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Stéphane Jaffard
University of Paris XII
Paris, France

Jelena Kovačević
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ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to provide
the engineering, mathematical, and scientific communities with significant develop-
ments in harmonic analysis, ranging from abstract harmonic analysis to basic appli-
cations. The title of the series reflects the importance of applications and numerical
implementation, but richness and relevance of applications and implementation de-
pend fundamentally on the structure and depth of theoretical underpinnings. Thus,
from our point of view, the interleaving of theory and applications and their creative
symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flour-
ished, developed, and deepened over time within many disciplines and by means
of creative cross-fertilization with diverse areas. The intricate and fundamental re-
lationship between harmonic analysis and fields such as signal processing, partial
differential equations (PDEs), and image processing is reflected in our state-of-the-
art ANHA series.

Our vision of modern harmonic analysis includes mathematical areas such as
wavelet theory, Banach algebras, classical Fourier analysis, time–frequency analy-
sis, and fractal geometry, as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with
some basic problems in digital signal processing, speech and image processing, geo-
physics, pattern recognition, biomedical engineering, and turbulence. These areas
implement the latest technology from sampling methods on surfaces to fast algo-
rithms and computer vision methods. The underlying mathematics of wavelet theory
depends not only on classical Fourier analysis, but also on ideas from abstract har-
monic analysis, including von Neumann algebras and the affine group. This leads
to a study of the Heisenberg group and its relationship to Gabor systems, and of the
metaplectic group for a meaningful interaction of signal decomposition methods.
The unifying influence of wavelet theory in the aforementioned topics illustrates the
justification for providing a means for centralizing and disseminating information
from the broader, but still focused, area of harmonic analysis. This will be a key role
of ANHA. We intend to publish the scope and interaction that such a host of issues
demands.

v



vi ANHA Series Preface

Along with our commitment to publish mathematically significant works at the
frontiers of harmonic analysis, we have a comparably strong commitment to publish
major advances in the following applicable topics in which harmonic analysis plays
a substantial role:

Antenna theory Prediction theory
Biomedical signal processing Radar applications
Digital signal processing Sampling theory
Fast algorithms Spectral estimation
Gabor theory and applications Speech processing
Image processing Time–frequency and
Numerical partial differential equations time-scale analysis

Wavelet theory

The above point of view for the ANHA book series is inspired by the history of
Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries, Fourier analysis has had a major impact on the devel-
opment of mathematics, on the understanding of many engineering and scientific
phenomena, and on the solution of some of the most important problems in mathe-
matics and the sciences. Historically, Fourier series were developed in the analysis
of some of the classical PDEs of mathematical physics; these series were used to
solve such equations. In order to understand Fourier series and the kinds of solu-
tions they could represent, some of the most basic notions of analysis were defined,
e.g., the concept of “function”. Since the coefficients of Fourier series are integrals,
it is no surprise that Riemann integrals were conceived to deal with uniqueness
properties of trigonometric series. Cantors set theory was also developed because of
such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena,
such as sound waves, can be described in terms of elementary harmonics. There are
two aspects of this problem: first, to find, or even define properly, the harmonics or
spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; second,
to determine which phenomena can be constructed from given classes of harmonics,
as done, e.g., by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engineer-
ing, mathematics, and the sciences. For example, Wiener’s Tauberian theorem in
Fourier analysis not only characterizes the behavior of the prime numbers, but also
provides the proper notion of spectrum for phenomena such as white light; this latter
process leads to the Fourier analysis associated with correlation functions in filter-
ing and prediction problems, and these problems, in turn, deal naturally with Hardy
spaces in the theory of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier
integral operators. Problems in antenna theory are studied in terms of unimodular
trigonometric polynomials. Applications of Fourier analysis abound in signal pro-
cessing, whether with the fast Fourier transform (FFT), or filter design, or the adap-
tive modeling inherent in timefrequency-scale methods such as wavelet theory. The
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coherent states of mathematical physics are translated and modulated Fourier trans-
forms, and these are used, in conjunctionwith the uncertainty principle, for deal-
ing with signal reconstruction in communications theory.We are back to the raison
d’être of the ANHA series!

University of Maryland John J. Benedetto
College Park Series Editor





Preface

The introduction of wavelets about 20 years ago has revolutionized applied
mathematics, computer science, and engineering by providing a highly effective
methodology for analyzing and processing univariate functions/signals containing
singularities. However, wavelets do not perform equally well in the multivariate
case due to the fact that they are capable of efficiently encoding only isotropic fea-
tures. This limitation can be seen by observing that Besov spaces can be precisely
characterized by decay properties of sequences of wavelet coefficients, but they are
not capable of capturing those geometric features which could be associated with
edges and other distributed singularities. Indeed, such geometric features are essen-
tial in the multivariate setting, since multivariate problems are typically governed
by anisotropic phenomena such as singularities concentrated on lower dimensional
embedded manifolds. To deal with this challenge, several approaches were proposed
in the attempt to extend the benefits of the wavelet framework to higher dimensions,
with the aim of introducing representation systems which could provide both opti-
mally sparse approximations of anisotropic features and a unified treatment of the
continuum and digital world. Among the various methodologies proposed, such as
curvelets and contourlets, the shearlet system, which was introduced in 2005, stands
out as the first and so far the only approach capable of satisfying this combination
of requirements.

Today, various directions of research have been established in the theory of shear-
lets. These include, in particular, the theory of continuous shearlets—associated
with a parameter set of continuous range—and its application to the analysis of
distributions. Another direction is the theory of discrete shearlets—associated with
a discrete parameter set—and their sparse approximation properties. Thanks to the
fact that shearlets provide a unified treatment of the continuum and digital realm
through the utilization of the shearing operator, digitalization and hence numerical
realizations can be performed in a faithful manner, and this leads to very efficient
algorithms. Building on these results, several shearlet-based algorithms were devel-
oped to address a range of problems in image and data processing.

This book is the first monograph devoted to shearlets. It is not only aimed at and
accessible to a broad readership including graduate students and researchers in the

ix
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areas of applied mathematics, computer science, and engineering, but it will also
appeal to researchers working in any other field requiring highly efficient method-
ologies for the processing of multivariate data. Because of this fact, this volume can
be used both as a state-of-the-art monograph on shearlets and advanced multiscale
methods and as a textbook for graduate students.

This volume is organized into several tutorial-like chapters which cover the main
aspects of theory and applications of shearlets and are written by the leading in-
ternational experts in these areas. The first chapter provides a self-contained and
comprehensive overview of the main results on shearlets and sets the basic notation
and definitions which are used in the remainder of the book. The topics covered
in the remaining chapters essentially follow the idea of going from the continuous
setting, i.e., continuous shearlets and their microlocal properties, up to the discrete
and digital setting, i.e., discrete shearlets, their digital realizations, and their appli-
cations. Each chapter is self-contained, which enables the reader to choose his/her
own path through the book. Here is a brief outline of the content of each chapter.

The first chapter, written by the editors, provides an introduction and presents a
self-contained overview of the main results on the theory and applications of shear-
lets. Starting with some background on frame theory and wavelets, it covers the
definitions of continuous and discrete shearlets and the main results from the the-
ory of shearlets, which are subsequently discussed in detail and expanded in the
following chapters.

In the second chapter, Grohs focusses on the continuous shearlet transform. After
making the reader familiar with concepts from microlocal analysis, he shows that
the shearlet transform offers a simple and convenient way to characterize wavefront
sets of distributions.

In the third chapter, Guo and Labate illustrate the ability of the continuous shear-
let transform to characterize the set of singularities of multivariate functions and
distributions. These properties set the groundwork for some of the imaging applica-
tions discussed in the eighth chapter.

In the fourth chapter, Dahlke et al. introduce the continuous shearlet transform
for arbitrary space dimension. They further present the construction of smooth-
ness spaces associated to shearlet representations and the analysis of their structural
properties.

In the fifth chapter, Kutyniok et al. provide a comprehensive survey of the theory
of sparse approximations of cartoon-like images using shearlets. Both the band-
limited and the compactly supported shearlet frames are examined in this chapter.

In the sixth chapter, Sauer starts from the classical concepts of filterbanks and
subband coding to present an entirely digital approach to shearlet multiresolution.
This approach is not a discretization of the continuous transform, but is naturally
connected to the filtering of digital data.

In the seventh chapter, Kutyniok et al. discuss the construction of digital real-
izations of the shearlet transform with a particular focus on a unified treatment of
the continuum and digital realm. In particular, this chapter illustrates two distinct
numerical implementations of the shearlet transform, one based on band-limited
shearlets and the other based on compactly supported shearlets.
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In the eighth chapter, Easley and Labate present the application of shearlets
to several problems from imaging and data analysis to date. This includes the il-
lustration of shearlet-based algorithms for image denoising, image enhancement,
edge detection, image separation, deconvolution, and regularized reconstruction of
Radon data. In all these applications, the ability of shearlet representations to han-
dle anisotropic features efficiently is exploited in order to derive highly competitive
numerical algorithms.

Finally, it is important to emphasize that the work presented in this volume would
not have been possible without the interaction and discussions with many people
during these years. We wish to thank the many students and researchers who over
the years have given us insightful comments and suggestions, and helped this area
of research to grow into its present form.

Berlin, Germany Gitta Kutyniok
Houston, USA Demetrio Labate
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Introduction to Shearlets

Gitta Kutyniok and Demetrio Labate

Abstract Shearlets emerged in recent years among the most successful
frameworks for the efficient representation of multidimensional data. Indeed, af-
ter it was recognized that traditional multiscale methods are not very efficient at
capturing edges and other anisotropic features which frequently dominate multidi-
mensional phenomena, several methods were introduced to overcome their limita-
tions. The shearlet representation stands out since it offers a unique combination of
some highly desirable properties: it has a single or finite set of generating functions,
it provides optimally sparse representations for a large class of multidimensional
data, it is possible to use compactly supported analyzing functions, it has fast al-
gorithmic implementations and it allows a unified treatment of the continuum and
digital realms. In this chapter, we present a self-contained overview of the main
results concerning the theory and applications of shearlets.

Key words: Affine systems, Continuous wavelet transform, Image processing,
Shearlets, Sparsity, Wavelets

1 Introduction

Scientists sometimes refer to the twenty-first century as the Age of Data. As a mat-
ter of fact, since technological advances make the acquisition of data easier and less
expensive, we are coping today with a deluge of data including astronomical, med-
ical, seismic, meteorological, and surveillance data, which require efficient analysis
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and processing. The enormity of the challenge this poses is evidenced not only by
the sheer amount of data but also by the diversity of data types and the variety of
processing tasks which are required. To efficiently handle tasks ranging from feature
analysis over classification to compression, highly sophisticated mathematical and
computational methodologies are needed. From a mathematical standpoint data can
be modeled, for example, as functions, distributions, point clouds, or graphs. More-
over, data can be classified by membership in one of the two categories: explicitly
given data such as imaging or measurement data and implicitly given data such as
solutions of differential or integral equations.

A fundamental property of virtually all data found in practical applications is that
the relevant information which needs to be extracted or identified is sparse, i.e., data
are typically highly correlated and the essential information lies on low-dimensional
manifolds. This information can thus be captured, in principle, using just few terms
in an appropriate dictionary. This observation is crucial not only for tasks such as
data storage and transmission but also for feature extraction, classification, and other
high-level tasks. Indeed, finding a dictionary which sparsely represents a certain
data class entails the intimate understanding of its dominant features, which are
typically associated with their geometric properties. This is closely related to the
observation that virtually all multivariate data are typically dominated by anisotropic
features such as singularities on lower dimensional embedded manifolds. This is
exemplified, for instance, by edges in natural images or shock fronts in the solutions
of transport equations. Hence, to efficiently analyze and process these data, it is of
fundamental importance to discover and truly understand their geometric structures.

The subject of this volume is a recently introduced multiscale framework, the
theory of shearlets, which allows optimal encoding of several classes of multivariate
data through its ability to sparsely represent anisotropic features. As will be illus-
trated in the following, shearlets emerged as part of an extensive research activity
developed during the last 10 years to create a new generation of analysis and pro-
cessing tools for massive and higher dimensional data, which could go beyond the
limitations of traditional Fourier and wavelet systems. One of the forerunners of this
area of research is David L. Donoho, who observed that in higher dimensions tradi-
tional multiscale systems and wavelets ought to be replaced by a Geometric Multi-
scale Analysis in which multiscale analysis is adapted to intermediate-dimensional
singularities. It is important to remark that many of the ideas which are at the core
of this approach can be traced back to key results in harmonic analysis from the
1990s, such as Hart Smith’s Hardy space for Fourier Integral Operators and Pe-
ter Jones’ Analyst’s Traveling Salesman theorem. Both results concern the higher
dimensional setting, where geometric ideas are brought into play to discover “new
architectures for decomposition, rearrangement, and reconstruction of operators and
functions” [16].

This broader area of research is currently at the crossroads of applied mathemat-
ics, electrical engineering, and computer science, and has seen spectacular advances
in recent years, resulting in highly sophisticated and efficient algorithms for image
analysis and new paradigms for data compression and approximation. By presenting
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the theory and applications of shearlets obtained during the last 5 years, this book is
also a journey into one of the most active and exciting areas of research in applied
mathematics.

2 The Rise of Shearlets

2.1 The Role of Applied Harmonic Analysis

Applied harmonic analysis has established itself as the main area in applied math-
ematics focused on the efficient representation, analysis, and encoding of data. The
primary object of this discipline is the process of “breaking into pieces” (this is
the literal meaning of the Greek word analysis) to gain insight into an object. For
example, given a class of data C in L2(Rd), a collection of analyzing functions
(ϕi)i∈I ⊆ L2(Rd) with I being a countable indexing set is sought such that, for all
f ∈ C , we have the expansion

f =∑
i∈I

ci( f )ϕi. (1)

This formula provides not only a decomposition for any element f ∈C into a count-
able collection of linear measurements (ci( f ))i∈I ⊆ �2(I), i.e., its analysis; it also
illustrates the process of synthesis, where f is reconstructed from the expansion
coefficients (ci( f ))i∈I .

One major goal of applied harmonic analysis is the construction of special classes
of analyzing elements which can best capture the most relevant information in a cer-
tain data class. Let us illustrate the two most successful types of analyzing systems
in the one-dimensional setting. Gabor systems are designed to best represent the
joint time–frequency content of data. In this case, the analyzing elements (ϕi)i∈I are
obtained as translations and frequency shifts of a generating function ϕ ∈ L2(R) as
follows:

{ϕp,q = ϕ(·− p)e2π iq· : p,q ∈ Z}.
In contrast to this approach, wavelet systems represent the data as associated with
different location and resolution levels. In this case, the analyzing elements (ϕi)i∈I

are obtained through the action of dilation and translation operators on a generating
function ψ ∈ L2(R), called a wavelet, as:

{ψ j,m = 2 j/2ψ(2 j ·−m) : j,m ∈ Z}. (2)

Given a prescribed class of data C , one major objective is to design an an-
alyzing system (ϕi)i∈I in such a way that, for each function f ∈ C , the coeffi-
cient sequence (ci( f ))i∈I in (1) can be chosen to be sparse. In the situation of
an infinite-dimensional Hilbert space—which is our focus here—the degree of
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sparsity is customarily measured as the decay rate of the error of best n-term
approximation. Loosely speaking, this means that we can approximate any f ∈ C
with high accuracy by using a coefficient sequence (c̃i( f ))i∈I containing very few
nonzero entries. In the finite-dimensional setting, such a sequence is called sparse,
and this explains the use of the term sparse approximation. Intuitively, if a func-
tion can be sparsely approximated, it is conceivable that “important” features can
be detected by thresholding, i.e., by selecting the indices associated with the largest
coefficients in absolute values, or that high compression rates can be achieved by
storing only few large coefficients ci( f ), see [19].

There is another fundamental phenomenon to observe here. If (ϕi)i∈I is an
orthonormal basis, the coefficient sequence (ci( f ))i∈I in (1) is certainly uniquely
determined. However, if we allow more freedom in the sense of choosing (ϕi)i∈I

to form a frame—a redundant, yet stable system (see Sect. 3.3)—the sequences
(ci( f ))i∈I might be chosen significantly sparser for each f ∈ C . Thus, methodolo-
gies from frame theory will come into play, see Sect. 3.3 and [5, 7].

We can observe a close connection to yet another highly topical area. During the
last 4 years, sparse recovery methodologies such as Compressed Sensing in partic-
ular have revolutionized the areas of applied mathematics, computer science, and
electrical engineering by beating the traditional sampling theory limits, see [3, 23].
They exploit the fact that many types of signals can be represented using only a
few nonvanishing coefficients when choosing a suitable basis or, more generally, a
frame. Nonlinear optimization methods, such as �1 minimization, can then be em-
ployed to recover such signals from “very few” measurements under appropriate
assumptions on the signal and on the basis or frame. These results can often be
generalized to data which are merely sparsely approximated by a frame, thereby
enabling compressed sensing methodologies for the situation we discussed above.

2.2 Wavelets and Beyond

The emergence of wavelets about 25 years ago represents a milestone in the devel-
opment of efficient encoding of piecewise regular signals. The major reason for the
spectacular success of wavelets consists not only in their ability to provide optimally
sparse approximations of a large class of frequently occurring signals and to repre-
sent singularities much more efficiently than traditional Fourier methods, but also
in the existence of fast algorithmic implementations which precisely digitalize the
continuum domain transforms. The key property enabling such a unified treatment
of the continuum and digital setting is a Multiresolution Analysis, which allows a
direct transition between the realms of real variable functions and digital signals.
This framework also combines very naturally with the theory of filter banks devel-
oped in the digital signal processing community. An additional aspect of the theory
of wavelets which has contributed to its success is its rich mathematical structure,
which allows one to design families of wavelets with various desirable properties
expressed in terms of regularity, decay, or vanishing moments. As a consequence
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of all these properties, wavelets have literally revolutionized image and signal
processing and produced a large number of very successful applications, including
the algorithm of JPEG2000, the current standard for image compression. We refer
the interested reader to [65] for more details about wavelets and their applications.

Despite their success, wavelets are not very effective when dealing with multi-
variate data. In fact, wavelet representations are optimal for approximating data with
pointwise singularities only and cannot handle equally well distributed singularities
such as singularities along curves. The intuitive reason for this is that wavelets are
isotropic objects, being generated by isotropically dilating a single or finite set of
generators. However, in dimensions two and higher, distributed discontinuities such
as edges of surface boundaries are usually present or even dominant, and—as a
result—wavelets are far from optimal in dealing with multivariate data.

The limitations of wavelets and traditional multiscale systems have stimulated
a flurry of activity involving mathematicians, engineers, and applied scientists.
Indeed, the need to introduce some form of directional sensitivity1 in the wavelet
framework was already recognized in the early filter bank literature, and several
versions of “directional” wavelets were introduced, including the steerable pyra-
mid by Simoncelli et al. [71], the directional filter banks by Bamberger and Smith
[2], and the 2D directional wavelets by Antoine et al. [1]. A more sophisticated
approach was proposed more recently with the introduction of complex wavelets
[44, 45]. However, even though they frequently outperform standard wavelets in
applications, these methods do not provide optimally sparse approximations of mul-
tivariate data governed by anisotropic features. The fundamental reason for this fail-
ure is that these approaches are not truly multidimensional extensions of the wavelet
approach.

The real breakthrough occurred with the introduction of curvelets by Candès and
Donoho [4] in 2004, which was the first system providing optimally sparse approx-
imations for a class of bivariate functions exhibiting anisotropic features. Curvelets
form a pyramid of analyzing functions defined not only at various scales and loca-
tions as wavelets do, but also at various orientations, with the number of orienta-
tions increasing at finer scales. Another fundamental property is that their supports
are highly anisotropic and become increasingly elongated at finer scales. Due to this
anisotropy, curvelets are essentially as good as an adaptive representation system
from the point of view of the ability to sparsely approximate images with edges.
The two main drawbacks of the curvelet approach are that, firstly, this system is not
singly generated, i.e., it is not derived from the action of countably many operators
applied to a single (or finite set) of generating functions; secondly, its construction
involves rotations and these operators do not preserve the digital lattice, which pre-
vents a direct transition from the continuum to the digital setting.

Contourlets were introduced in 2005 by Do and Vetterli [14] as a purely discrete
filter-bank version of the curvelet framework. This approach offers the advantage of

1 It is important to recall that the importance of directional sensitivity in the efficient processing
of natural images by the human brain has been a major finding in neuropsycological studies such
as the work of Field and Olshausen [68], and a significant inspiration for some of the research
developed in the harmonic analysis and image processing literature.
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allowing a tree-structured filter bank implementation similar to the standard wavelet
implementations which was exploited to obtain very efficient numerical algorithms.
However, a proper continuum theory is missing in this approach.

In the same year, shearlets were introduced by Guo, Kutyniok, Labate, Lim, and
Weiss in [30, 61]. This approach was derived within a larger class of affine-like
systems—the so-called composite wavelets [39, 40, 41]—as a truly multivariate ex-
tension of the wavelet framework. One of the distinctive features of shearlets is
the use of shearing to control directional selectivity, in contrast to rotation used by
curvelets. This is a fundamentally different concept, since it allows shearlet systems
to be derived from a single or finite set of generators, and it also ensures a unified
treatment of the continuum and digital world due to the fact that the shear matrix
preserves the integer lattice. Indeed, as will be extensively discussed in this vol-
ume, the shearlet representation offers a unique combination of the following list of
desiderata:

• A single or a finite set of generating functions.
• Optimally sparse approximations of anisotropic features in multivariate data.
• Compactly supported analyzing elements.
• Fast algorithmic implementations.
• A unified treatment of the continuum and digital realms.
• Association with classical approximation spaces.

For completeness, it is important to recall yet another class of representation sys-
tems which are able to overcome the limitations of traditional wavelets and produce
optimally efficient representations for a large class of images, namely the bandelets
[70] and the grouplets [66]. Also in these methods, the idea is to take advantage of
the geometry of the data. However, in this case, this is done adaptively, that is, by
constructing a special data decomposition which is especially designed for each data
set, rather than by using a fixed representation system as it is done using wavelets or
shearlets. While one can achieve very efficient data decompositions using such an
adaptive approach, this is usually numerically more intensive than using nonadap-
tive methods.

In the following sections, we will present a self-contained overview of the key
results from the theory and applications of shearlets, focused primarily on the 2D
setting. These results will be elaborated in much more detail in the various chapters
of this volume, which will discuss both the continuum and digital aspects of shear-
lets. Before starting our overview, it will be useful to establish the notation adopted
throughout this volume and to present some background material from harmonic
analysis and wavelet theory.

3 Notation and Background Material

3.1 Fourier Analysis

The Fourier transform is the most fundamental tool in harmonic analysis. Before
stating the definition, we remark that, in the following, vectors in R

d or C d will
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always be understood as column vectors, and their inner product—as also the inner
product in L2(Rd)—shall be denoted by 〈·, ·〉. For a function f ∈ L1(Rd), the Fourier
transform of f is defined by

f̂ (ξ ) =
∫

f (x)e−2π i〈x,ξ 〉dx,

and f is called a band-limited function if its Fourier transform is compactly sup-
ported. The inverse Fourier transform of a function g ∈ L1(Rd) is given as

ǧ(x) =
∫

g(ξ )e2π i〈x,ξ 〉dξ .

If f ∈ L1(Rd) with f̂ ∈ L1(Rd), we have f = ( f̂ )ˇ, hence in this case—which is by
far not the only possible case—the inverse Fourier transform is the “true” inverse.
It is well known that this definition can be extended to L2(Rd), and as usual, also
these extensions will be denoted by f̂ and ǧ. By using this definition of the Fourier
transform, the Plancherel formula for f ,g ∈ L2(Rn) reads

〈 f ,g〉 = 〈 f̂ , ĝ〉,

and, in particular,

‖ f‖2 = ‖ f̂‖2.

We refer to [25] for additional background information on Fourier analysis.

3.2 Modeling of Signal Classes

In the continuum setting, the standard model of d-dimensional signals is the space
of square-integrable functions on R

d , denoted by L2(Rd). However, this space also
contains objects which are very far from natural images and data. Hence, it is conve-
nient to introduce subclasses and subspaces which can better model the types of data
encountered in applications. One approach for doing this consists in imposing some
degree of regularity. Therefore, we consider the continuous functions C(Rd), the
k-times continuously differentiable functions Ck(Rd), and the infinitely many-times
continuously differentiable functions C∞(Rd), which are also referred to as smooth
functions. Since images are compactly supported in nature, a notion for compactly
supported functions is also required which will be indicated with the subscript 0,
e.g., C∞

0 (R
d).

Sometimes it is useful to consider curvilinear singularities such as edges in
images as singularities of distributions, which requires the space of distributions
D ′(Rd) as a model. For a distribution u, we say that x∈Rd is a regular point of u, if
there exists a function φ ∈C∞

0 (Ux) with φ(x) �= 0 and Ux being a neighborhood of x.
This implies φ u ∈C∞

0 (R
d), which is equivalent to (φ u)∧ being rapidly decreasing.
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The complement of the set of regular points of u is called the singular support of
u and is denoted by sing supp(u). Notice that the singular support of u is a closed
subset of supp(u).

The anisotropic nature of singularities on one- or multidimensional embedded
manifolds becomes apparent through the notion of a wavefront set. For simplicity,
we illustrate the two-dimensional case only. For a distribution u, a point (x,s) ∈
R

2×R is a regular directed point, if there exist neighborhoodsUx of x and Vs of s as
well as a function φ ∈C∞

0 (R
2) satisfying φ |Ux ≡ 1 such that, for each N > 0, there

exists a constant CN with

|(uφ)∧(η)| ≤CN (1+ |η |)−N for all η = (η1,η2) ∈ R
2 with η2

η1
∈Vs.

The complement in R
2×R of the regular directed points of u is called the wavefront

set of u and is denoted by WF(u). Thus, the singular support describes the location
of the set of singularities of u, and the wavefront set describes both the location and
local perpendicular orientation of the singularity set.

Fig. 1 Natural images are governed by anisotropic structures

A class of functions, which is of particular interest in imaging sciences, is the
class of so-called cartoon-like images. This class was introduced in [15] to provide
a simplified model of natural images, which emphasizes anisotropic features, most
notably edges, and is consistent with many models of the human visual system. Con-
sider, for example, the photo displayed in Fig. 1. Since the image basically consists
of smooth regions separated by edges, it is suggestive to use a model consisting of
piecewise regular functions, such as the one illustrated in Fig. 2. For simplicity, the
domain is set to be [0,1]2 and the regularity can be chosen to be C2, leading to the
following definition.
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Fig. 2 Example of a cartoon-like image (function values represented using a gray scale map)

Definition 1. The class E2(R2) of cartoon-like images is the set of functions f :
R

2→ C of the form

f = f0 + f1χB,

where B⊂ [0,1]2 is a set with ∂B being a closed C2-curve with bounded curvature
and fi ∈C2(R2) are functions with supp fi ⊂ [0,1]2 and ‖ fi‖C2 ≤ 1 for each i = 0,1.

Let us finally mention that, in the digital setting, the usual models for d-
dimensional signals are either functions on Z

d such as �2(Zd) or functions on
{0, . . . ,N− 1}d, sometimes denoted by Z

d
N .

3.3 Frame Theory

When designing representation systems of functions, it is sometimes advantageous
or unavoidable to go beyond the setting of orthonormal bases and consider redun-
dant systems. The notion of a frame, originally introduced by Duffin and Schaeffer
in [20] and later revived by Daubechies in [13], guarantees stability while allowing
nonunique decompositions. Let us recall the basic definitions from frame theory in
the setting of a general (real or complex) Hilbert space H .

A sequence (ϕi)i∈I in H is called a frame for H , if there exist constants
0 < A≤ B < ∞ such that

A‖x‖2 ≤∑
i∈I
|〈x,ϕi〉|2 ≤ B‖x‖2 for all x ∈H .

The frame constants A and B are called lower and upper frame bound, respectively.
The supremun over all A and the infimum over all B such that the frame inequalities
hold are the optimal frame bounds. If A and B can be chosen with A = B, then the
frame is called A-tight, and if A = B = 1 is possible, then (ϕi)i∈I is a Parseval frame.
A frame is called equal norm if there exists some c > 0 such that ‖ϕi‖ = c for all
i ∈ I, and it is unit norm if c = 1.


