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Preface

The primary object of study in this book is small-amplitude periodic solutions of
two-dimensional autonomous systems of ordinary differential equations,

ẋ = P(x,y), ẏ = Q(x,y),

for which the right-hand sides are polynomials. Such systems are called polynomial
systems. If the origin is an isolated singularity of a polynomial (or real analytic)
system, and if there does not exist an orbit that tends to the singularity, in either for-
ward or reverse time, with a definite limiting tangent direction, then the singularity
must be either a center, in which case there is a neighborhood of the origin in which
every orbit except the origin is periodic, or a focus, in which case there is a neigh-
borhood of the origin in which every orbit spirals towards or away from the origin.
The problem of distinguishing between a center and a focus for a given polynomial
system or a family of such systems is known as the Poincaré center problem or the
center-focus problem. Although it dates from the end of the 19th century, it is com-
pletely solved only for linear and quadratic systems (max{deg(P),deg(Q)} equal to
1 or 2, respectively) and a few particular cases in families of higher degree.

Relatively simple analysis shows that when the matrix of the linearization of the
system at the the singular point has eigenvalues with nonzero real parts, the singular
point is a focus. If, however, the real parts of the eigenvalues are zero then the type
of the singular point depends on the nonlinear terms of polynomials in a nontrivial
way. A general method due to Poincaré and Lyapunov reduces the problem to that
of solving an infinite system of polynomial equations whose variables are param-
eters of the system of differential equations. That is, the center-focus problem is
reduced to the problem of finding the variety of the ideal generated by a collection
of polynomials, called the focus quantities of the system.

A second problem, called the cyclicity problem, is to estimate the number of
limit cycles, that is, isolated periodic solutions, that can bifurcate from a center or
focus when the coefficients of the system of differential equations are perturbed by
an arbitrarily small amount, but in such a way as to remain in a particular family
of systems, for example in the family of all quadratic polynomial systems if the
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viii Preface

original system was quadratic. This problem is a part of the still unresolved 16th
Hilbert problem and is often called the local 16th Hilbert problem. In fact, in order
to find an upper bound for the cyclicity of a center or focus in a polynomial system
it is sufficient to obtain a basis for the above-mentioned ideal of focus quantities.
Thus the study of these two famous problems in the qualitative theory of differential
equations can be carried out through the study of polynomial ideals, that is, through
the study of an object of commutative algebra.

Recent decades have seen a surge of interest in the center and cyclicity prob-
lems. Certainly an important reason for this is that the resolution of these problems
involves extremely laborious computations, which nowadays can be carried out us-
ing powerful computational facilities. Applications of concepts that could not be
utilized even 30 years ago are now feasible, often even on a personal computer,
because of advances in the mathematical theory, in the computer software of com-
putational algebra, and in computer technology. This book is intended to give the
reader a thorough grounding in the theory, and explains and illustrates methods of
computational algebra, as a means of approaching the center-focus and cyclicity
problems.

The methods we present can be most effectively exploited if the original real
system of differential equations is properly complexified; hence, the idea of com-
plexifying a real system, and more generally working in a complex setting, is one
of the central ideas of the text. Although the idea of extracting information about a
real system of ordinary differential equations from its complexification goes back
to Lyapunov, it is still relatively scantily used. Our belief that it deserves exposition
at the level of a textbook has been a primary motivation for this work. In addition
to that, it has appeared to us that by and large specialists in the qualitative theory
of differential equations are not well versed in these new methods of computational
algebra, and conversely that there appears to be a general lack of knowledge on
the part of specialists in computational algebra about the possibility of an algebraic
treatment of these problems of differential equations. We have written this work
with the intention of trying to help to draw together these two mathematical com-
munities.

Thus, the readers we have had in mind in writing this work have been gradu-
ate students and researchers in nonlinear differential equations and computational
algebra, and in fields outside mathematics in which the investigation of nonlinear
oscillation is relevant. The book is designed to be suitable for use as a primary text-
book in an advanced graduate course or as a supplementary source for beginning
graduate courses. Among other things, this has meant motivating and illustrating
the material with many examples, and including a great many exercises, arranged in
the order in which the topics they cover appear in the text. It has also meant that we
have given complete proofs of a number of theorems that are not readily available in
the current literature and that we have given much more detailed versions of proofs
that were written for specialists. All in all, researchers working in the theory of limit
cycles of polynomial systems should find it a valuable reference resource, and be-
cause it is self-contained and written to be accessible to nonspecialists, researchers
in other fields should find it an understandable and helpful introduction to the tools
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they need to study the onset of stable periodic motion, such as ideals in polynomial
rings and Gröbner bases.

The first two chapters introduce the primary technical tools for this approach
to the center and cyclicity problems, as well as questions of linearizability and
isochronicity that are naturally investigated in the same manner. The first chapter
lays the groundwork of computational algebra. We give the main properties of ide-
als in polynomial rings and their affine varieties, explain the concept of Gröbner
bases, a key component of various algorithms of computational algebra, and provide
explicit algorithms for elimination and implicitization problems and for basic opera-
tions on ideals in polynomial rings and on their varieties. The second chapter begins
with the main theorems of Lyapunov’s second method, theorems that are aimed at
the investigation of the stability of singularities (in this context often termed equi-
librium points) by means of Lyapunov functions. We then cover the basics of the
theory of normal forms of ordinary differential equations, including an algorithm
for the normalization procedure and a criterion for convergence of normalization
transformations and normal forms.

Chapter 3 is devoted to the center problem. We describe how the concept of a
center can be generalized to complex systems, in order to take advantage of work-
ing over the algebraically closed field C in place of R. This leads to the study of
the variety, in the space of parameters of the system, that corresponds to systems
with a center, which is called the center variety. We present an efficient compu-
tational algorithm for computing the focus quantities, which are the polynomials
that define the center variety. Then we describe two main mechanisms for prov-
ing the existence of a center in a polynomial system, Darboux integrability and
time-reversibility, thereby completing the description of all the tools needed for this
method of approach to the center-focus problem. This program and its efficiency
are demonstrated by applying it to resolve the center problem for the full family of
quadratic systems and for one particular family of cubic systems. In a final section,
as a complement to the rest of the chapter, particularly aspects of symmetry, the
important special case of Liénard systems is presented.

If all solutions in a neighborhood of a singular point are periodic, then a ques-
tion that arises naturally is whether all solutions have the same period. This is the
so-called isochronicity problem that has attracted study from the time of Huygens
and the Bernoullis. In Chapter 4 we present a natural generalization of the concept
of isochronicity to complex systems of differential equations, the idea of lineariz-
ability. We then introduce and develop methods for investigating linearizability in
the complex setting.

As indicated above, one possible mechanism for the existence of a center is time-
reversibility of the system. Chapter 5 presents an algorithm for computing all time-
reversible systems within a given polynomial family. This takes on additional im-
portance because in all known cases the set of time-reversible systems forms exactly
one component of the center variety. The algorithm is derived using the study of in-
variants of the rotation group of the system and is a nice application of that theory
and the algebraic theory developed in Chapter 1.
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The last chapter is devoted to the cyclicity problem. We describe Bautin’s
method, which reduces the study of cyclicity to finding a basis of the ideal of focus
quantities, and then show how to obtain the solution for the cyclicity problem in
the case that the ideal of focus quantities is radical. In the case that the ideal gen-
erated by the first few focus quantities is not radical, the problem becomes much
more difficult; at present there is no algorithmic approach for its treatment. Nev-
ertheless we present a particular family of cubic systems for which it is possible,
using Gröbner basis calculations, to obtain a bound on cyclicity. Finally, as a further
illustration of the applicability of the ideas developed in the text, we investigate the
problem of the maximum number of cycles that can maintain the original period of
an isochronous center in R2 when it is perturbed slightly within the collection of
centers, the so-called problem of bifurcation of critical periods.

Specialists perusing the table of contents and the bibliography will surely miss
some of their favorite topics and references. For example, we have not mentioned
methods that approach the center and cyclicity problems based on the theory of
resultants and triangular decomposition, and have not treated the cyclicity problem
specifically in the important special case of Liénard systems, such as we did for the
center problem. We are well aware that there is much more that could be included,
but one has to draw the line somewhere, and we can only say that we have made
choices of what to include and what to omit based on what seemed best to us, always
with an eye to what we hoped would be most valuable to the readers of this book.

The first author acknowledges the financial support of this work by the Slovenian
Research Agency. We thank all those with whom we consulted on various aspects of
this work, especially Vladimir Basov, Carmen Chicone, Freddy Dumortier, Maoan
Han, Evan Houston, and Dongming Wang.

Maribor, Charlotte Valery G. Romanovski
May 2008 Douglas S. Shafer
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N the set of natural numbers {1,2,3, . . .}
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Q the field of rational numbers
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A⊂ B A is a subset of B, A = B allowed
A $ B A is a proper subset of B
A\B elements that are in A and are not in B
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Chapter 1
Polynomial Ideals and Their Varieties

As indicated in the Preface, solutions of the fundamental questions addressed in
this book, the center and cyclicity problems, are expressed in terms of the sets of
common zeros of collections of polynomials in the coefficients of the underlying
family of systems of differential equations. These sets of common zeros are termed
varieties. They are determined not so much by the specific polynomials themselves
as by larger collections of polynomials, the so-called ideals that the original collec-
tions of polynomials generate. In the first section of this chapter we discuss these
basic concepts: polynomials, varieties, and ideals. An ideal can have more than one
set of generating polynomials, and a fundamental problem is that of deciding when
two ideals, hence the varieties they determine, are the same, even though presented
by different sets of generators. To address this and related isssues, in Sections 1.2
and 1.3 we introduce the concept of a Gröbner basis and certain fundamental tech-
niques and algorithms of computational algebra for the study of polynomial ideals
and their varieties. The last section is devoted to the decomposition of varieties into
their simplest components and shows how this decomposition is connected to the
structure of the generating ideals. For a fuller exposition of the concepts presented
here, the reader may consult [1, 18, 23, 60].

1.1 Fundamental Concepts

A polynomial in variables x1,x2, . . . ,xn with coefficients in a field k is a formal
expression of the form

f = ∑
α∈S

aα xα , (1.1)

where S is a finite subset of Nn
0, aα ∈ k, and for α = (α1,α2, . . . ,αn), xα denotes

the monomial xα1
1 xα2

2 · · ·xαn
n . In most cases of interest k will be Q, R, or C. The

product aαxα is called a term of the polynomial f . The set of all polynomials in the
variables x1, . . . ,xn with coefficients in k is denoted by k[x1, . . . ,xn]. With the natural
and well-known addition and multiplication, k[x1, . . . ,xn] is a commutative ring. The

1
DOI 10.1007/978-0-8176-4727-8_1, 
© Birkhäuser is a part of Springer Science+Business Media, LLC 2009 

V.G. Romanovski, D.S. Shafer, The Center and Cyclicity Problems,  



2 1 Polynomial Ideals and Their Varieties

full degree of a monomial xα is the number |α| = α1 + · · ·+ αn. The full degree of
a term aαxα is the full degree of the monomial xα . The full degree of a polynomial
f as in (1.1), denoted by deg( f ), is the maximum of |α| among all monomials (with
nonzero coefficients aα , of course) of f .

If a field k and a natural number n are given, then we term the set

kn = {(a1, . . . ,an) : a1, . . . ,an ∈ k}

n-dimensional affine space. If f is the polynomial in (1.1) and (a1, . . . ,an)∈ kn, then
f (a1, . . . ,an) will denote the element ∑α aαaα1

1 · · ·aαn
n of k. Thus, to any polynomial

f ∈ k[x1, . . . ,xn] is associated the function f : kn→ k defined by

f : (a1, . . . ,an) 7→ f (a1, . . . ,an) .

This ability to consider polynomials as functions defines a kind of duality between
the algebra and geometry of affine spaces. In the case of an arbitrary field k this
interconnection between polynomials and functions on affine spaces can hold some
surprises. For example, the statements “ f is the zero polynomial” (all coefficients
aα are equal to zero) and “ f is the zero function” ( f |kn ≡ 0) are not necessarily
equivalent (see Exercise 1.1). However, we will work mainly with the infinite fields
Q, R, and C, for which the following two statements show that our naive intuition
is correct.

Proposition 1.1.1. Let k be an infinite field and f ∈ k[x1, . . . ,xn]. Then f is the zero
element of k[x1, . . . ,xn] (that is, all coefficients aα of f are equal to zero) if and only
if f : kn→ k is the zero function.

Proof. Certainly if every coefficient of the polynomial f is the zero polynomial then
the corresponding function is the zero function. We must establish the converse:

If f (a1, . . . ,an) = 0 for all (a1, . . . ,an) ∈ kn, then f is the zero polynomial. (1.2)

We will do this by induction on the number of variables in the polynomial ring.
Basis step. For n = 1, the antecedent in (1.2) means that either (i) f is the zero

polynomial or (ii) deg( f ) is defined and at least 1 and f has infinitely many roots.
It is well known, however (Exercise 1.2), that every polynomial f ∈ k[x] for which
deg( f ) = s > 0 has at most s roots. Hence only alternative (i) is possible, so (1.2)
holds for n = 1.

Inductive step. Suppose (1.2) holds in the ring k[x1, . . . ,xp] for p = 1,2, . . . ,n−1.
Let f ∈ k[x1, . . . ,xn] be such that the antecedent in (1.2) holds for f . We can write f
in the form

f =
m

∑
j=0

g j(x1, . . . ,xn−1)x
j
n

for some finite m, and will show that g j is the zero polynomial for each j, 1≤ j≤m.
This will imply that f is the zero polynomial. Thus fix any a = (a1, . . . ,an−1)∈ kn−1

and define fa ∈ k[xn] by
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fa =
m

∑
j=0

g j(a1, . . . ,an−1)x
j
n .

By hypothesis, fa(an) = 0 for all an ∈ k. Hence, by the induction hypothesis, fa is
the zero polynomial; that is, its coefficients gk(a1, . . . ,an−1) are equal to zero for all
j, 0≤ j ≤m. But (a1, . . . ,an−1) was an arbitrary point in kn−1, hence the evaluation
function corresponding to g j is the zero function for j = 1, . . . ,m, which, by the
induction hypothesis, implies that g j is the zero polynomial for j = 1, . . . ,m, as
required. Thus the proposition holds. �

The proposition yields the following result.

Corollary 1.1.2. If k is an infinite field and f and g are elements of k[x1, . . . ,xn],
then f = g in k[x1, . . . ,xn] if and only if the functions f : kn→ k and g : kn→ k are
equal.

Proof. Suppose f and g in k[x1, . . . ,xn] define the same function on kn. Then f −g
is the zero function. Hence, by Proposition 1.1.1, f − g is the zero polynomial in
k[x1, . . . ,xn], so that f = g in k[x1, . . . ,xn]. The converse is clear. �

Throughout this chapter, unless otherwise indicated k will denote an arbitrary
field. The main geometric object of study in this chapter is what is called an affine
variety in kn, defined as follows.

Definition 1.1.3. Let k be a field and let f1, . . . , fs be (finitely many) elements of
k[x1, . . . ,xn]. The affine variety defined by the polynomials f1, . . . , fs is the set

V( f1, . . . , fs) = {(a1, . . . ,an) ∈ kn : f j(a1, . . . ,an) = 0 for 1 ≤ j ≤ s} .

An affine variety is a subset V of kn for which there exist finitely many polynomials
such that V = V( f1, . . . , fs). A subvariety of V is a subset of V that is itself an affine
variety.

In other words, the affine variety V( f1, . . . , fs) ⊂ kn is the set of solutions of the
system

f1 = 0, f2 = 0, . . . , fs = 0 (1.3)

of finitely many polynomial equations in kn. Of course, this set depends on k and
could very well be empty: V(x2 + y2 + 1) = ∅ for k = R but not for k = C, while
V(x2 + y2 + 1,x,y) = ∅ no matter what k is, since k is a field.

The following proposition gives an important property of affine varieties. The
proof is left as Exercise 1.3, in which the reader is asked to prove in addition that
the arbitrary (that is, possibly infinite) intersection of affine varieties is still an affine
variety.

Proposition 1.1.4. If V ⊂ kn and W ⊂ kn are affine varieties, then V ∪W and V ∩W
are also affine varieties.
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It is easy to see that, given an affine variety V , the collection of polynomials
{ f1, . . . , fs} such that V = V( f1, . . . , fs) is not unique, and thus cannot be uniquely
recovered from the point set V . For example, for any a and b in k, a 6= 0, it is
apparent that V( f1, . . . , fs) = V(a f1 + b f2, f2, . . . , fs). See also Example 1.1.13 and
Proposition 1.1.11. In order to connect a given variety with a particular collection
of polynomials, we need the concept of an ideal, the main algebraic object of study
in this chapter.

Definition 1.1.5. An ideal of k[x1, . . . ,xn] is a subset I of k[x1, . . . ,xn] satisfying
(a) 0 ∈ I,
(b) if f ,g ∈ I then f + g ∈ I, and
(c) if f ∈ I and h ∈ k[x1, . . . ,xn], then h f ∈ I.

Let f1, . . . , fs be elements of k[x1, . . . ,xn]. We denote by 〈 f1, . . . , fs〉 the set of all
linear combinations of f1, . . . , fs with coefficients from k[x1, . . . ,xn]:

〈 f1, . . . , fs〉=
{

s

∑
j=1

h j f j : h1, . . . ,hs ∈ k[x1, . . . ,xn]

}
. (1.4)

It is easily seen that the set 〈 f1, . . . , fs〉 is an ideal in k[x1, . . . ,xn] . We call 〈 f1, . . . , fs〉
the ideal generated by the polynomials f1, . . . , fs, and the polynomials themselves
generators of I. A generalization of this idea that will be important later is the fol-
lowing: if F is any nonempty subset of k[x1, . . . ,xn] (possibly infinite), then we let
〈 f : f ∈ F〉 denote the set of all finite linear combinations of elements of F with
coefficients from k[x1, . . . ,xn]. (Occasionally we will abbreviate the notation to just
〈F〉.) Then 〈 f : f ∈ F〉 is also an ideal, the ideal generated by the elements of F ,
which are likewise called its generators (Exercise 1.4; see Exercise 1.38). An ar-
bitrary ideal I ⊂ k[x1, . . . ,xn] is called finitely generated if there exist polynomials
f1, . . . , fs ∈ k[x1, . . . ,xn] such that I = 〈 f1, . . . , fs〉; the set f1, . . . , fs is called a basis
of I. The concept of an ideal arises in the context of arbitrary commutative rings. In
that setting an ideal need not be finitely generated, but in a polynomial ring over a
field it must be:

Theorem 1.1.6 (Hilbert Basis Theorem). If k is a field, then every ideal in the
polynomial ring k[x1, . . . ,xn] is finitely generated.

For a proof of the Hilbert Basis Theorem the reader is referred to [1, 60, 132, 195].

Corollary 1.1.7. Every ascending chain of ideals I1 ⊂ I2 ⊂ I3 ⊂ ·· · in a polynomial
ring over a field k stabilizes. That is, there exists m ≥ 1 such that for every j > m,
I j = Im.

Proof. Let I1 ⊂ I2 ⊂ I3 ⊂ ·· · be an ascending chain of ideals in k[x1, . . . ,xn] and
set I = ∪∞

j=1I j, clearly an ideal in k[x1, . . . ,xn]. By the Hilbert Basis Theorem there
exist f1, . . . , fs in k[x1, . . . ,xn] such that I = 〈 f1, . . . , fs〉. Choose any N ∈N such that
F = { f1, . . . , fs} ⊂ IN , and suppose that g ∈ Ip for some p ≥ N. Since g ∈ I and F
is a basis for I, there exist h1, . . . ,hs ∈ k[x1, . . . ,xn] such that g = h1 f1 + · · ·+ hs fs.
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But then because F ⊂ IN and IN is an ideal, g ∈ IN . Thus Ip ⊂ IN , and the ascending
chain has stabilized by IN . �

Rings in which every strictly ascending chain of ideals stabilizes are called
Noetherian rings. The Hilbert Basis Theorem and its corollary hold under the milder
condition that k be only a commutative Noetherian ring. Some condition is neces-
sary, though, which is why in the statements above we explicitly included the con-
dition that k be a field, which is enough for our puposes.

Occasionally we will find that it is important not to distinguish between two
polynomials whose difference lies in a particular ideal I. Thus, we define a relation
on k[x1, . . . ,xn] by saying that f and g are related if f − g ∈ I. This relation is an
equivalence relation (Exercise 1.5) and is the basis for the following definition.

Definition 1.1.8. Let I be an ideal in k[x1, . . . ,xn]. Two polynomials f and g in
k[x1, . . . ,xn] are congruent modulo I, denoted f ≡ g mod I, if f − g ∈ I. The set
of equivalence classes is denoted k[x1, . . . ,xn]/I.

As a simple example, if in R[x] we take I = 〈x〉, then f ≡ g mod I precisely when
f (x)− g(x) = xh(x) for some polynomial h. Hence f and g are equivalent if and
only if they have the same constant term.

If for f ∈ k[x1, . . . ,xn] the equivalence class of f is denoted [ f ], then for any f1 and
f2 in [ f ] and for any g1 and g2 in [g], ( f1 + g1)− ( f2 + g2) ∈ I and f1g1− f2g2 ∈ I.
We conclude that an addition and multiplication are defined on k[x1, . . . ,xn]/I by
[ f ]+ [g] = [ f + g] and [ f ][g] = [ f g], which give it the structure of a ring (Exercise
1.6).

Suppose f1, . . . , fs ∈ k[x1, . . . ,xn] and consider system (1.3), whose solution set
is the affine variety V = V( f1, . . . , fs). The reader may readily verify that for any
a ∈ kn, a ∈ V if and only if f (a) = 0 for every f ∈ I = 〈 f1, . . . , fs〉. V is the set of
common zeros of the full (typically infinite) set I of polynomials. Moreover, given
the ideal I, as the following proposition states, the particular choice of generators
is unimportant; the same variety will be determined. Thus, it is the ideal that deter-
mines the variety, and not the particular collection of polynomials f1, . . . , fs.

Proposition 1.1.9. Let f1, . . . , fs and g1, . . . ,gm be bases of an ideal I ∈ k[x1, . . . ,xn],
that is, I = 〈 f1, . . . , fs〉= 〈g1, . . . ,gm〉. Then V( f1, . . . , fs) = V(g1, . . . ,gm).

The straightforward proof is left to the reader.
We have seen how a finite collection of polynomials defines a variety. Conversely,

given a variety V , there is naturally associated to it an ideal. As already noted, the
collection of polynomials in a system (1.3) for which V is the solution set is not
unique, and neither is the ideal they generate, although any such ideal has the prop-
erty that V is precisely the subset of kn on which every element of the ideal vanishes.
The ideal naturally associated to V is the one given in the following definition.

Definition 1.1.10. Let V ⊂ kn be an affine variety. The ideal of the variety V is the
set

I(V ) = { f ∈ k[x1, . . . ,xn] : f (a1, . . . ,an) = 0 for all (a1, . . . ,an) ∈V} .
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In Exercise 1.7 the reader is asked to show that I(V ) is an ideal in k[x1, . . . ,xn],
even if V is not a variety, but simply an arbitrary subset of kn. (See also the discus-
sion following Theorem 1.3.18.)

The ideal naturally associated to a variety V bears the following relation to the
family of ideals that come from the polynomials in any system of equations that
define V .

Proposition 1.1.11. Let f1, . . . , fs be elements of k[x1, . . . ,xn]. Then the set inclusion
〈 f1, . . . , fs〉 ⊂ I(V( f1, . . . , fs)) always holds, but could be strict.

Proof. Let f ∈ 〈 f1, . . . , fs〉. Then there exist h1, . . . ,hs ∈ k[x1, . . . ,xn] such that
f = h1 f1 + · · ·+ hs fs. Since f1, . . . , fs all vanish on V( f1, . . . , fs), so does f , so
f ∈ I(V( f1, . . . , fs)). The demonstration that the inclusion can be strict is given by
Example 1.1.13. �

When V is not just a subset of kn but a variety, the ideal I(V ) naturally determined
by V uniquely determines V :

Proposition 1.1.12. Let V and W be affine varieties in kn. Then
1. V ⊂W if and only if I(W )⊂ I(V ).
2. V = W if and only if I(W ) = I(V ).

Proof. (1) Suppose V ⊂W . Then any polynomial that vanishes on W also vanishes
on V , so I(W )⊂ I(V ). Suppose conversely that I(W )⊂ I(V ). Choose any collection
{h1, . . . ,hs} ⊂ k[x1, . . . ,xn] such that W = V(h1, . . . ,hs), which must exist, since W
is a variety. Then for 1 ≤ j ≤ s, h j ∈ I(W ) ⊂ I(V ), so that if a ∈V , then h j(a) = 0.
That is, if a ∈V , then a ∈ V(h1, . . . ,hs) = W , so V ⊂W .

Statement (2) is an immediate consequence of statement (1). �

Example 1.1.13. Let V = {(0,0)} ⊂ R2. Then I(V ) is the set of all polynomials in
two variables without constant term. We will express V as V( f1, f2) in two different
ways. Choosing f1 = x and f2 = y, V = V( f1, f2) and I = 〈x,y〉 is the same ideal
as I(V ). Choosing f1 = x2 and f2 = y, V = V( f1, f2), but J = 〈x2,y〉 is the set of
elements of R[x,y], every term of which contains x2 or y; hence J $ I(V ). Note that
both I and J have the property that V is precisely the set of common zeros of all
their elements.

Denote by V the set of all affine varieties of kn and by I the set of all polynomial
ideals in k[x1, . . . ,xn]. Then Definition 1.1.10 defines a map

I : V→ I. (1.5)

Because every ideal I of k[x1, . . . ,xn] has a finite basis (Theorem 1.1.6), so that
I = 〈 f1, . . . , fs〉, and because the variety defined using any basis of I is the same as
that defined using any other (Proposition 1.1.9), there is also a natural map from I
to V defined by

V : I→V : 〈 f1, . . . , fs〉 7→ V( f1, . . . , fs) . (1.6)
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That is, for an ideal I in k[x1, . . . ,xn], V(I) = V( f1, . . . , fs) for any finite collection
of polynomials satisfying I = 〈 f1, . . . , fs〉. Thus the symbol V will be doing double
duty, since we will continue to write V( f1, . . . , fs) in place of the more cumbersome
V(〈 f1, . . . , fs〉). The following theorem establishes some properties of the maps I
and V. (See also Theorem 1.3.15.)

Theorem 1.1.14. For any field k, the maps I and V are inclusion-reversing. I is one-
to-one (injective) and V is onto (surjective). Furthermore, for any variety V ⊂ kn,
V(I(V )) = V.

Proof. In Exercise 1.8 the reader is asked to show that the maps I and V are
inclusion-reversing. Now let an affine variety V = V( f1, . . . , fs) of kn be given. Since
I(V ) is the collection of all polynomials that vanish on V , if a ∈ V , then every el-
ement of I(V ) vanishes at a, so a is in the set of common zeros of I(V ), which is
V(I(V )). Thus, V ⊂ V(I(V )). For the reverse inclusion, by the definition of I(V ),
f j ∈ I(V ), 1 ≤ j ≤ s; hence, 〈 f1, . . . , fs〉 ⊂ I(V ). Since V is inclusion-reversing,
V(I(V ))⊂ V(〈 f1, . . . , fs〉) = V( f1, . . . , fs) = V .

Finally, I is one-to-one because it has a left inverse, and V is onto because it has
a right inverse. �

1.2 The Ideal Membership Problem and Gröbner Bases

One of the main problems of computational algebra is the Ideal Membership Prob-
lem, formulated as follows.

Ideal Membership Problem. Let I ⊂ k[x1, . . . ,xn] be an ideal and let f
be an element of k[x1, . . . ,xn]. Determine whether or not f is an element
of I.

We first consider the polynomial ring with one variable x. One important feature
of this ring is the existence of the Division Algorithm: given two polynomials f
and g in k[x], g 6= 0, there exist unique elements q and r of k[x], the quotient and
remainder, respectively, of f upon division by g, such that f = qg + r, and either
r = 0 or deg(r) < deg(g). To divide f by g is to express f as f = qg + r. We say
that g divides f if r = 0, and write it as g | f . As outlined in Exercises 1.9–1.12, the
greatest common divisor of two polynomials in k[x] is defined, is easily computed
using the Euclidean Algorithm, and can be used in conjunction with the Hilbert
Basis Theorem to show that every ideal in k[x] is generated by a single element. (An
ideal generated by a single element is called a principal ideal, and a ring in which
every ideal is principal is a principal ideal domain). The Ideal Membership Problem
is then readily solved: given an ideal I and a polynomial f , we first find a generator
g for I, then divide f by g; f ∈ I if and only if g | f .

In polynomial rings of several variables, we want to follow an analogous proce-
dure for solving the Ideal Membership Problem: performing a division and exam-
ining a remainder. Matters are more complicated, however. In particular, in general
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ideals are not generated by just one polynomial, so we have to formulate a procedure
for dividing a polynomial f by a set F of polynomials, and although there is a way
to generalize the Division Algorithm to do this for elements of k[x1, . . . ,xn], a com-
plication arises in that the remainder under the division is not necessarily unique.

To describe the division algorithm in k[x1, . . . ,xn], we must digress for several
paragraphs to introduce the concepts of a term ordering and of reduction of a poly-
nomial modulo a set of polynomials, along with attendant terminology. We first of
all specify an ordering on the terms of the polynomials. In the case of one vari-
able there is the natural ordering according to degree. In the multivariable case
there are different orders that can be used. We will define the general concept of
a term order and a few of the most frequently used term orders. Observe that be-
cause of the one-to-one correspondence between monomials xα = xα1

1 xα2
2 · · ·xαn

n and
n-tuples α = (α1, . . . ,αn) ∈ Nn

0, it is sufficient to order elements of Nn
0 (for, as in

the one-variable case, the actual coefficients of the terms play no role in the order-
ing). Underlying this correspondence, of course, is the assumption of the ordering
x1 > x2 > · · ·> xn of the variables themselves.

Recall that a partial order ≻ on a set S is a binary relation that is reflexive (a≻ a
for all a ∈ S), antisymmetric (a ≻ b and b ≻ a only if a = b), and transitive (a ≻ b
and b ≻ c implies a ≻ c). A total order > on S is a partial order under which any
two elements can be compared: for all a and b in S, either a = b, a > b, or b > a.

Definition 1.2.1. A term order on k[x1, . . . ,xn] is a total order > on Nn
0 having the

following two properties:
(a) for all α , β , and γ in Nn

0, if α > β , then α + γ > β + γ ; and
(b) Nn

0 is well-ordered by > : if S is any nonempty subset of Nn
0, then there exists a

smallest element µ of S (for all α ∈ S \ {µ}, α > µ).

The monomials {xα : α ∈ N0} are then ordered by the ordering of their ex-
ponents, so that xα > xβ if and only if α > β . Note that while we speak of the
term order > as being on k[x1, . . . ,xn], we are not actually ordering all elements of
k[x1, . . . ,xn], but only the monomials, hence the individual terms of the polynomials
that comprise k[x1, . . . ,xn]; this explains the terminology term order. The terminol-
ogy monomial order is also widely used.

A sequence α j in Nn
0 is strictly descending if, for all j, α j > α j+1 and α j 6= α j+1.

Such a sequence terminates if it is finite.

Proposition 1.2.2. A total order > on Nn
0 well-orders Nn

0 if and only if each strictly
descending sequence of elements of Nn

0 terminates.

Proof. If there exists a strictly descending sequence α1 > α2 > α3 > · · · that does
not terminate, then {α1,α2, . . .} is a nonempty subset of Nn

0 with no minimal ele-
ment, and > does not well-order Nn

0.
Conversely, if > does not well-order Nn

0, then there exists a nonempty subset A
of Nn

0 that has no minimal element. Let α1 be an arbitrary element of A. It is not
minimal; hence there exists α2 ∈ A, α2 6= α1, such that α1 > α2. Continuing the
process, we get a strictly descending sequence that does not terminate. �
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We now define the three most commonly used term orders; in Exercise 1.16 we
ask the reader to verify that they indeed meet the conditions in Definition 1.2.1.
Addition and rescaling in Zn are performed componentwise: for α , β ∈ Zn and
p ∈ Z, the jth entry of α + pβ is the jth entry of α plus p times the jth entry of β .
The word “graded” is sometimes used where we use the word “degree.”

Definition 1.2.3. Let α = (α1, . . . ,αn) and β = (β1, . . . ,βn) be elements of Nn
0.

(a) Lexicographic Order. Define α >lex β if and only if, reading left to right, the
first nonzero entry in the n-tuple α−β ∈ Zn is positive.

(b) Degree Lexicographic Order. Define α >deglex β if and only if

|α|=
n

∑
j=1

α j > |β |=
n

∑
j=1

β j or |α|= |β | and α >lex β .

(c) Degree Reverse Lexicographic Order. Define α >degrev β if and only if either
|α| > |β | or |α| = |β | and, reading right to left, the first nonzero entry in the
n-tuple α−β ∈ Zn is negative.

For example, if α = (1,4,4,2) and β = (1,2,6,2), then α is greater than β with
respect to all three orders. Note in particular that this example shows that degrev is
not simply the reverse of deglex.

When a term order > on k[x1, . . . ,xn] is given, we write aα xα > aβ xβ if and
only if α > β . We reiterate that the definitions above are based on the presumed
ordering x1 > · · · > xn of the variables. This ordering must be explicitly identified
when non-subscripted variables are in use. For instance, if in k[x,y] we choose y > x,
then y5 >lex x9 (since (5,0) >lex (0,9)) and xy4 >deglex x2y3 (since 4+1 = 3+2 and
(4,1) >lex (3,2)), and we will typically write these latter two terms as y4x and y3x2

to reflect the underlying ordering of the variables themselves.
Fixing a term order > on k[x1, . . . ,xn], any nonzero f ∈ k[x1, . . . ,xn] may be writ-

ten in the standard form, with respect to > ,

f = a1xα1 + a2xα2 + · · ·+ asxαs , (1.7)

where a j 6= 0 for j = 1, . . . ,s, αi 6= α j for i 6= j and 1 ≤ i, j ≤ s, and where, with
respect to the specified term order, α1 > α2 > · · ·> αs.

Definition 1.2.4. Let a term order on k[x1, . . . ,xn] be specified and let f be a nonzero
element of k[x1, . . . ,xn], written in the standard form (1.7).
(a) The leading term LT( f ) of f is the term LT( f ) = a1xα1 .
(b) The leading monomial LM( f ) of f is the monomial LM( f ) = xα1 .
(c) The leading coefficient LC( f ) of f is the coefficient LC( f ) = a1.

The concept of division of single-variable polynomials has an obvious general-
ization to the case of division of one monomial by another: we say that a monomial
xα = xα1

1 · · ·xαn
n divides a monomial xβ = xβ1

1 · · ·x
βn
n , written xα | xβ , if and only if

β j ≥ α j for all j, 1≤ j≤ n. In such a case the notation xβ /xα denotes the monomial
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xβ1−α1
1 · · ·xβn−αn

n . In k[x1, . . . ,xn], to divide a polynomial f by nonzero polynomials
{ f1, . . . , fs} means to represent f in the form

f = u1 f1 + · · ·+ us fs + r ,

where u1, . . . ,us,r ∈ k[x1, . . . ,xn], and either r = 0 or deg(r)≤ deg( f ) (the inequality
is not strict). The most important part of this expression is the remainder r, not
the weights u j, for the context in which we intend to apply the division concept is
that the fi are generators of an ideal I, and we want the division to produce a zero
remainder r if and only if f is in I.

We must first specify a term order on k[x1, . . . ,xn]. The main idea then of the
algorithm for the division is the same as in the one-variable case: we reduce the
leading term of f (as determined by the specified term order) by multiplying some f j

by an appropriate term and subtracting. We will describe the procedure in detail, but
to understand the motivation for the following definition, recall that in the familiar
one-variable case of polynomial long division, in the first pass through the algorithm
dividing, for example, f = 6x3 + · · · (lower-order terms omitted) by g = 7x2 + · · · ,
we compare the leading terms, multiply g by 6

7 x = 6x3

7x2 = LT( f )
LT(g) , and then subtract the

product from f to obtain a polynomial h = f − 6
7 xg that satisfies deg(h) < deg( f ).

Definition 1.2.5. (a) For f , g, h ∈ k[x1, . . . ,xn] with g 6= 0, we say that f reduces to
h modulo g in one step, written as

f
g→ h ,

if and only if LM(g) divides a nonzero term X that appears in f and

h = f − X
LT(g)

g . (1.8)

(b) For f , f1, . . . , fs, h∈ k[x1, . . . ,xn] with f j 6= 0, 1≤ j≤ s, letting F = { f1, . . . , fs},
we say that f reduces to h modulo F , written as

f
F→ h,

if and only if there exist a sequence of indices j1, j2, . . . , jm ∈ {1, . . . ,s} and a se-
quence of polynomials h1, . . . ,hm−1 ∈ k[x1, . . . ,xn] such that

f
f j1−−→ h1

f j2−−→ h2
f j3−−→ ·· ·

f jm−1−−−→ hm−1
f jm−−→ h .

Remark 1.2.6. Applying part (a) of the definition repeatedly shows that if f
F→ h,

then there exist u j ∈ k[x1, . . . ,xn] such that f = u1 f1 + · · ·+us fs +h. Hence, by Def-
inition 1.1.8 f , reduces to h modulo F = { f1, . . . , fs} only if f ≡ h mod 〈 f1, . . . , fs〉.
The converse is false, as shown by Example 1.2.12.

Example 1.2.7. We illustrate each part of Definition 1.2.5.
(a) In Q[x,y] with x > y and the term order deglex, let f = x2y + 2xy− 3x + 5 and
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g = xy + 6y2−4x. If the role of X is played by the leading term x2y in f , then

h = f − x2y
xy

(
xy + 6y2−4x

)
=−6xy2 + 4x2 + 2xy−3x + 5,

so f
g→ h and LM(h) < LM( f ). If the role of X is played by the term 2xy in f , then

h̃ = f − 2xy
xy

(
xy + 6y2−4x

)
= x2y−12y2 + 5x + 5,

so f
g→ h̃ and LT(h̃) = LT( f ). In either case we remove the term X from f and

replace it with a term that is smaller with respect to deglex.
(b) In Q[x,y] with y > x and the term order deglex, let f = y2x+y2 +3y, f1 = yx+2,
and f2 = y + x. Then

y2x + y2 + 3y
f1−→ y2 + y

f2−→−yx + y
f2−→ x2 + y,

so f
{ f1, f2}−−−−→ x2 + y.

Definition 1.2.8. Suppose f , f1, . . . , fs ∈ k[x1, . . . ,xn], f j 6= 0 for 1 ≤ j ≤ s, and let
F = { f1, . . . , fs}.
(a) A polynomial r ∈ k[x1, . . . ,xn] is reduced with respect to F if either r = 0 or no

monomial that appears in the polynomial r is divisible by any element of the set
{LM( f1), . . . ,LM( fs)}.

(b) A polynomial r ∈ k[x1, . . . ,xn] is a remainder for f with respect to F if f
F→ r

and r is reduced with respect to F .

The Multivariable Division Algorithm is the direct analogue of the procedure
used to divide one single-variable polynomial by another. To divide f by the or-
dered set F = { f1, . . . , fs}, we proceed iteratively, at each step performing a familiar
polynomial long division using one element of F . Typically, the set F of divisors is
presented to us in no particular order, so as a preliminary we must order its elements
in some fashion; the order selected can affect the final result. At the first step in the
actual division process, the “active divisor” is the first element of F , call it f j, whose
leading term divides the leading term of f ; at this step we replace f by the polyno-
mial h of (1.8) when X = LT( f ) and g = f j , thereby reducing f somewhat using f j .
At each succeeding step, the active divisor is the first element of F whose leading
term divides the leading term of the current polynomial h; at this step we similarly
reduce h somewhat using the active divsior. If at any stage no division is possible,
then the leading term of h is added to the remainder, and we try the same process
again, continuing until no division is possible at all. By Exercise 1.17, building up
the remainder successively is permissible. An explicit description of the procedure
is given in Table 1.1 on page 12. In the next theorem we will prove that the algo-

rithm works correctly to perform the reduction f
F→ r and generate the components

of the expression f = u1 f1 + · · ·+us fs + r, where r is a remainder for f with respect
to F (thus showing that a remainder always exists), but first we present an example.
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Multivariable Division Algorithm

Input:

f ∈ k[x1, . . . ,xn]
ordered set F = { f1, . . . , fs} ⊂ k[x1, . . .,xn]\{0}

Output:

u1, . . .,us, r ∈ k[x1, . . .,xn] such that

1. f = u1 f1 + · · ·+us fs + r,
2. r is reduced with respect to { f1, . . . , fs}, and
3. max(LM(u1)LM( f1), . . . ,LM(us)LM( fs),LM(r)) = LM( f )

Procedure:

u1 := 0; . . . , us := 0; r := 0; h := f
WHILE h 6= 0 DO

IF
There exists j such that LM( f j) divides LM(h)
THEN
For the least j such that LM( f j) divides LM(h)

u j := u j +
LT(h)

LT( f j)

h := h− LT(h)

LT( f j)
f j

ELSE
r := r +LT(h)
h := h−LT(h)

Table 1.1 The Multivariable Division Algorithm

Example 1.2.9. In Q[x,y] with x > y and the term order lex, we apply the algorithm
to divide f = x2y+xy3 +xy2 by the polynomials f1 = xy+1 and f2 = y2 +1, ordered
f1 then f2.

The two panels in Table 1.2 on page 14 show the computation in tabular form
and underscore the analogy with the one-variable case. The top panel shows three
divsions by f1, at which point no division (by either divisor) is possible. The leading
term −x is sent to the remainder, and the process is restarted. Division by f1 is
impossible, but the bottom panel shows one further division by f2, and then all
remaining terms are sent to the remainder. Therefore,

f = u1 f1 + u2 f2 + r = (x + y2 + y) f1 +(−1) f2 +(−x− y + 1) .

That is, the quotient is {u1,u2}= {x + y2 + y,−1} and the remainder is −x− y + 1.
(In general, the role of the divisor on each step will alternate between the f j , so that
in a hand computation the full table will contain more than s panels, and successive
dividends when f j is the active divisor must be added to obtain u j.)



1.2 The Ideal Membership Problem and Gröbner Bases 13

Now let us go through exactly the same computation by means of an explicit
application of the Multivariable Division Algorithm. That is, we will follow the
instructions presented in Table 1.1 in a step-by-step fashion.

First pass:
LM( f1) | LM(h) but LM( f2) ∤ LM(h)
f1 is least

u1 = 0 + x2y
xy = x

h = (x2y + xy3 + xy2)− x(xy + 1) = xy3 + xy2− x

Second pass:
LM( f1) | LM(h) and LM( f2) | LM(h)
f1 is least

u1 = x + xy3

xy = x + y2

h = (xy3 + xy2− x)− y2(xy + 1) = xy2− x− y2

Third pass:
LM( f1) | LM(h) and LM( f2) | LM(h)
f1 is least

u1 = x + y2 + xy2

xy = x + y2 + y

h = (xy2− x− y2)− y(xy + 1) =−x− y2− y

Fourth pass:
LM( f1) ∤ LM(h) and LM( f2) ∤ LM(h)
r = 0 +(−x) =−x
h = (−x− y2− y)− (−x) =−y2− y

Fifth pass:
LM( f1) ∤ LM(h) but LM( f2) | LM(h)
f2 is least

u2 = 0 + −y2

y =−1

h = (−y2− y)− (−1)(y2 + 1) =−y + 1

Sixth pass:
LM( f1) ∤ LM(h) and LM( f2) ∤ LM(h)
r =−x +(−y) =−x− y
h = (−y + 1)− (−y) = 1

Seventh pass:
LM( f1) ∤ LM(h) and LM( f2) ∤ LM(h)
r =−x− y + 1
h = 1−1 = 0

A summary statement in the language of Definition 1.2.5 for these computations
is the string of reductions and equalities
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f
f1→ h1

f1→ h2
f1→ h3 = h4 +(−x)

f2→ h5 +(−x) = h6 +(−x− y)

= h7 +(−x− y−1)=−x− y−1

or, more succinctly, f
{ f1, f2}−−−−→−x− y−1 .

x + y2 + y ←− [u1] r :

xy + 1 x2y + xy3 + xy2 ←− [ f ]

x2y + x

xy3 + xy2 − x ←− [h1]

xy3 + y2

xy2 − x − y2 ←− [h2]

xy2 + y

− x − y2 − y ←− [h3]

−1 ←− [u2]

y2 + 1 −y2 − y ←− [h4] −x

−y2 − 1

− y + 1 ←− [h5]

1 ←− [h6] −x− y

0 ←− [h7] −x− y+1

Table 1.2 The Computations of Example 1.2.9

Theorem 1.2.10. Let an ordered set F = { f1, . . . , fs}⊂ k[x1, . . . ,xn]\{0} of nonzero
polynomials and a polynomial f ∈ k[x1, . . . ,xn] be given. The Multivariable Division
Algorithm produces polynomials u1, . . . ,us,r ∈ k[x1, . . . ,xn] such that

f = u1 f1 + · · ·+ us fs + r, (1.9)

where r is a remainder for f with respect to F and

LM( f ) = max(LM(u1)LM( f1), . . . ,LM(us)LM( fs),LM(r)), (1.10)

where LM(u j)LM( f j) is not present in (1.10) if u j = 0.

Proof. The algorithm certainly produces the correct result u j = 0, 1 ≤ j ≤ s, and
r = f in the special cases that f = 0 or that no leading term in any of the divisors
divides any term of f . Otherwise, after the first pass through the WHILE loop for
which the IF statement is true, exactly one polynomial u j is nonzero, and we have
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max[LM(u1)LM( f1), . . . ,LM(us)LM( fs),LM(h)]

= max[LM(u1)LM( f1), . . . ,LM(us)LM( fs)] ,
(1.11)

which clearly holds at every succeeding stage of the algorithm. Consequently, (1.10)
holds at that and every succeeding stage of the algorithm, hence holds when the
algorithm terminates.

At every stage of the algorithm, f = u1 f1 + · · ·+ us fs + r + h holds. Because the
algorithm halts precisely when h = 0, this implies that on the last step (1.9) holds.
Moreover, since at each stage we add to r only terms that are not divisible by LT( f j)
for any j, 1≤ j≤ s, r is reduced with respect to F , and thus is a remainder of f with
respect to F .

To show that the algorithm must terminate, let h1,h2, . . . be the sequence of poly-
nomials produced by the successive values of h upon successive passes through
the WHILE loop. The algorithm fails to terminate only if for every j ∈ N there
is a jth pass through the loop, hence an h j 6= 0. Then LM(h j) exists for each
j ∈ N, and the sequence LM(h1),LM(h2), . . . satisfies LM(h j+1) < LM(h j) and
LM(h j+1) 6= LM(h j), which contradicts Proposition 1.2.2. �

If we change the order of the polynomials in Example 1.2.9, dividing first by
f2 and then by f1, then the quotient and remainder change to {xy + x,x− 1} and
−2x + 1, respectively (Exercise 1.21). Thus we see that, unlike the situation in the
one-variable case, the quotient and remainder are not unique. They depend on the
ordering of the polynomials in the set of divisors as well as on the term order chosen
for the polynomial ring (see Exercise 1.22). But what is even worse from the point
of view of solving the Ideal Membership Problem is that, as the following examples
show, it is even possible that, keeping the term order fixed, there exist an element of
the ideal generated by the divisors whose remainder can be zero under one ordering
of the divisors and different from zero under another, or even different from zero no
matter how the divisors are ordered.

Example 1.2.11. In the ring R[x,y] fix the lexicographic term order with x > y
and consider the polynomial f = x2y + xy + 2x + 2. When we use the Multi-
variable Division Algorithm to reduce the polynomial f modulo the ordered set
{ f1 = x2−1, f2 = xy + 2}, we obtain

f = y f1 + f2 +(2x + y) .

Since the corresponding remainder, 2x+y, is different from zero, we might conclude
that f is not in the ideal 〈 f1, f2〉. If, however, we change the order of the divisors so
that f2 is first, we obtain

f = 0 · f1 +(x + 1) f2 + 0 = (x + 1) f2, (1.12)

so that f ∈ 〈 f1, f2〉 after all.

Example 1.2.12. In the ring R[x,y] fix the lexicographic term order with x > y. Then
2y = 1 ·(x+y)+(−1) ·(x−y)∈ 〈x+y,x−y〉, but because LT(x+y) = LT(x−y) = x
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does not divide 2y the remainder of 2y with respect to {x+ y,x− y} is unique and is
2y. Thus, for either ordering of the divisors, the Multivariable Division Algorithm
produces this nonzero remainder.

We see then that we have lost the tool that we had in polynomial rings of one
variable for resolving the Ideal Membership Problem. Fortunately, not all is lost.
While the Multivariable Division Algorithm cannot be improved in general, it has
been discovered that if we use a certain special generating set for our ideals, then
it is still true that f ∈ 〈 f1, . . . , fs〉 if and only if the remainder in the Division Al-
gorithm is equal to zero, and we are able to decide the Ideal Membership Problem.
Such a special generating set for an ideal is called a Gröbner basis or a standard
basis. It is one of the primary tools of computational algebra and is the basis of
numerous algorithms of computational algebra and algebraic geometry. To motivate
the definition of a Gröbner basis we discuss Example 1.2.11 again. It showed that
in the ring k[x,y], under lex with x > y, for f = x2y + xy + 2x + 2, f1 = x2−1, and
f2 = xy + 2,

f
{ f1, f2}−−−−→ 2x + y .

But by (1.12), f ∈ 〈 f1, f2〉, so the remainder r = 2x+ y must also be in 〈 f1, f2〉. The
trouble is that the leading term of r is not divisible by either LM( f1) or LM( f2),
and this is what halts the division process in the Multivariable Division Algorithm.
So the problem is that the ideal 〈 f1, f2〉 contains elements that are not divisible by a
leading term of either element of the particular basis { f1, f2} of the ideal.

If, for any ideal I, we had a basis B with the special property that the leading
term of every polynomial in I was divisible by the leading term of some element of
B, then the Multivariable Division Algorithm would provide an answer to the Ideal
Membership Problem: a polynomial f is in the ideal I if and only if the remainder
of f upon division by elements of B, in any order, is zero. This the idea behind
the concept of a Gröbner basis of an ideal, and we use this special property as the
defining characteristic of a Gröbner basis.

Definition 1.2.13. A Gröbner basis (also called a standard basis) of an ideal I in
k[x1, . . . ,xn] is a finite nonempty subset G = {g1, . . . ,gm} of I \{0} with the follow-
ing property: for every nonzero f ∈ I, there exists g j ∈ G such that LT(g j) | LT( f ).

It is implicit in the definition that we do not consider the concept of a Gröbner
basis G for the zero ideal, nor will we need it. See Section 5.2 of [18] for this more
general situation, in which G must be allowed to be empty. Note that the requirement
that the set G actually be a basis of the ideal I does not appear in the definition of a
Gröbner basis but is a consequence of it (Theorem 1.2.16). Note also that whether
or not a set G forms a Gröbner basis of an ideal I depends not only on the term order
in use, but also on the underlying ordering of the variables. See Exercise 1.23.

With a Gröbner basis we again have the important property of uniqueness of the
remainder, which we had in k[x] and which we lost in the multivariable case for
division by an arbitrary set of polynomials:
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Proposition 1.2.14. Let G be a Gröbner basis for a nonzero ideal I in k[x1, . . . ,xn]
and f ∈ k[x1, . . . ,xn]. Then the remainder of f with respect to G is unique.

Proof. Suppose f
G→ r1 and f

G−→ r2 and both r1 and r2 are reduced with respect to
G. Since f − r1 and f − r2 are both in I, r1− r2 ∈ I. By Definition 1.2.8, certainly
r1− r2 is reduced with respect to G. But then by Definition 1.2.13 it is immediate
that r1− r2 = 0, since it is in I. �

Definition 1.2.15. Let I be an ideal and f a polynomial in k[x1, . . . ,xn]. To reduce f
modulo the ideal I means to find the unique remainder of f upon division by some
Gröbner basis G of I. Given a nonzero polynomial g, to reduce f modulo g means
to reduce f modulo the ideal 〈g〉.

Proposition 1.2.14 ensures that once a Gröbner basis is selected, the process is
well-defined, although the remainder obtained depends on the Gröbner basis speci-
fied. We will see when this concept is applied in Section 3.7 that this ambiguity is
not important in practice.

Let S be a subset of k[x1, . . . ,xn] (possibly an ideal). We denote by LT(S) the
set of leading terms of the polynomials that comprise S and by 〈LT(S)〉 the ideal
generated by LT(S) (the set of all finite linear combinations of elements of LT(S)
with coefficients in k[x1, . . . ,xn]). The following theorem gives the main properties

of Gröbner bases. We remind the reader that the expression f
F→ h means that there

is some sequence of reductions using the unordered set F of divisors that leads
from f to h, which is not necessarily a remainder of f with respect to F . This is in
contrast to the Multivariable Division Algorithm, in which F must be ordered, and
the particular order selected determines a unique sequence of reductions from f to
a remainder r.

Theorem 1.2.16. Let I ⊂ k[x1, . . . ,xn] be a nonzero ideal, let G = {g1, . . . ,gs} be a
finite set of nonzero elements of I, and let f be an arbitrary element of k[x1, . . . ,xn].
Then the following statements are equivalent:

(i) G is a Gröbner basis for I;

(ii) f ∈ I⇔ f
G→ 0;

(iii) f ∈ I⇔ f = ∑s
j=1 u jg j and LM( f ) = max1≤ j≤s(LM(u j)LM(g j));

(iv) 〈LT(G)〉= 〈LT(I)〉.

Proof. (i)⇒ (ii). Let any f ∈ k[x1, . . . ,xn] be given. By Theorem 1.2.10 there exists

r ∈ k[x1, . . . ,xn] such that f
G→ r and r is reduced with respect to G. If f ∈ I, then

r ∈ I; hence, by the definition of Gröbner basis and the fact that r is reduced with

respect to G, r = 0. Conversely, if f
G→ 0, then obviously f ∈ I.

(ii)⇒ (iii). Suppose f ∈ I. Then by (ii) there is a sequence of reductions

f
g j1−−→ h1

g j2−−→ h2
g j3−−→ ·· ·

g jm−1−−−→ hm−1
g jm−−→ 0

which yields f = u1g1 + · · ·+u2g2 for some u j ∈ k[x1, . . . ,xn]. Exactly as described
in the first paragraph of the proof of Theorem 1.2.10, an equality analogous to (1.11)


