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Preface

Symmetry, in the title of this book, should be understood as the geometry of Lie
(and algebraic) group actions. The basic algebraic and analytic tools in the study
of symmetry are representation and invariant theory. These three threads are pre-
cisely the topics of this book. The earlier chapters can be studied at several lev-
els. An advanced undergraduate or beginning graduate student can learn the theory
for the classical groups using only linear algebra, elementary abstract algebra, and
advanced calculus, with further exploration of the key examples and concepts in
the numerous exercises following each section. The more sophisticated reader can
progress through the first ten chapters with occasional forward references to Chap-
ter 11 for general results about algebraic groups. This allows great flexibility in the
use of this book as a course text. The authors have used various chapters in a variety
of courses; we suggest ways in which courses can be based on the book later in this
preface. Finally, we have taken care to make the main theorems and applications
meaningful for the reader who wishes to use the book as a reference to this vast
subject.

The authors are gratified that their earlier text, Representations and Invariants of
the Classical Groups [56], was well received. The present book has the same aim: an
entry into the powerful techniques of Lie and algebraic group theory. The parts of the
previous book that have withstood the authors’ many revisions as they lectured from
its material have been retained; these parts appear here after substantial rewriting
and reorganization. The first four chapters are, in large part, newly written and offer
a more direct and elementary approach to the subject. Several of the later parts of
the book are also new. While we continue to look upon the classical groups as both
fundamental in their own right and as important examples for the general theory, the
results are now stated and proved in their natural generality. These changes justify
the more accurate new title for the present book.

We have taken special care to make the book readable at many levels of detail.
A reader desiring only the statement of a pertinent result can find it through the
table of contents and index, and then read and study it through the examples of its
use that are generally given. A more serious reader wishing to delve into a proof of
the result can read in detail a more computational proof that uses special properties

XV



XVi Preface

of the classical groups, or, perhaps in a second reading, the proof in the general
case (with occasional forward references to results from later chapters). Usually,
there is a third possibility of a proof using analytic methods. Some material in the
earlier book, although important in its own right, has been eliminated or replaced.
There are new proofs of some of the key results of the theory such as the theorem
of the highest weight, the theorem on complete reducibility, the duality theorem,
and the Weyl character formula. We hope that our new presentation will make these
fundamental tools more accessible.

The last two chapters of the book develop, via a basic introduction to complex
algebraic groups, what has come to be called geometric invariant theory. This in-
cludes the notion of quotient space and the representation-theoretic analysis of the
regular functions on a space with an algebraic group action. A full description of the
material covered in the book is given later in the preface.

When our earlier text appeared there were few other introductions to the area.
The most prominent included the fundamental text of Hermann Weyl, The Classical
Groups: Their Invariants and Representations [164] and Chevalley’s The Theory of
Lie groups I [33], together with the more recent text Lie Algebras by Humphreys
[76]. These remarkable volumes should be on the bookshelf of any serious student of
the subject. In the interim, several other texts have appeared that cover, for the most
part, the material in Chevalley’s classic with extensions of his analytic group theory
to Lie group theory and that also incorporate much of the material in Humphrey’s
text. Two books with a more substantial overlap but philosophically very different
from ours are those by Knapp [86] and Procesi [123]. There is much for a student
to learn from both of these books, which give an exposition of Weyl’s methods in
invariant theory that is different in emphasis from our book. We have developed
the combinatorial aspects of the subject as consequences of the representations and
invariants of the classical groups. In Hermann Weyl (and the book of Procesi) the
opposite route is followed: the representations and invariants of the classical groups
rest on a combinatorial determination of the representations of the symmetric group.
Knapp’s book is more oriented toward Lie group theory.

Organization

The logical organization of the book is illustrated in the chapter and section depen-
dency chart at the end of the preface. A chapter or section listed in the chart depends
on the chapters to which it is connected by a horizontal or rising line. This chart has
a central spine; to the right are the more geometric aspects of the subject and on the
left the more algebraic aspects. There are several intermediate terminal nodes in this
chart (such as Sections 5.6 and 5.7, Chapter 6, and Chapters 9—10) that can serve as
goals for courses or self study.

Chapter 1 gives an elementary approach to the classical groups, viewed either as
Lie groups or algebraic groups, without using any deep results from differentiable
manifold theory or algebraic geometry. Chapter 2 develops the basic structure of
the classical groups and their Lie algebras, taking advantage of the defining repre-
sentations. The complete reducibility of representations of s[(2,C) is established by
a variant of Cartan’s original proof. The key Lie algebra results (Cartan subalge-
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bras and root space decomposition) are then extended to arbitrary semisimple Lie
algebras.

Chapter 3 is devoted to Cartan’s highest-weight theory and the Weyl group. We
give a new algebraic proof of complete reducibility for semisimple Lie algebras
following an argument of V. Kac; the only tools needed are the complete reducibility
for s[(2,C) and the Casimir operator. The general treatment of associative algebras
and their representations occurs in Chapter 4, where the key result is the general
duality theorem for locally regular representations of a reductive algebraic group.
The unifying role of the duality theorem is even more prominent throughout the
book than it was in our previous book.

The machinery of Chapters 14 is then applied in Chapter 5 to obtain the prin-
cipal results in classical representations and invariant theory: the first fundamental
theorems for the classical groups and the application of invariant theory to represen-
tation theory via the duality theorem.

Chapters 6, on spinors, follows the corresponding chapter from our previous
book, with some corrections and additional exercises. For the main result in Chap-
ter 7—the Weyl character formula—we give a new algebraic group proof using the
radial component of the Casimir operator (replacing the proof via Lie algebra co-
homology in the previous book). This proof is a differential operator analogue of
Weyl’s original proof using compact real forms and the integration formula, which
we also present in detail. The treatment of branching laws in Chapter 8 follows the
same approach (due to Kostant) as in the previous book.

Chapters 9-10 apply all the machinery developed in previous chapters to analyze
the tensor representations of the classical groups. In Chapter 9 we have added a
discussion of the Littlewood-Richardson rule (including the role of the GL(n,C)
branching law to reduce the proof to a well-known combinatorial construction). We
have removed the partial harmonic decomposition of tensor space under orthogonal
and symplectic groups that was treated in Chapter 10 of the previous book, and
replaced it with a representation-theoretic treatment of the symmetry properties of
curvature tensors for pseudo-Riemannian manifolds.

The general study of algebraic groups over C and homogeneous spaces begins
in Chapter 11 (with the necessary background material from algebraic geometry in
Appendix A). In Lie theory the examples are, in many cases, more difficult than the
general theorems. As in our previous book, every new concept is detailed with its
meaning for each of the classical groups. For example, in Chapter 11 every classi-
cal symmetric pair is described and a model is given for the corresponding affine
variety, and in Chapter 12 the (complexified) Iwasawa decomposition is worked out
explicitly. Also in Chapter 12 a proof of the celebrated Kostant—Rallis theorem for
symmetric spaces is given and every implication for the invariant theory of classical
groups is explained.

This book can serve for several different courses. An introductory one-term
course in Lie groups, algebraic groups, and representation theory with emphasis
on the classical groups can be based on Chapters 1-3 (with reference to Appendix
D as needed). Chapters 1-3 and 11 (with reference to Appendix A as needed) can
be the core of a one-term introductory course on algebraic groups in characteris-
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tic zero. For students who have already had an introductory course in Lie algebras
and Lie groups, Chapters 3 and 4 together with Chapters 6—10 contain ample mate-
rial for a second course emphasizing representations, character formulas, and their
applications. An alternative (more advanced) second-term course emphasizing the
geometric side of the subject can be based on topics from Chapters 3, 4, 11, and 12.
A year-long course on representations and classical invariant theory along the lines
of Weyl’s book would follow Chapters 1-5, 7, 9, and 10. The exercises have been
revised and many new ones added (there are now more than 350, most with several
parts and detailed hints for solution). Although none of the exercises are used in
the proofs of the results in the book, we consider them an essential part of courses
based on this book. Working through a significant number of the exercises helps a
student learn the general concepts, fine structure, and applications of representation
and invariant theory.
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Organization and Notation

B. Linear and Chap. 1 Classical Groups, D. Manifolds and
Multilinear Algebra Lie Groups, and Algebraic Groups Lie Groups

| Chap. 2 Structure of Classical Groups and Semisimple Lie Algebras|

C. Associative and

Lie Algebras }—{ Chap. 3 Highest-Weight Theory |—

§4.1 Representations of Algebras
4.2 Duality for Group Representations
Yy p p:

§4.3 Group Algebras of Finite Groups
§4.4 Representations of Finite Groups

| §5.1-5.4 Classical Invariant Theory |——

§5.5 Irreducible Representations of
Classical Groups

A. Algebraic
Geometry

85.6-5.7 Applications of
Invariant Theory and Duality

§11.1 Structure of Algebraic Groups
§11.2 Homogeneous Spaces

| Chap. 6 Spinors
§11.3 Borel Subgroups

| Chap. 7 Character Formulas ’—

| Chap. 8 Branching Laws |

Chaps. 9, 10 Tensor Representations
of GL(V), O(V), and Sp(V)

§11.4 Properties of Real Forms
§11.5 Gauss Decomposition
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‘ §12.2 Multiplicity-Free Spaces ‘

| §12.3 Representations on Symmetric Spaces |

§12.4 Isotropy Representations
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Dependency Chart among Chapters and Sections

“0,” said Maggie, pouting, “I dare say I could make it out, if I'd learned what goes before,
as you have.” “But that’s what you just couldn’t, Miss Wisdom,” said Tom. “For it’s all
the harder when you know what goes before: for then you’ve got to say what Definition 3.
is and what Axiom V. is.” George Eliot, The Mill on the Floss
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XX Organization and Notation

Some Standard Notation

#S number of elements in set S (also denoted by Card(S) and |S])
S ;i Kronecker delta (1 if i = j, O otherwise)

N, Z, Q nonnegative integers, integers, rational numbers

R, C, H real numbers, complex numbers, quaternions

C* multiplicative group of nonzero complex numbers

[x] greatest integer < x if x is real

F" n x 1 column vectors with entries in field

My, k x n complex matrices (M, when k = n)

M, (F) n x n matrices with entries in field F

GL(n,F) invertible n x n matrices with entries from field F

I, n x nidentity matrix (or / when n understood)

dimV dimension of a vector space V

V* dual space to vector space V

(v*,v) natural duality pairing between V* and V

Span(S) linear span of subset S in a vector space.

End(V) linear transformations on vector space V

GL(V) invertible linear transformations on vector space V
tr(A) trace of square matrix A

det(A) determinant of square matrix A

A" transpose of matrix A

A* conjugate transpose of matrix A

diaglay,...,a,] diagonal matrix

@PV; direct sum of vector spaces V;

®*V k-fold tensor product of vector space V (also denoted by V)
S¥(V) k-fold symmetric tensor product of vector space V
/\k(V) k-fold skew-symmetric tensor product of vector space V

O[X] regular functions on algebraic set X

Other notation is generally defined at its first occurrence and appears in the index of
notation at the end of the book.



Chapter 1
Lie Groups and Algebraic Groups

Abstract Hermann Weyl, in his famous book The Classical Groups, Their In-
variants and Representations [164], coined the name classical groups for certain
families of matrix groups. In this chapter we introduce these groups and develop
the basic ideas of Lie groups, Lie algebras, and linear algebraic groups. We show
how to put a Lie group structure on a closed subgroup of the general linear group
and determine the Lie algebras of the classical groups. We develop the theory of
complex linear algebraic groups far enough to obtain the basic results on their Lie
algebras, rational representations, and Jordan—Chevalley decompositions (we defer
the deeper results about algebraic groups to Chapter 11). We show that linear al-
gebraic groups are Lie groups, introduce the notion of a real form of an algebraic
group (considered as a Lie group), and show how the classical groups introduced at
the beginning of the chapter appear as real forms of linear algebraic groups.

1.1 The Classical Groups

The classical groups are the groups of invertible linear transformations of finite-
dimensional vector spaces over the real, complex, and quaternion fields, together
with the subgroups that preserve a volume form, a bilinear form, or a sesquilinear
form (the forms being nondegenerate and symmetric or skew-symmetric).

1.1.1 General and Special Linear Groups

Let I denote either the field of real numbers R or the field of complex numbers
C, and let V be a finite-dimensional vector space over IF. The set of invertible lin-
ear transformations from V to V will be denoted by GL(V). This set has a group
structure under composition of transformations, with identity element the identity
transformation /(x) = x for all x € V. The group GL(V) is the first of the classical

R. Goodman, N.R. Wallach, Symmetry, Representations, and Invariants, 1
Graduate Texts in Mathematics 255, DOI 10.1007/978-0-387-79852-3 1,
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groups. To study it in more detail, we recall some standard terminology related to
linear transformations and their matrices.

Let V and W be finite-dimensional vector spaces over F. Let {vy,...,v,} and
{wi,...,wn} be bases for V and W, respectively. If T : V ——= W is a linear map
then

m
ij:Za,-jw,- forjzl,...,n
i=1

with a;; € F. The numbers a;; are called the matrix coefficients or entries of T with
respect to the two bases, and the m x n array

ail ap - din
azy a2 -+ dzp

aml Am2 *** Amn

is the matrix of T with respect to the two bases. When the elements of V and W are
identified with column vectors in F”* and F"”* using the given bases, then action of T
becomes multiplication by the matrix A.

Let S : W ——U be another linear transformation, with U an /-dimensional vec-
tor space with basis {u1,...,u;}, and let B be the matrix of S with respect to the
bases {wy,...,wp} and {u;,...,u;}. Then the matrix of So T with respect to the
bases {vi,...,v,} and {uy,...,u;} is given by BA, with the product being the usual
product of matrices.

We denote the space of all n x n matrices over F by M,(FF), and we denote the
n X n identity matrix by I (or I, if the size of the matrix needs to be indicated);
it has entries &§; = 1 if i = j and O otherwise. Let V be an n-dimensional vector
space over F with basis {vi,...,v,}. If T : V ——V is a linear map we write u(7T)
for the matrix of T with respect to this basis. If T,S € GL(V) then the preceding
observations imply that yu(So7T) = u(S)u(T). Furthermore, if T € GL(V) then
U(ToT™ ") =u(T~'oT) = u(Id) = I. The matrix A € M, (IF) is said to be invertible
if there is a matrix B € M, (F) such that AB = BA = 1. We note that a linear map
T :V——=Visin GL(V) if and only if its matrix u(T) is invertible. We also recall
that a matrix A € M,,(F) is invertible if and only if its determinant is nonzero.

We will use the notation GL(n,F) for the set of n x n invertible matrices with
coefficients in IF. Under matrix multiplication GL(n,T) is a group with the identity
matrix as identity element. We note that if V is an n-dimensional vector space over
F with basis {vi,...,v,}, then the map p : GL(V) — GL(n,F) corresponding to
this basis is a group isomorphism. The group GL(n,F) is called the general linear
group of rank n.

If {wi,...,w,} is another basis of V, then there is a matrix g € GL(n,F) such
that

n n
W/':Zg,'jv,' and Vj:Zh,‘jW,' forj:l,...,n,
i=1 i=1
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with [h;;] the inverse matrix to [g;;]. Suppose that 7' is a linear transformation from
V to V, that A = [a;;] is the matrix of T with respect to a basis {vi,...,v,}, and that
B = [b;] is the matrix of T with respect to another basis {w1,...,w,}. Then

Twj= T(Zgijvi) =Y &,Tvi
: :
= zi"gij (Zk:akivk) = zl: (;;hlkakigij) wy

for j=1,...,n. Thus B = g~ 'Ag is similar to the matrix A.

Special Linear Group

The special linear group SL(n,F) is the set of all elements A of M, (F) such that
det(A) = 1. Since det(AB) = det(A)det(B) and det(I) = 1, we see that the special
linear group is a subgroup of GL(n,F).

We note that if V is an n-dimensional vector space over F with basis {vy,...,v,}
and if 4 : GL(V) ——= GL(n,F) is the map previously defined, then the group

u'(SL(n,F)) = {T € GL(V) : det(u(T)) =1}

is independent of the choice of basis, by the change of basis formula. We denote this
group by SL(V).

1.1.2 Isometry Groups of Bilinear Forms

Let V be an n-dimensional vector space over F. A bilinear map B: V XV —F
is called a bilinear form. We denote by O(V,B) (or O(B) when V is understood)
the set of all g € GL(V) such that B(gv, gw) = B(v,w) for all v,w € V. We note that
O(V,B) is a subgroup of GL(V); it is called the isometry group of the form B.

Let {vi,...,v,} be a basis of V and let I" € M, (F) be the matrix with I}; =
B(vi,vj). If g € GL(V) has matrix A = [g;;] relative to this basis, then

B(gvi, gvj) = Y aiarB(vi, vi) = Y awila; -
el il

Thus if A* denotes the transposed matrix [c;;] with ¢;; = aj;, then the condition that
g € O(B) is that
=ATA. (1.1)

Recall that a bilinear form B is nondegenerate if B(v,w) = 0 for all w implies
that v = 0, and likewise B(v,w) = O for all v implies that w = 0. In this case we
have detI” # 0. Suppose B is nondegenerate. If 7 : V ——V is linear and satisfies
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B(Tv,Tw) = B(v,w) for all v,w € V, then det(T') # 0 by formula (1.1). Hence T €
O(B). The next two subsections will discuss the most important special cases of this
class of groups.

Orthogonal Groups

We start by introducing the matrix groups; later we will identify these groups with
isometry groups of certain classes of bilinear forms. Let O(n,F) denote the set of
all g € GL(n,F) such that gg’ = I. That is, g’ = g~'. We note that (AB)' = B'A’ and
if A,B € GL(n,F) then (AB)~! = B"'A~!. It is therefore obvious that O(n,F) is a
subgroup of GL(n,F). This group is called the orthogonal group of n x n matrices
over F. If F = R we introduce the indefinite orthogonal groups, O(p,q), with p+q =

nand p,q € N. Let
I, 0
Ipa=| " }
p.q |:0[,1

O(p.q) ={g € Ma(R) : g'Ip g8 =1Ipq} -
We note that O(n,0) = O(0,n) = O(n,R). Also, if

and define

s= |1
01---0
10---0

is the matrix with entries 1 on the skew diagonal (j =n+ 1 —i) and all other entries
0,thens=s"' =5 and s, s~ =sI, ;5 = sl, ;s = —I, . Thus the map

given by @(g) = sgs defines an isomorphism of O(p,q) onto O(g, p).
We will now describe these groups in terms of bilinear forms.

Definition 1.1.1. Let V be a vector space over R and let M be a symmetric bilinear
form on V. The form M is positive definite if M(v,v) > 0 for every v € V with v £ 0.

Lemma 1.1.2. Let V be an n-dimensional vector space over F and let B be a sym-
metric nondegenerate bilinear form over F.

1. If F=C then there exists a basis {vi,...,va} of V such that B(vi, vj) = §;j.

2. If F =R then there exist integers p,q > 0 with p+q = n and a basis {vy,...,v,}
of V such that B(v;, v;) = €6;; with & = 1 for i < p and & = —1 for i > p. Fur-
thermore, if we have another such basis then the corresponding integers (p,q)
are the same.
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Remark 1.1.3. The basis for V in part (2) is called a pseudo-orthonormal basis rel-
ative to B, and the number p — g is called the signature of the form (we will also
call the pair (p,q) the signature of B). A form is positive definite if and only if its
signature is n. In this case a pseudo-orthonormal basis is an orthonormal basis in the
usual sense.

Proof. We first observe that if M is a symmetric bilinear form on V such that
M(v,v) =0 for all v € V, then M = 0. Indeed, using the symmetry and bilinear-
ity we have

AM,w) =M +w,v+w)—My—w,v—w)=0 forallvyweV . (1.2)
We now construct a basis {wy,...,w,} of V such that
B(W,‘, Wj) =0 for l'# ] and B(W,’, W,‘) 7& 0

(such a basis is called an orthogonal basis with respect to B). The argument is
by induction on n. Since B is nondegenerate, there exists a vector w, € V with
B(wn,wp) #0by (1.2). If n = 1 we are done. If n > 1, set

Vi={veV :B(w,v)=0}.

Forv eV set
/ B(v, wn)
Vi=v— ——1"w,.
B(wy, wy)

Clearly, v/ € V/; hence V = V' + Fw,,. In particular, this shows that dimV’ =n — 1.
We assert that the form B’ = B|yy- is nondegenerate on V’. Indeed, if v € V' satis-
fies B(v/, w) =0 for all w € V', then B(v', w) = 0 for all w € V, since B(V/, w,) = 0.
Hence v = 0, proving nondegeneracy of B’. We may assume by induction that there

exists a B'-orthogonal basis {wy,...,w,_1 } for V'. Then it is clear that {wy,...,w,}
is a B-orthogonal basis for V.
If F=C let {wy,...,w,} be an orthogonal basis of V with respect to B and let

zi € C be a choice of square root of B(w;, w;). Setting v; = (z;)~'w;, we then obtain
the desired normalization B(v;, v;) = §;;.

Now let F = R. We rearrange the indices (if necessary) so that B(w;, w;) >
B(wiy1,wiyy) fori=1,...,n—1.Let p =0if B(w;, w;) < 0. Otherwise, let

p =max{i : B(w;,w;) >0} .

Then B(w;, w;) < 0 for i > p. Take z; to be a square root of B(w;, w;) for i < p, and
take z; to be a square root of —B(w;, w;) for i > p. Setting v; = (z;)~'w;, we now
have B(V,’, Vj) = 8,'6,’j.

We are left with proving that the integer p is intrinsic to B. Take any basis
{vi,...,va} such that B(v;, v;) = €;6;; with & = 1 fori < p and & = —1 for i > p.
Set

Vi = Span{vy,...,v,}, V_ =Span{v,ii,...,va} .
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Then V =V, @ V_ (direct sum). Let £ : V ——=V, be the projection onto the first
factor. We note that Bly, xv, is positive definite. Let W be any subspace of V such
that Blw xw is positive definite. Suppose that w € W and w(w) = 0. Then w € V_, so
it can be written as w = Y-, , a;v;. Hence

B(W,W) = Z a,'ajB(v,', Vj) = — Zazz S 0.
i,j>p i>p

Since B|w xw has been assumed to be positive definite, it follows that w = 0. This
implies that & : W —— V, is injective, and hence dimW < dimV, = p. Thus p
is uniquely determined as the maximum dimension of a subspace on which B is
positive definite. O

The following result follows immediately from Lemma 1.1.2.

Proposition 1.1.4. Let B be a nondegenerate symmetric bilinear form on an n-
dimensional vector space V over F.

1. Let F =C. If {v1,...,vn} is an orthonormal basis for V with respect to B, then
U : O(V,B) —= O(n,F) defines a group isomorphism.

2. Let F =R. If B has signature (p,n— p) and {vy,...,v, } is a pseudo-orthonormal
basis of V, then it : O(V,B) — O(p,n— p) is a group isomorphism.

Here lu(g), for g € GL(V), is the matrix of g with respect to the given basis.

The special orthogonal group over F is the subgroup
SO(n,F) = O(n,F)NSL(n,F)
of O(n,IF). The indefinite special orthogonal groups are the groups

SO(p,q) = O(p,q)NSL(p+¢q,R) .

Symplectic Group

We set J = [PI (’)] with [ the n x n identity matrix. The symplectic group of rank n
over [F is defined to be

Sp(n,F) = {g € My, (F) : gJg=J}.

As in the case of the orthogonal groups one sees without difficulty that Sp(n,F) is a
subgroup of GL(2n,F).

We will now look at the coordinate-free version of these groups. A bilinear form
B is called skew-symmetric if B(v,w) = —B(w,v). If B is skew-symmetric and non-
degenerate, then m = dimV must be even, since the matrix of B relative to any basis
for V is skew-symmetric and has nonzero determinant.
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Lemma 1.1.5. Let V be a 2n-dimensional vector space over F and let B be a nonde-
generate, skew-symmetric bilinear form on V. Then there exists a basis {vi,...,v,}
forV such that the matrix [B(v;,v;)| equals J (call such a basis a B-symplectic ba-
sis).

Proof. Letvbe anonzero element of V. Since B is nondegenerate, there exists w € V
with B(v,w) # 0. Replacing w with B(v,w)~'w, we may assume that B(v,w) = 1.
Let

W={xeV :B(vx)=0and B(w,x) =0} .

For x € V we set x' = x — B(v,x)w — B(x,w)v. Then
B(v,x') = B(v,x) — B(v,x)B(v,w) — B(w,x)B(v,v) =0,
since B(v,w) = 1 and B(v,v) = 0 (by skew symmetry of B). Similarly,
B(w,x') = B(w,x) — B(v,x)B(w,w) + B(w,x)B(w,v) =0,

since B(w,v) = —1 and B(w,w) = 0. Thus V = U & W, where U is the span of v
and w. It is easily verified that B|y «y is nondegenerate, and so U NW = {0}. This
implies that dimW = m — 2. We leave to the reader to check that By «w also is

nondegenerate.

Set v, = v and vy, = w with v,w as above. Since B|y«w is nondegenerate, by
induction there exists a B-symplectic basis {wy,...,wz,_2} of W. Set v; = w; and
Vnt1—i = wp—; fori <n—1. Then {vy,...,vp,} is a B-symplectic basis for V. O

The following result follows immediately from Lemma 1.1.5.

Proposition 1.1.6. Let V be a 2n-dimensional vector space over F and let B be a
nondegenerate skew-symmetric bilinear form on V. Fix a B-symplectic basis of V
and let u(g), for g € GL(V), be the matrix of g with respect to this basis. Then
u:O(V,B) —=Sp(n,F) is a group isomorphism.

1.1.3 Unitary Groups

Another family of classical subgroups of GL(n,C) consists of the unitary groups
and special unitary groups for definite and indefinite Hermitian forms. If A € M,,(C)
we will use the standard notation A* = A" for its adjoint matrix, where A is the matrix
obtained from A by complex conjugating all of the entries. The unitary group of rank
n is the group

U(n) ={g € M\(C) : g"g =1} .
The special unitary group is SU(n) = U(n) NSL(n,C). Let the matrix I, 4 be as in
Section 1.1.2. We define the indefinite unitary group of signature (p,q) to be

U(p,q) ={g «M,(C) : gl g =1p4} -
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The special indefinite unitary group of signature (p,q) is SU(p,q) = U(p,q) N
SL(n,C).

We will now obtain a coordinate-free description of these groups. Let V be an
n-dimensional vector space over C. An R bilinear map B : V x V ——= C (where we
view V as a vector space over R) is said to be a Hermitian form if it satisfies

1. B(av,w) =aB(v,w) foralla € Cand all v,w € V.
2. B(w,v) =B(v,w) forallv,w e V.

By the second condition, we see that a Hermitian form is nondegenerate provided
B(v,w) =0 for all w € V implies that v = 0. The form is said to be positive definite
if B(v,v) > 0 for all v € V with v # 0. (Note that if M is a Hermitian form, then
M(v,v) € R for all v € V.) We define U(V,B) (also denoted by U(B) when V is
understood) to be the group of all elements g € GL(V') such that B(gv, gw) = B(v,w)
for all v,w € V. We call U(B) the unitary group of B.

Lemma 1.1.7. Let V be an n-dimensional vector space over C and let B be a non-
degenerate Hermitian form on V. Then there exist an integer p, withn > p > 0, and
a basis {vi,...,vp} of V such that B(v;,v;) = €6;j, with & =1 fori < p and & = —1
fori > p. The number p depends only on B and not on the choice of basis.

The proof of Lemma 1.1.7 is almost identical to that of Lemma 1.1.2 and will be
left as an exercise.

If V is an n-dimensional vector space over C and B is a nondegenerate Hermitian
form on V, then a basis as in Lemma 1.1.7 will be called a pseudo-orthonormal basis
(if p = n then it is an orthonormal basis in the usual sense). The pair (p,n — p) will
be called the signature of B. The following result is proved in exactly the same way
as the corresponding result for orthogonal groups.

Proposition 1.1.8. Let V be a finite-dimensional vector space over C and let B be a
nondegenerate Hermitian form on'V of signature (p,q). Fix a pseudo-orthonormal
basis of V relative to B and let [L(g), for g € GL(V), be the matrix of g with respect
to this basis. Then u : U(V,B) —=U(p,q) is a group isomorphism.

1.1.4 Quaternionic Groups

We recall some basic properties of the quaternions. Consider the four-dimensional
real vector space H consisting of the 2 x 2 complex matrices

o |xy .
w= [y 3 ] withx,y e C. (1.3)

One checks directly that H is closed under multiplication in M>(C). If w € H then
w* € H and
whw = ww" = (lx” + |y*)1
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(where w* denotes the conjugate-transpose matrix). Hence every nonzero element

of H is invertible. Thus H is a division algebra (or skew field) over R. This division
algebra is a realization of the quaternions.

The more usual way of introducing the quaternions is to consider the vector space

H over R with basis {1, i, j, k}. Define a multiplication so that 1 is the identity and

P=j=k’=-1

ij=—ji=k, ki=-ik=j, jk=-kj=i;

then extend the multiplication to H by linearity relative to real scalars. To obtain an
isomorphism between this version of H and the 2 x 2 complex matrix version, take

. Jio] . [o1 CToi
1=1, ‘_{0—1}’ J_{—IO]’ k_{io}’

where i is a fixed choice of v/—1. The conjugation w — w* satisfies (uv)* = v*u*.
In terms of real components, (a+ bi+ cj+dk)* = a—bi—cj—dk fora,b,c,d € R.
It is useful to write quaternions in complex form as x + jy with x,y € C; however,
note that the conjugation is then given as

(x+jy)" =X+yi=x—Jjy.

On the 4n-dimensional real vector space H" we define multiplication by a € H
on the right:
(U, i) -a= (ura,...,u,a) .

We note that u-1=u and u- (ab) = (u-a)-b. We can therefore think of H" as a
vector space over H. Viewing elements of H” as n x 1 column vectors, we define
Au for u € H" and A € M,(H) by matrix multiplication. Then A(u - a) = (Au) - a
for a € H; hence A defines a quaternionic linear map. Here matrix multiplication
is defined as usual, but one must be careful about the order of multiplication of the
entries.

We can make H" into a 2n-dimensional vector space over C in many ways; for
example, we can embed C into H as any of the subfields

R1+Ri, RI+Rj, R1+Rk. (1.4)

Using the first of these embeddings, we write z = x + jy € H" with x,y € C", and
likewise C = A + jB € M,,(H) with A, B € M,,(C). The maps
X A -B
ZD—>|:y:| and CH[BA:|
identify H” with C** and M, (H) with the real subalgebra of My, (C) consisting of
matrices T such that
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017

ol (1.5)

JT =TJ, where J= [

We define GL(n,H) to be the group of all invertible n x n matrices over H. Then
GL(n,H) acts on H" by complex linear transformations relative to each of the com-
plex structures (1.4). If we use the embedding of M,,(IH) into M>, (C) just described,
then from (1.5) we see that GL(n,H) = {g € GL(2n,C) : Jg=gJ}.

Quaternionic Special Linear Group

We leave it to the reader to prove that the determinant of A € GL(n,H) as a complex
linear transformation with respect to any of the complex structures (1.4) is the same.
We can thus define SL(n,H) to be the elements of determinant one in GL(n,H)
with respect to any of these complex structures. This group is usually denoted by
SU*(2n).

The Quaternionic Unitary Groups

For X = [x;;] € M, (H) we define X* = [x},] (here we take the quaternionic matrix
entries x;; € M»(C) given by (1.3)). Let the diagonal matrix /, ;, (with p+¢ = n) be
as in Section 1.1.2. The indefinite quaternionic unitary groups are the groups

Sp(p,q) ={g € GL(p+q.H) : g1, .8 =154} -

We leave it to the reader to prove that this set is a subgroup of GL(p + ¢, H).
The group Sp(p, g) is the isometry group of the nondegenerate quaternionic Her-
mitian form
B(w,z) =w'l, 4z, forw,zeH". (1.6)

(Note that this form satisfies B(w,z) = B(z,w)* and B(wa,zf8) = a*B(w,z) for
a,B € H.) If we write w = u+ jv and z = x + jy with u,v,x,y € C", and set K, , =
diag(l, , 1, 4] € M2, (R), then

X % X . -y
B(w,z) = [u* v' | Kpq [y} +j[u V] Kpg [ k } .
Thus the elements of Sp(p,q), viewed as linear transformations of C?", preserve
both a Hermitian form of signature (2p,2q) and a nondegenerate skew-symmetric
form.



