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Preface

Quantization of physical systems includes a correct definition of physical
observables (such as the Hamiltonian and the momentum) as self-adjoint operators
in an appropriate Hilbert space and their proper spectral analysis. A solution of
this problem is not a straightforward and unambiguous procedure for nontrivial
quantum systems (systems on nontrivial manifolds, in particular on manifolds
with boundaries or with singular interactions). Quantum-mechanical models with
singular potentials, both relativistic and nonrelativistic, and/or with boundaries,
play an important role in physics. A consistent treatment of nontrivial quantum
systems is beyond the scope of the mathematical apparatus in standard textbooks
on quantum mechanics (QM). But a “naı̈ve” treatment based on finite-dimensional
linear algebra or even on the theory of bounded operators can result in paradoxes
and incorrect results. Some paradoxes due to a “naı̈ve” treatment demonstrate that
even simple physical models can be nontrivial from the mathematical standpoint.
It is well known that a rigorous pure-mathematical approach to constructing
physical observables in nontrivial quantum systems leads to a result that is not
unique. Additional physical arguments must eventually be used to choose a proper
quantization for a given physical system. An application of the technique of
self-adjoint extensions of symmetric operators makes the inherent nonuniqueness
obvious and facilitates a physically proper choice.

In this book, we focus on the problem of a correct definition of quantum-
mechanical observables, which is an important part of operator quantization. We
show how this problem can be solved for comparatively simple but nontrivial
quantum-mechanical systems. The solution of the above problem requires invoking
some nontrivial notions of functional analysis concerning the theory of linear
operators in Hilbert spaces, in particular, the notions of unbounded self-adjoint
operators and their spectral analysis and of self-adjoint extensions of symmetric
operators. The general theory is then illustrated on a number of physical examples.
In particular, it is shown how the problem of a correct definition of observables is
solved for a free one-dimensional particle on the whole axis, on a semiaxis, and
on a finite interval. In addition, various nontrivial quantum systems are treated
in accordance with the general mathematical theory of self-adjoint extensions
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and a rigorous spectral theory. These are the one-dimensional particles in the
Calogero potential and in the potentials localized at the origin, in particular, deltalike
potentials. Additionally, a rigorous treatment of the Schrödinger operators with
all the so-called exactly solvable potentials is given, and the relativistic problem
for an electron in the Coulomb field of arbitrary (including supercritical) charge
is considered in detail. A similar analysis is carried out for nonrelativistic and
relativistic electrons in the Aharonov–Bohm field and in the so-called magnetic-
solenoid field.

The book is addressed to readers who are interested in deepening their under-
standing of mathematical problems in QM beyond the scope of standard textbooks.

São Paulo, Brasil Dmitry Gitman
Moscow, Russia Igor Tyutin and Boris Voronov
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Chapter 1
Introduction

1.1 General Remarks

Among different approaches to constructing a quantum description of physical
systems and its proper interpretation, operator quantization is the oldest and most-
used one. The main first-stage problem of operator quantization is the problem of
a correct definition of observables as self-adjoint operators (s.a. operators in what
follows) in an appropriate Hilbert space. The self-adjointness of observables is of
crucial importance for quantum theory (QT). An s.a. operator possesses a real-
valued spectrum and a complete orthogonal set of (generalized) eigenvectors in the
corresponding Hilbert space. These properties of any observable provide a basis
for the probabilistic interpretation of QT (in particular, quantum mechanics (QM),
which is the principal object of our consideration). The problem of a correct defini-
tion of quantum observables is generally nontrivial in the case of physical systems
with boundaries and/or with singular interactions (including QFT models). In what
follows, for the sake of brevity, we call such systems nontrivial physical systems
(or simply nontrivial systems). The interest in this problem revives periodically
in connection with studies of specific nontrivial systems such as a particle on a
finite interval or on a semiaxis, a particle in singular potential fields, in particular
in the Aharonov–Bohm or in ı-like potential fields, and so on. The reason is that
the solution of the problem, and therefore a consistent QM treatment of nontrivial
systems, requires a considerable amount of preliminary information from different
advanced chapters of functional analysis. However, the content of such chapters
usually goes beyond the scope of the mathematical apparatus presented in standard
textbooks on QM for physicists,1 e.g., [32,39,44,48,64,104,109,112,136,138] and
even in recently published textbooks [23, 37, 63, 98].

1The exceptions such as [27, 57, 83, 84, 128, 144, 147, 153] are mainly intended for mathematically
minded physicists and mathematicians.

D.M. Gitman et al., Self-adjoint Extensions in Quantum Mechanics, Progress
in Mathematical Physics 62, DOI 10.1007/978-0-8176-4662-2 1,
© Springer Science+Business Media New York 2012
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2 1 Introduction

One of the aims of this book is of a pedagogical nature, namely, to convince the
reader–physicist that he or she must be very careful when reading standard textbooks
on QM for physicists, and particularly careful when applying the notions and
prescriptions from such textbooks to nontrivial systems as regards the mathematical
apparatus of QM.

The mathematical apparatus of QM is functional analysis, more specifically, the
theory of linear operators in Hilbert spaces. It is a quite extensive and “subtle”
science, so it takes considerable time to master it. For this reason, standard textbooks
on QM for physicists present a rather simplified version of the relevant parts
of functional analysis in the form of brief “rules” such that many mathematical
subtleties are necessarily left aside. The simplified rules are usually based on
systematic references to our experience in finite-dimensional linear algebra, which
often proves to be misleading. We recall these rules below. They can be sufficient as
long as we examine comparatively simple QM systems. But if we follow these rules
literally in our treatment of even the simplest nontrivial systems (in what follows, we
call this approach the naı̈ve treatment), we encounter some paradoxes that may lead
us to incorrect conclusions. In this chapter, we present a number of such paradoxes,
and a resolution of them is given in subsequent chapters.

As stated above, QM generally and a consistent QM treatment of nontrivial
systems particularly require the language of the theory of linear operators in Hilbert
spaces and realizing subtleties associated with unbounded operators, in particular,
with such basic notions as a closed operator, an adjoint operator, a symmetric
operator, and an s.a. operator,2 the spectrum of an s.a. operator and its spectral
decomposition, the so-called inversion formulas for s.a. differential operators, and
so on. Another aim of this book is to remind the reader–physicist of (or provide an
introduction to) these notions and some related subjects.

A crucial subtlety is that an unbounded s.a. operator cannot be defined in the
whole Hilbert space, i.e., on an arbitrary QM state, which is usually assumed in a
preliminary “idealized” scheme of operator quantization. But there is no operator
without its domain of definition: an operator is not only a rule of acting, but also a
domain in a Hilbert space to which this rule is applicable. In the case of unbounded
operators, the same rule for different domains generates different operators with
sometimes completely different properties. Provided a rule of acting is given, it is
an appropriate choice of a domain for a QM observable that makes it an s.a. operator.
The main problems are related to this point. The formal rules of operator canonical
quantization (see below) are of a preliminary nature and generally provide only
“candidates” for unbounded QM observables, so to speak, for example in the form of
the so-called s.a. differential operations,3 because their domains are not prescribed
by the canonical quantization rules. Appropriate domains even are not clear at the
first stage of quantization, especially in the case of nontrivial physical systems,

2For unbounded operators, there is a crucial difference between the notions of symmetric
(Hermitian) and s.a. operators; for bounded operators, these notions actually coincide.
3S.a. according to Lagrange in mathematical terminology; see Chap. 4.
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although it is prescribed that observables must be s.a. operators. It should be noted
that the choice of domains providing the self-adjointness of all observables involved,
especially the primarily important observables such as the position, momentum,
Hamiltonian, and symmetry generators, is a necessary part of quantization resulting
in a specification of a QM description of a physical system in question. This is
actually a physical problem. Mathematics can only help a physicist in making a
choice by indicating various possibilities.

It is expected that for physical systems whose classical description includes
infinite (but finite-dimensional) flat phase spaces such as R

2n and nonsingular
interactions, a quantization is practically unique: the most important physical
observables are defined as s.a. operators on some “natural” domains; in particular,
classical symmetries can survive under quantization. The majority of textbooks
for physicists begin their exposition of QM with a treatment of such physical
systems. Of course, nontrivial physical systems are also examined thereafter.
Nevertheless, the common belief is that no actual singularities exist in nature.
They are the products of our idealization of reality, i.e., are of a model nature,
which is related, for example, to our ignorance of the details of interaction at
small distances. We formally extend an interaction law known for finite distances
between finite objects to infinitely small distances between pointlike objects. We
treat boundaries as a result of infinite potential walls that are actually always
finite.4 The consequence is that singular problems in QM are commonly solved
via some regularization considered to be natural and then via a subsequent limiting
process of removing the regularization. In some cases, this procedure requires the
so-called infinite renormalization (of coupling constants, for example). But in some
cases, no reasonable limit is known. (It should be pointed out that here, we mean
conventional QM rather than quantum field theory.) It may also happen that different
regularizations yield different physical results. It is precisely the case in which
mathematics can help a physicist with the theory of s.a. extensions of symmetric
operators. This was first recognized by Berezin and Faddeev [26] in connection
with the three-dimensional ı-potential problem.

The practice of quantizing nontrivial systems shows that preliminary candidates
for observables can be quite easily assigned symmetric operators defined on such
domains that “avoid” problems: they do not “touch” boundaries and “escape” any
singularities of interaction; this is a peculiar kind of “mathematical regularization.”
But such symmetric operators are commonly non-s.a. The main question then is
whether these preliminary observables can be assigned s.a. operators by some
extensions of the initial symmetric operators that convert the candidates to real
observables. The answer is simple, positive, and unique if a symmetric operator
under consideration is bounded. However, if it is unbounded, the problem is
generally nontrivial.

4Of course, a flat infinite space is also an idealization, as is any infinity.
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The theory of s.a. extensions of unbounded symmetric operators provides the
main tool for solving this problem. It turns out that these extensions are generally
nonunique, if they are possible at all. From the physical standpoint, this implies
that when quantizing a nontrivial physical system, we are generally presented with
different possibilities for its quantum description. The general theory describes all
the possibilities that mathematics can offer to a physicist. Of course, a physical in-
terpretation of available s.a. extensions is a purely physical problem. Any extension
is a certain prescription for the behavior of a physical system under consideration
near its boundaries and singularities. We also believe that each extension can be
understood through an appropriate regularization and a subsequent limiting process,
although this is generally a complicated problem in itself. But in any case, the right
of a final choice belongs to the physicist.

The book is organized as follows. In the introduction, we demonstrate that an
idealized scheme of operator canonical quantization applied to nontrivial systems
can lead to a number of paradoxes. Chapters 2 and 5 (purely mathematical chapters
in a sense) contain all the information about Hilbert spaces, linear operators in
such spaces, and a strict formulation of the spectral problem for s.a. operators that
physicists need and that is used in the book. This standard material is followed by the
general theory of s.a. extensions of symmetric operators presented in Chap. 3. The
traditional exposition (due to von Neumann) is accompanied by a nontraditional
approach that is based on the notion of asymmetry forms generated by adjoint
operators, see our works [156,157]. The basic statements concerning the possibility
and specification of s.a. extensions both in terms of isometries between the deficient
subspaces and in terms of the sesquilinear asymmetry form are collected in the
main theorem. It is followed by a comment on a direct application of the main
theorem to physical problems of quantization. We outline a possible general scheme
of constructing QM observables as s.a. operators starting from initial formal
expressions supplied by canonical quantization rules. The subsequent Chap. 4 is
devoted to the exposition of specific features and appropriate modifications of the
general theory as applied to ordinary (one-dimensional) differential operators in
Hilbert spaces L2.a; b/ [158]. For symmetric differential operators, the isometries
between deficient subspaces specifying s.a. extensions can be converted to s.a.
boundary conditions, explicit or implicit, based on the fact that asymmetry forms
are expressed in terms of the (asymptotic) boundary values of functions and their
derivatives. We describe various ways of specifying s.a. operators by s.a. boundary
conditions depending on the regularity or singularity of the ends of the interval
under consideration. In particular, we propose a new method for specifying s.a.
ordinary differential operators by s.a. boundary conditions based on evaluation
of the quadratic asymmetry form in terms of asymptotic boundary coefficients.
A comparative advantage of the method is that it makes it possible to avoid
the evaluation of deficient subspaces and deficiency indices. Its effectiveness is
illustrated in Chaps. 6–10 with examples of constructing QM observables for a
number of nontrivial systems. In Chaps. 6–8, we consider various one-dimensional
systems: a free particle on a semiaxis and on a segment of the real axis (Chap. 6),
a particle in different potential fields including the Calogero potential, deltalike
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potentials, and so-called exactly solvable potentials (Chaps. 7 and 8). In Chaps. 9
and 10, we study certain one-particle three-dimensional problems. In Chap. 9, we
consider a Dirac particle moving in the Coulomb field of a point charge Ze. We
interpret the Dirac equation with the Coulomb field as the Schrödinger equation;
the corresponding quantum Hamiltonian is called the Dirac Hamiltonian. We define
the Dirac Hamiltonian with the Coulomb field as an s.a. operator for any real Z and
solve the corresponding spectral problem. In Chap. 10, we similarly examine the
Dirac Hamiltonian with the Aharonov–Bohm field and with the so-called magnetic-
solenoid field.

1.2 Idealized Scheme of Operator Canonical Quantization

For a physicist, quantization means constructing a QT for a given physical system
on the basis of an initial classical theory and in accordance with the correspondence
principle. The correspondence principle requires that the QT must reproduce the
predictions of the initial classical theory in the classical limit (large masses,
macroscopic scales, smooth potentials, and so on), which is formally the limit
„ ! 0, where „ is the Planck constant.5 The quantization problem usually does not
have a unique solution. The only criterion for whether a constructed QT is proper
remains the coincidence of its predictions with experiment. The development of
QT began with the quantization of the simplest systems such as a free particle,
a harmonic oscillator, and a nonrelativistic particle in some potential fields. In
fact, the experience in the quantization of such systems was used to formulate a
consistent general scheme of operator quantization for an arbitrary system with
canonical Hamiltonian equations of motion for phase-space variables. It is this
scheme that was called canonical quantization. In what follows, we outline the
canonical quantization rules as they are usually expounded in standard textbooks
on QM for physicists. This is a “first approximation” to a proper quantization, so to
speak, the naı̈ve treatment, as was already mentioned before, or the idealized scheme
of operator canonical quantization. In short, this scheme is as follows.

(a) It is assumed that there exists a canonical Hamiltonian formulation of the
classical mechanics of a physical system under consideration. This means that
a state of the system at any instant of time is specified by a point of some
even-dimensional phase space; the points of this space are labeled by canonical
generalized coordinates xa and momenta pa, a D 1; : : : ; n, where n is the
number of degrees of freedom. The time evolution of a state of the system in
the course of time t is described by the Hamiltonian (canonical) equations of
motion for the canonical coordinates xa.t/ and pa.t/:

Pxa D ˚xa;H� ; Ppa D
˚
pa;H

�
;

5For a mathematician, quantization is a quantum deformation of classical structures; the deforma-
tion parameter is the Planck constant „.
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whereH D H .x; p/ is the Hamiltonian of the system and f ; g is the canonical
Poisson bracket. The canonical Poisson bracket of two arbitrary functions f
and g on the phase space is defined by

ff; gg D
X

a

�
@f

@xa
@g

@pa
� @f

@pa

@g

@xa

�
; (1.1)

in particular, fxa; pbg D ıab . All local physical quantities (classical observables)
f are real functions of the phase-space variables, f D f .x; p/. Classical ob-
servables form a real associative commutative algebra, in particular, Œf1; f2� �
f1f2 � f2f1 D 0, 8f1; f2:

(b) In QM, a state of a physical system at any instant of time is specified by a vector
 in a Hilbert space H, which is called the space of states. A scalar product of
two vectors  1 and  2 is denoted by . 1;  2/. To a first approximation, it is
assumed that any state  2 H can be realized physically; in particular, the
superposition principle holds: if states  1 and  2 are realizable, then the state
 D a1 1 C a2 2 with any a1; a2 2 C is also realizable.

(c) In QT, each classical observable f D f .x; p/ is assigned an s.a. operator Of ,
f 7�! Of , acting in a Hilbert space H. It is called a quantum observable. To a
first approximation, it is assumed that any operator Of , including observables, is
defined on any state  , i.e., Of  2 H, 8 2 H, and is uniquely determined by
its matrix elements

�
 1; Of  2

�
, 8 1; 2 2 H, and what is more, by its matrix

fmn D .em; Of en/ with respect to any orthonormal basis feng11 , a complete
orthonormalized set of vectors in H. Then any operator Of is assigned its adjoint
Of C defined by

�
 1; Of C 2

�
D
� Of  1;  2

�
; 8 1; 2 2 H;

and thereby the involution (conjugation) Of 7�! Of C is defined in the algebra of
operators with the properties6

� Of C
�C D Of ;

�
a Of
�C D a Of C; 8a 2 C ;

� Of C Og
�C D Of C C OgC ;

� Of Og
�C D OgC Of C:

The self-adjointness of Of means that Of D Of C, or

�
 1; Of  2

�
D
� Of  1;  2

�
; 8 1; 2 2 H:

6The bar over an expression denotes complex conjugation.
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The mean value h Of i of any quantum observable Of in a state  and the
corresponding dispersion�f are respectively defined by

D Of
E

 
D
�
 ; Of  

�

. ; /
;

�f D
s	� Of � h Of i 

�2


 

D
s
D Of 2

E

 
�
D Of
E2

 
:

The self-adjointness of observables is assumed to imply that any observable
Of can be diagonalized, which means that the eigenvectors, or eigenstates, of
Of form an orthonormal basis in H; the spectrum of an observable is defined

as a set of all its eigenvalues. The spectrum determines possible measurable
values of the corresponding observable, while the complete orthonormalized
set of the eigenstates of the observable provides a probabilistic interpretation of
its measurements.

(d) According to the correspondence principle, there exists a certain relation
between the Poisson bracket ff1; f2g D f3 of classical observables f1 and f2
and the commutator Œ Of1; Of2� of their quantum counterparts Of1 and Of2, namely,
Œ Of1; Of2� D i„ Of3 C OO �„2�; a supplementary operator OO �„2� vanishes with
vanishing „ as „2. A more transparent form can be given to this correspondence:

ff1; f2g �! 1

i„
h Of1; Of2

i
C OO .„/ :

That is, according to the correspondence principle, the Poisson bracket of
classical observables is assigned the commutator of their quantum counterparts
times the factor .i„/�1 plus, in general, a supplementary operator OO .„/.

The position operators Oxa and momentum operators Opa are postulated to be
s.a. and satisfy the canonical commutation relations

� Oxa; Oxb� D � Opa; Opb
� D 0; � Oxa; Opb

� D i„ ˚xa; pb
� D i„ıab : (1.2)

The correspondence principle requires that the quantum counterpart Of
of a classical observable f .x; p/ be of the form Of D f . Ox; Op/ C OO .„/.
A supplementary operator OO .„/ is generally necessary to provide the self-
adjointness of Of . In the general case, the correspondence principle does not
allow a unique construction of the operator function f . Ox; Op/ in terms of the
classical function f .x; p/ because of the noncommutativity of Ox and Op (the
so-called ordering problem.7)

7Numerous papers have been devoted to the study of various rules of assigning operators to
classical quantities. A substantial contribution to a resolution of this problem is due to Berezin
[25].
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To the first approximation whereby any observable can be diagonalized, it
is argued that commuting observables Of1 and Of2 have a joint spectrum, i.e., a
common set of eigenvectors, which implies the simultaneous measurability of
the observables. A complete set of observables is defined as a minimum set
of n commuting observables Ofk , k D 1; : : : ; n, Œ Ofk; Ofl � D 0, 8k; l , whose
joint spectrum is nondegenerate and whose common eigenvectors provide a
unique specification of any vector in terms of the corresponding expansion
with respect to these eigenvectors. For a complete set of observables, we can
choose all the position operators Oxa. The momentum operators Opa can also be
chosen for a complete set of observables. Different complete sets of observables
can be considered, and their spectrum and eigenvectors specify the quantum
description of a system under consideration.

(e) The time evolution of a state of the system in the course of time t is described
by the Schrödinger equation for the state vector  .t/,

i„@ 
@t
D OH ; (1.3)

with an initial condition  .t0/ D 0, where the operator OH , the quantum
Hamiltonian, the energy observable, corresponds to the classical HamiltonianH.

Because the initial state  0 can be arbitrary, it is assumed that OH is certainly
applicable to any state  2 H.

A realization of the canonical commutation relations (1.2) in a specific
Hilbert space (representation of canonical commutation relations) offers a prac-
tical possibility for solving the Schrödinger equation and finding probabilities
of transitions from one state to another, means of physical quantities, and
probabilities of measurements using the accepted rules.

It was canonical quantization that was first used to construct the QT for
the simplest systems. There exist alternative formulations of QT, for example
formulations in terms of Green’s functions, functional integrals, and so on.
Each of these formulations can either be introduced independently by a set of
postulates or “derived” logically from the operator formulation based on the
canonical quantization method. In the latter case, an alternative formulation of
QT for a specific system is said to be obtained by the canonical quantization
method. It should be noted that among all the formulations, the operator
formulation based on canonical quantization is the best-developed and most
consistent one. This explains the existing tendency to quantize every classical
system canonically. We should note that for classical systems of general form,
canonical quantization is not always possible or cannot be carried out directly
as described above without an essential analysis and reformulation of the
initial classical theory. The majority of modern physical theories belong to
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the so-called singular theories, theories with constraints and extra nonphysical
variables in the initial Hamiltonian formulation (gauge theories are a particular
case of singular theories). There exist different methods for quantizing such
theories; see, e.g., [49, 75, 91]. Some of these methods are based on the
possibility of passing to physical variables, which allows the standard canonical
quantization. Canonical quantization remains the most reliable quantization
scheme.

1.3 Some Paradoxes of Naı̈ve Implementation
of an Idealized Scheme

In this section, we examine some simple QM systems obtained in the framework of
the above-described idealized scheme of operator canonical quantization. We show
that if we follow this scheme literally, we arrive at certain paradoxes in the form of
obvious contradictions with well-known statements.

We consider an example of a very simple system: a free nonrelativistic particle
of massm moving on an interval .a; b/ of the real axis. The interval can be finite or
infinite, a semiaxis or the whole axis. The finite ends of an interval are considered
to be included in the interval; in particular, by a finite interval, we mean a closed
interval Œa; b�.

In classical mechanics, the phase space of this system is a strip .a; b/ � R; the
ranges of the particle position x and momentum p are respectively .a; b/ and R.
The Poisson bracket (1.1) of x and p is fx; pg D 1. Free motion is defined by the
free Hamiltonian H D p2=2m. If jaj < 1 and/or jbj < 1, the peculiarity of the
system is that its phase space is a space with boundaries. The behavior of the particle
near the boundaries must be specified by some subsidiary conditions such as elastic
reflection, delay, trapping, or something else.

At first glance, we may not face the problem of boundaries when quantizing this
system. The canonical observables for a QM particle are the position operator Ox and
the momentum operator Op satisfying the canonical commutation relations

Œ Ox; Ox� D Œ Op; Op� D 0; Œ Ox; Op� D i„fx; pg D i„: (1.4)

For a complete set of observables, we can take the position operator Ox with the
prescription that its spectrum be given by spec Ox D .a; b/. It is natural to take the
x-representation of canonical commutation relations (1.4) where the Hilbert space
H of states is the space of functions  .x/ square-integrable on the interval .a; b/;
H D L2.a; b/; the operator Ox is the operator of multiplication by x, namely

Ox .x/ D x .x/ I
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while the operator Op is a multiple of the differentiation operator8 dx D d=dx:

Op D �i„dx W Op .x/ D �i„ 0 .x/ :

The canonical commutation relations (1.4) seem obviously to hold.
Other observables are certain differential operators

Of D f .x;�i„dx/CO .„/ :

In particular, the free quantum Hamiltonian is given by

bH D Op2
2m
D � „

2

2m
d2x : (1.5)

All this appears quite natural from the following standpoint as well. If jaj < 1
and/or jbj < 1, the space L2.a; b/ can be considered the subspace of functions
vanishing outside the interval .a; b/ in the space L2 .R/ of states of a particle on
the whole real axis R, whereas all the observables defined on L2.a; b/, including Ox
and Op, can be considered restrictions to this subspace of well-known s.a. operators
defined on L2 .R/. For the case of a finite interval Œa; b�, the position operator Ox
becomes a bounded s.a. operator defined everywhere. Considering Op as an s.a.
operator, we have a set of three s.a. operators Ox, Op, and bH with the commutation
relations

Œ Ox; Op� D i„;
h
Op;bH

i
D 0: (1.6)

If all the previous statements hold, then the following observations seem
paradoxical and cast doubt on the consistency of the adopted quantization scheme.

1.3.1 Paradox 1

Let  p .x/ be an eigenvector of the s.a. momentum operator, Op p D p p . Based
on the self-adjointness of the operators Op and Ox, we have the chain of equalities

�
 p; Œ Ox; Op� p

� D � p; Ox Op p
� � � p; Op Ox p

�

D p � p; Ox p
� � � Op p; Ox p

�

D p � � p; Ox p
� � � p; Ox p

�� D 0;

which obviously contradicts the commutation relation (1.6).

8It is rather a differential operation than a differential operator; see Chap. 4. A rigorous definition
of the differentiation operator Odx is given in the end of Sect. 2.3.4.
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In addition, this commutation relation implies the well-known Heisenberg
uncertainty relation

�x�p � „
2
; (1.7)

where�x and �p are the respective dispersions of the position and momentum for
any state  of a particle. But for the case of a finite interval Œa; b� and for  D  p ,
we have �x � b � a, �p D 0, and therefore�x�p D 0, which contradicts (1.7).

An explanation of the above paradoxes is given in Chap. 6. It is different
for different types of interval: depending on the type of interval, either an s.a.
momentum operator does not exist, or it exists but has no eigenvectors, or even if
such vectors exist, they do not belong to the domain of the operator Op Ox. In addition,
in the case of a semiaxis or a finite interval, the canonical commutation relations
together with the uncertainty principle do not hold.

1.3.2 Paradox 2

We now consider a free particle moving on a finite interval Œ0; l�. If we treat a motion
governed by the Hamiltonian (1.5) as a motion in an infinite rectangular potential
well, then the eigenvalues of the Hamiltonian and the corresponding eigenfunctions
are well known from any textbook:

bH n .x/ D En n .x/ ; En D „
2

2m

��
l

�2
n2; (1.8)

 n .x/ D
r
2

l
sin
��n
l
x
�
; n 2 N: (1.9)

The set f n .x/g11 of these eigenfunctions is an orthonormal basis in L2 .0; l/,
which confirms the self-adjointness of the Hamiltonian.

As is also well known, two commuting s.a. operators have common eigenvectors,
and if the spectrum of one of the commuting s.a. operators is nondegenerate, then its
eigenvectors must be eigenvectors of another s.a. operator. In our case, we have two
commuting s.a. operators Op and bH, and the spectrum (1.8) of bH is nondegenerate.
Therefore, eigenfunctions (1.9) must be the eigenfunctions of Op. But we have

Op n .x/ D �i„
r
2

l

�n

l
cos

�n

l
x ¤ pn n .x/

for any n, which contradicts the above assertion.
As explained in Chap. 6, this paradox is a consequence of the incorrect assump-

tion that Op and bH commute; in particular, it is a consequence of the naı̈ve belief that
the Hamiltonian bH can be represented as bH D Op2=2m.
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1.3.3 Paradox 3

As mentioned above, in standard textbooks on QM for physicists, some important
notions related to operators in Hilbert spaces are often introduced in terms of their
matrix elements with respect to an orthonormal basis, because it is believed that the
matrix elements fmn D .em; Of en/ of an operator Of with respect to an orthonormal
basis feng11 completely determine the operator Of according to the following chain
of equalities:

 D
1X

nD1
 nen;  n D .en;  / ; Of en D

1X

mD1
fmnem;

Of  D
1X

nD1
 n Of en D

1X

mD1

 1X

nD1
fmn n

!

em:

For example, the adjoint Of C of Of is defined as an operator whose matrix elements
are given by

�
f C�

mn
D
�
em ; Of Cen

�
D
� Of em; en

�
D
�
en; Of em

�
D fnm:

Correspondingly, an s.a. operator Of D Of C is defined as an operator whose matrix
is Hermitian fmn D fnm.

But let us consider the matrix pmn D .em; Open/ of the momentum operator Op in
the Hilbert space L2.0; l/ with respect to the orthonormal basis feng10 ,

en.x/ D
r
2

l
cos

��n
l
x
�
; n 2 RC: (1.10)

A direct calculation by integrating by parts shows that

pnm D pmn C i Œem.l/en.l/� em.0/en.0/� ¤ pmn; mC n D 2k C 1; (1.11)

i.e., the matrix pmn is not Hermitian, contrary to our expectations.
As is explained in Chap. 6, the paradox is related to the fact that the orthonormal

basis (1.10) does not belong to the domain of any s.a. operator Op from the whole
family of admissible momentum operators.

1.3.4 Paradox 4

Let us consider a free particle on a segment Œ0; l� as a particle in an infinite
rectangular potential well, and let us calculate the mean of the squared energy hE2i
for the state given by the wave function
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 .x/ D Nx .x � l/ ; (1.12)

where N is a normalization factor. Because
�
bH
�2
 D 0, this mean must be zero:

hE2i D
�
 ;
�
bH
�2
 

�
D 0:

On the other hand, using the self-adjointness of bH, we obtain a nonzero result for
the same quantity:

hE2i D
�
bH ; bH 

�
D N2„4l

m2
:

As explained in Chap. 6, a solution of the paradox is related to the fact that the
function bH .x/ does not belong to the domain of a correctly defined Hamiltonian
bH associated with an infinite potential well, although the function  .x/ does.

1.3.5 Paradox 5

We consider the Schrödinger equation for a free particle on the segment Œ0; l�,

i„@ .t; x/
@t

D � „
2

2m

@2

@x2
 .t; x/ ; x 2 Œ0; l�: (1.13)

We recall that in the idealized quantization scheme, the time-evolution problem
in the form (1.13) can be posed for an arbitrary initial state. Let the initial state
 0 .x/ D  .t0; x/ at t0 D 0 be

 .0; x/ D C exp

�
iC 1p
2

kx

„
�
; (1.14)

where k is a fixed real parameter with dimension of momentum. It is easy to verify
that the solution  .t ; x/ of (1.13) with initial condition (1.14) is given by

 .t ; x/ D exp

�
� k2

2m„ t
�
 0 .x/ : (1.15)

It is surprising that the evolution of the given initial state is not unitary: the wave
function  .t; x/ “vanishes” with time. This situation is evidently related to the fact
that formally, we have

bH 0 .x/ D � ik
2

2m
 0 .x/ H) bH .t; x/ D � ik

2

2m
 .t; x/ ;
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i.e., the initial state  0 and the evolving state  .t/ are the eigenstates of the
s.a. Hamiltonian with a pure imaginary eigenvalue, which is impossible, as is
well known.

As explained in Chap. 6, a resolution of the paradox lies in the fact that if
the function  0 .x/ does not belong to the domain of any correctly defined s.a.
Hamiltonian bH from the whole family of admissible Hamiltonians for a free particle
on the interval Œ0; l�, then  .t; x/ also does not, which is irreconcilable with the
Schrödinger equation.

1.3.6 Concluding Remarks

In the foregoing, we discussed some QM paradoxes arising under a naı̈ve treatment
of simple one-dimensional systems with boundaries. The number of paradoxes can
be extended (see, for example, [31, 74]), and certain of the others are examined
below. In Chap. 7, we discuss possible paradoxes related to singular potentials with
a simple example of a particle moving on the real axis or a semiaxis in the so-
called Calogero potential field V .x/ D ˛=x2. But even the above examples seem
to be sufficient to convince the reader–physicist that a rigorous approach to the
definition of operators and especially of observables in QM is a necessity. The
point is that up to now, we were too naı̈ve in our analysis; strictly speaking, our
arguments were incorrect, and our conclusions were wrong. The reason is that all
the operators involved are unbounded, and for unbounded operators, the algebraic
rules and the notion of commutativity are nontrivial. In fact, the above-used rules
and notions were uncritically borrowed from finite-dimensional algebra; they are
valid for bounded operators, while for unbounded operators, a special treatment is
necessary. The correct treatment removes all the paradoxes.



Chapter 2
Linear Operators in Hilbert Spaces

In this chapter, we remind the reader of basic notions and facts from the theory
of Hilbert spaces and of linear operators in such spaces which are relevant to the
subject of the present book.

2.1 Hilbert Spaces

2.1.1 Definitions and General Remarks

Definition 2.1. (A) A Hilbert spaceH is a linear space over the complex numbers.
As a rule, the elements of H (vectors or points) are denoted by Greek letters:
�; �; �; ';  ; �; : : : 2 H, whereas numbers, complex or real, are denoted by
italic Latin letters: a; b; c; x; y; z; : : : 2 C or R. In what follows, we consider
infinite-dimensional Hilbert spaces.1

(B) The space H is endowed with a scalar product that is a positive definite
sesquilinear form on H. This means that every pair of vectors �; � is assigned a
complex number .�; �/, the scalar product of � and �, with the properties2

.�; �/ D .�; �/ I .�; �/ � 0 ; and .�; �/ D 0 iff � D 0 I

.�; a� C b�/ D a.�; �/C b.�; �/ H) .a� C b�; �/ D a.�; �/C b.�; �/ :

1Finite-dimensional Hilbert spaces (or Euclidean spaces) are also encountered in QM as spaces of
states, e.g., in QM of two-level systems, finite spin systems, and so on. Finite-dimensional spaces
are free from the problems that are examined in the present book.
2We use “iff” in its standard usage for “if and only if.” For brevity, the arrow H) stands for
“implies.”
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