential biases. Of more concern is the trial in which a new treatment 

is compared to an old treatment when there is information about the efficacy of the 

old treatment through historical data. In this situation use of the historical data for 

comparisons with data from the new treatment will shorten the length of the study 

because all patients can be assigned to the new treatment. The current availability 
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of multivariate statistical procedures which can adjust the comparison of two 

treatments for differing presence of other prognostic factors in the two treatment 

arms, has made the use of historical controls more appealing. This has made 

randomization less necessary as a mechanism for ensuring comparability of the 

treatment arms. The weak point in this approach is the absolute faith one has to 

place in the multivariate model. Also, some confounding variables e.g., time 

effects,  simply can not be adjusted, and remain unknown. Despite the ethical 

argument in favor of historical controls we must therefore emphasize the 

potentially misleading aspects of trials using historical controls. 

 
8. FACTORIAL DESIGNS 

 

The majority of drug trials are designed to answer a single question. However, in 

practice many diseases require a combination of more than one treatment 

modalities. E.g., beta-blockers are effective for stable angina pectoris but beta-

blockers plus calcium channel blockers or beta-blockers plus calcium channel 

blockers plus nitrates are better (Table 1). Not addressing more than one treatment 

modality in a trial is an unnecessary restriction on the design of the trial because 

the assessment of two or more modalities in on a trial pose no major mathematical 

problems.  
 

Table 1. The factorial design for angina pectoris patients treated with  

             calcium channel blockers with or without beta-blockers 
                                   ________________________________________________  

                                       Calcium channel blocker     no calcium channel blocker 

                                   ________________________________________________ 

       Beta-blocker            regimen I                              regimen II 

       No beta-blocker       regimen III                           regimen I 

                                   ________________________________________________ 

   

 

We will not describe the analytical details of such a design but researchers should 

not be reluctant to consider designs of such types. This is particularly so, when the 

recruitment of large samples causes difficulties. 

 

9. CONCLUSIONS 

 

What you should know after reading this chapter: 

1. Scientific rules governing controlled clinical trials include prior hypotheses, 

valid designs, strict description of the methods, uniform data analysis. 

2. Efficacy data and safety data often involve respectively continuous and 

proportional data. 

3. How to calculate standard deviations and standard errors of the data. 
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