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Preface

The theory of Boolean algebras was created in 1847 by the English mathe-
matician George Boole. He conceived it as a calculus (or arithmetic) suitable
for a mathematical analysis of logic. The form of his calculus was rather
different from the modern version, which came into being during the pe-
riod 1864–1895 through the contributions of William Stanley Jevons, Augus-
tus De Morgan, Charles Sanders Peirce, and Ernst Schröder. A foundation
of the calculus as an abstract algebraic discipline, axiomatized by a set of
equations, and admitting many different interpretations, was carried out by
Edward Huntington in 1904.

Only with the work of Marshall Stone and Alfred Tarski in the 1930s,
however, did Boolean algebra free itself completely from the bonds of logic
and become a modern mathematical discipline, with deep theorems and im-
portant connections to several other branches of mathematics, including alge-
bra, analysis, logic, measure theory, probability and statistics, set theory, and
topology. For instance, in logic, beyond its close connection to propositional
logic, Boolean algebra has found applications in such diverse areas as the
proof of the completeness theorem for first-order logic, the proof of the �Loś
conjecture for countable first-order theories categorical in power, and proofs
of the independence of the axiom of choice and the continuum hypothesis
in set theory. In analysis, Stone’s discoveries of the Stone–Čech compacti-
fication and the Stone–Weierstrass approximation theorem were intimately
connected to his study of Boolean algebras. Countably complete Boolean
algebras (also called σ-algebras) and countably complete fields of sets (also
called σ-fields) play a key role in the foundations of measure theory. Out-
side the realm of mathematics, Boolean algebra has found applications in
such diverse areas as anthropology, biology, chemistry, ecology, economics,
sociology, and especially computer science and philosophy. For example, in
computer science, Boolean algebra is used in electronic circuit design (gating
networks), programming languages, databases, and complexity theory.

ix



x Introduction to Boolean Algebras

Most books on Boolean algebra fall into one of two categories. There
are elementary texts that emphasize the arithmetic aspects of the subject
(in particular, the laws that can be expressed and proved in the theory),
and that often explore applications to propositional logic, philosophy, and
electronic circuit design. There are also advanced treatises that present the
deeper mathematical aspects of the theory at a level appropriate for gradu-
ate students and professional mathematicians (in terms of the mathematical
background and level of sophistication required for understanding the pre-
sentation).

This book, a substantially revised version of the second author’s Lectures
on Boolean Algebras, tries to steer a middle course. It is aimed at undergrad-
uates who have studied, say, two years of college-level mathematics, and have
gained enough mathematical maturity to be able to read and write proofs. It
does not assume the usual background in algebra, set theory, and topology
that is required by more advanced texts. It does attempt to guide readers to
some of the deeper aspects of the subject, and in particular to some of the im-
portant interconnections with topology. Those parts of algebra and topology
that are needed to understand the presentation are developed within the text
itself. There is a separate appendix that covers the basic notions, notations,
and theorems from set theory that are occasionally needed.

The first part of the book, through Chapter 28, emphasizes the arithmeti-
cal and algebraic aspects of Boolean algebra. It requires no topology, and
little set theory beyond what is learned in the first two years of college-level
mathematics, with two important exceptions. First, two of the proofs use
a form of mathematical induction that extends beyond the natural numbers
to what are sometimes called “transfinite ordinal numbers”. Transfinite or-
dinals and transfinite induction are discussed in Appendix A, but the key
ideas of the two proofs can already be grasped in the context of the natural
numbers and standard mathematical induction. Second, Chapter 10 presents
an important example of a Boolean algebra that is based on topological no-
tions. These notions are discussed in Chapter 9. The example itself, and the
requisite topology, are not needed to understand the remaining chapters of
the first part of the book. (Some of the more advanced exercises in the chap-
ters do require an understanding of this material, but these exercises may be
ignored by readers who wish to skip Chapters 9 and 10.) The second part
of the book, in particular Chapters 29, 34–41, and 43, emphasizes the inter-
connections between Boolean algebra and topology, and consequently does
make extensive use of topological ideas and results. The necessary topological
background is provided in Chapters 9, 29, 32, and 33.
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Some of the important results discussed in the first part of the book are
the normal form theorem (which gives a description of the Boolean subalgebra
generated by a set of elements, Chapter 11), and its analogue for Boolean ide-
als (Chapter 18); the homomorphism extension theorem (Chapter 13) and its
application to the proofs of the isomorphism theorem for countable, atomless
Boolean algebras (Chapter 16) and the existence theorem for free algebras
(Chapter 28); the representation theorem for atomic Boolean algebras (every
atomic Boolean algebra can be mapped isomorphically to a field of sets in a
way that preserves all existing suprema as unions, Chapter 14); the maximal
ideal theorem (every proper ideal can be extended to a maximal ideal, Chap-
ter 20), and its application to the celebrated representation theorem (every
Boolean algebra is isomorphic to a field of sets, Chapter 22); the existence
and uniqueness theorems for completions (every Boolean algebra has a mini-
mal complete extension that is unique up to isomorphisms, Chapter 25); the
isomorphism of factors theorem (two countably complete Boolean algebras
that are factors of one another must be isomorphic) and the counterexamples
demonstrating that the theorem cannot be extended to all Boolean algebras,
or even to all countable Boolean algebras (Chapters 27 and 45).

Many of the highlights of the second part of the book center on the
fundamental duality theorems for Boolean algebras and Boolean spaces: to
every Boolean algebra there corresponds a Boolean space that is uniquely
determined up to homeomorphism, and, conversely, to every Boolean space
there corresponds a Boolean algebra that is uniquely determined up to iso-
morphism (Chapter 34). These theorems imply that every notion or theorem
concerning Boolean algebras has a “dual” topological counterpart concerning
Boolean spaces, and conversely. For instance, ideals correspond to open sets
(Chapter 35), homomorphisms to continuous functions (Chapter 36), quo-
tient algebras to closed subspaces and subalgebras to Boolean quotient spaces
(Chapter 37), direct products of Boolean algebras to Stone–Čech compact-
ifications of unions of Boolean spaces (Chapter 43), and complete Boolean
algebras to extremally disconnected spaces (Chapter 38). A related result,
discussed in Chapter 40, is the representation theorem for σ-algebras (ev-
ery σ-algebra is isomorphic to a σ-field of sets modulo a σ-ideal).

It is not necessary to read all the chapters in the order in which they
appear, since there is a fair degree of independence among them. The dia-
gram at the end of the preface shows the main chapter dependencies. Three
examples may serve to demonstrate how the diagram is to be understood.
First, Chapter 28 depends on Chapters 1–8 and 11–13. Second, Chapter 24
depends on Chapters 1–8, 11–12, and 17–19. Finally, Chapter 31 depends
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on Chapters 1–12, 17–18, and 29–30. These remarks do not apply to the
exercises, some of which depend on earlier chapters for which no dependency
is indicated in the diagram. Also, minor references to earlier chapters are
not indicated in the diagram. For instance, an application in Chapter 36 of
the principal result of that chapter depends on the definition of a free alge-
bra (given in Chapter 28), but not on any of the results about free algebras.
Similarly, a corollary at the end of Chapter 21 depends on the notion of a
maximal ideal and the easily comprehended statement of the maximal ideal
theorem (given in Chapter 20).

A large number of exercises of varying levels of difficulty have been in-
cluded in the text. There are routine problems that help readers understand
the basic definitions and theorems; intermediate problems that extend or en-
rich material developed in the text; and difficult problems that often present
important results not covered in the text. The harder exercises are labeled
as such, and hints for their solutions are given in Appendix B. Some of the
exercises are formulated, not as assertions, but as questions that readers are
invited to ponder.

There is an instructor’s manual that contains complete solutions to the
exercises. It may serve as a guide to instructors, and in particular it may help
them select problems at an appropriate level of difficulty for their students.
Instructors may also wish to assign the solutions of some of the more difficult
problems to individual students or groups of students for independent study
or as class projects.

Historical remarks are sprinkled throughout the text. We are indebted to
Don Monk for his help in tracking down the authorship of some of the main
results. Regrettably, it has not been feasible to determine the origin of every
theorem.

The book can serve as a basis for a variety of courses. A one-semester
course that focuses on the algebraic material might cover some subset of
Chapters 1–28, for instance Chapters 1–8, 11–14, and 17–27. A one-semester
course that includes some of the interconnections with topology might cover
Chapters 1–8, 11–12, 14, 17–22, parts of 9 and 29, and 32–36. Most of the
text could be covered in a one-year course.

A quick word about terminology. In this book, the phrase “just in case”
is used as a variant of the phrase “in this case, and only in this case”. In
other words, it is a synonym for “if and only if ”.

This revision of Halmos’s book was planned and initially executed by both
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authors. Due to declining health, however, Halmos was not able to review
the later versions of the manuscript. He died on October 2, 2006. Whatever
imperfections remain in the text are my sole responsibility.

Steven Givant
San Francisco, California
August, 2007
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Chapter 1

Boolean Rings

A ring is an abstract version of arithmetic, the kind of thing you studied in
school. The prototype is the ring of integers. It consists of a universe — the
set of integers — and three operations on the universe: the binary operations
of addition and multiplication, and the unary operation of negation (forming
negatives). There are also two distinguished integers, zero and one. The
ring of integers satisfies a number of basic laws that are familiar from school
mathematics: the associative laws for addition and multiplication,

p+ (q + r) = (p+ q) + r,(1)
p · (q · r) = (p · q) · r,(2)

the commutative laws for addition and multiplication,

p+ q = q + p,(3)
p · q = q · p,(4)

the identity laws for addition and multiplication,

p+ 0 = p,(5)
p · 1 = p,(6)

the inverse law for addition,

p+ (−p) = 0,(7)

and the distributive laws for multiplication over addition,

p · (q + r) = p · q + p · r,(8)

S. Givant, P. Halmos, Introduction to Boolean Algebras, 1
Undergraduate Texts in Mathematics, DOI: 10.1007/978-0-387-68436-9 1,
c© Springer Science+Business Media, LLC 2009



2 Introduction to Boolean Algebras

(q + r) · p = q · p+ r · p.(9)

The difference between the ring of integers and an arbitrary ring is that,
in the latter, the universe may be an arbitrary non-empty set of elements,
not just a set of numbers, and the operations take their arguments and values
from this set. The associative, commutative, identity, and inverse laws for
addition, the associative law for multiplication, and the distributive laws
are required to hold: they are the ring axioms. The commutative law for
multiplication is not required to hold in an arbitrary ring; if it does, the ring
is said to be commutative. Also, a ring is not always required to have a unit,
an element 1 satisfying (6); if it does, it is called a ring with unit.

There are other natural examples of rings besides the integers. The most
trivial is the ring with just one element in its universe: zero. It is called the
degenerate ring. The simplest non-degenerate ring with unit has just two
elements, zero and one. The operations of addition and multiplication are
described by the arithmetic tables

+ 0 1
0 0 1
1 1 0

and
· 0 1
0 0 0
1 0 1

.

An examination of the tables shows that the two-element ring has several
special properties. First of all, every element is its own additive inverse:

(10) p+ p = 0.

Therefore, the operation of negation is superfluous: every element is its own
negative. Rings satisfying condition (10) are said to have characteristic 2.
Second, every element is its own square:

(11) p · p = p.

Elements with this property are called idempotent. When every element is
idempotent, the ring itself is said to be idempotent.

A Boolean ring is an idempotent ring with unit. (Warning: some authors
define a Boolean ring to be just an idempotent ring, which may or may not
have a unit. They call the concept we have defined a “Boolean ring with
unit”.) The two-element ring is the simplest non-degenerate example of a
Boolean ring. It will be denoted throughout by the same symbol as the ordi-
nary integer 2. The notation is not commonly used, but it is very convenient.
It is in accordance with von Neumann’s definition of the ordinal numbers (un-
der which the ordinal number 2 coincides with the set {0, 1}), with sound
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general principles of notational economy, and (in logical expressions such as
“two-valued”) with idiomatic linguistic usage.

The condition of idempotence in the definition of a Boolean ring has quite
a strong influence on the structure of such rings. Two of its most surprising
consequences are that (a) a Boolean ring always has characteristic 2 and (b)
a Boolean ring is always commutative. For the proof, compute (p+ q)2, and
use idempotence to conclude that

(12) 0 = q · p+ p · q.

In more detail,

p+ q = (p + q)2 = p2 + q · p+ p · q + q2 = p+ q · p+ p · q + q,

by the distributive and idempotent laws. Add the inverse of p to the left
sides of the first and last terms, add the inverse of q to the right sides, and
use the laws governing addition, in particular the inverse and identity laws,
to arrive at (12).

This result implies the two assertions, one after another, as follows.
Put p = q in (12) and use idempotence to get (a):

0 = p2 + p2 = p+ p.

Assertion (a) implies that every element is equal to its own negative, so

(13) p · q = −(p · q).

Add the left and right sides of (13) to the left and right sides of (12) respec-
tively, and apply the inverse and identity laws for addition to obtain (b):

p · q = q · p+ p · q +−(p · q) = q · p+ 0 = q · p.

Since, as we now know, negation in Boolean rings is the identity operation,
it is never necessary to use the minus sign for additive inverses, and we shall
never again do so. (A little later we shall meet another natural use for it.)
Only a slight modification in the set of axioms is needed: the identity (7)
should be replaced by (10). From now on, the official axioms for a Boolean
ring are (1)–(3), (5), (6), and (8)–(11).

Boolean rings are the only rings that will be considered in this book, so it
is worth looking at another example. The universe of this example consists
of ordered pairs (p, q) of elements from 2. In other words, it consists of the
four ordered pairs

(0, 0), (0, 1), (1, 0), (1, 1).
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This set will be denoted by 22, in agreement with the notation R
2 that is

used to denote the set of ordered pairs of real numbers. To add or multiply
two pairs in 22, just add or multiply the corresponding coordinates in 2:

(p0, p1) + (q0, q1) = (p0 + q0, p1 + q1)

and

(p0, p1) · (q0, q1) = (p0 · q0, p1 · q1).

These equations make sense: their right sides refer to the elements and op-
erations of 2. The zero and unit of the ring are the pairs (0, 0) and (1, 1).

It is a simple matter to check that the axioms for Boolean rings are true
in 22. In each case, the verification of an axiom reduces to its validity in 2.
For example, here is the verification of the commutative law for addition:

(p0, p1) + (q0, q1) = (p0 + q0, p1 + q1)
= (q0 + p0, q1 + p1) = (q0, q1) + (p0, p1).

The first and last equalities use the definition of addition of ordered pairs,
and the middle equality uses the commutative law for addition in 2.

The preceding example can easily be generalized to each positive inte-
ger n. The universe of the ring is the set 2n of n-termed sequences

(p0, . . . , pn−1)

of elements from 2. The sum and product of two such n-tuples are defined
coordinatewise, just as in the case of ordered pairs:

(p0, . . . , pn−1) + (q0, . . . , qn−1) = (p0 + q0, . . . , pn−1 + qn−1)

and

(p0, . . . , pn−1) · (q0, . . . , qn−1) = (p0 · q0, . . . , pn−1 · qn−1).

The zero and unit are the n-tuples (0, . . . , 0) and (1, . . . , 1). Verifying the
axioms for Boolean rings is no more difficult in this example than it is in the
example 22.

To generalize the example still further, it is helpful to look at the set 2n

another way, namely, as the set of functions with domain {0, . . . , n− 1} and
with values in 2, that is, with possible values 0 and 1. Let X be an arbitrary
set, and 2X the set of all functions from X into 2. The elements of 2X

will be called 2-valued functions on X. The distinguished elements and the
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operations of 2X are defined pointwise. This means that 0 and 1 in 2X are
the constant functions defined, for each x in X, by

0(x) = 0 and 1(x) = 1,

and if p and q are 2-valued functions on X, then the functions p+ q and p · q
are defined by

(p+ q)(x) = p(x) + q(x) and (p · q)(x) = p(x) · q(x).

Again, these equations make sense; their right sides refer to elements and
operations of 2.

Verifying that 2X is a Boolean ring is conceptually the same as verifying
that 22 is a Boolean ring, but notationally it looks a bit different. Consider,
as an example, the verification of the distributive law (8). In the context
of 2X , the left and right sides of (8) denote functions from X into 2. It must
be shown that these two functions are equal. They obviously have the same
domain X, so it suffices to check that the values of the two functions at each
element x in the domain agree, that is,

(14)
(
p · (q + r)

)
(x) =

(
p · q + p · r

)
(x).

The left and right sides of (14) evaluate to

(15) p(x) · (q(x) + r(x)) and p(x) · q(x) + p(x) · r(x)

respectively, by the definitions of addition and multiplication in 2X . Each of
these terms denotes an element of 2. Since the distributive law holds in 2,
the two terms in (15) are equal. Therefore, equation (14) is true. The other
Boolean ring axioms are verified for 2X in a similar fashion.

For another example of a Boolean ring let A be the set of all idempotent
elements in a commutative (!) ring R with unit, with addition redefined
so that the new sum of p and q in A is p + q − 2pq. The distinguished
elements of A are the same as those of R, and multiplication in A is just the
restriction of multiplication in R. The verification that A becomes a Boolean
ring in this way is an amusing exercise in ring axiomatics. Commutativity
is used repeatedly; it is needed, for instance, to prove that A is closed under
multiplication.

Exercises

1. Verify that 2 satisfies ring axioms (1)–(9).



6 Introduction to Boolean Algebras

2. Verify that 23 satisfies ring axioms (1)–(9).

3. Verify that 2X satisfies ring axioms (1)–(9) for any set X. What ring
do you get when X is the empty set?

4. Essentially, what ring is 2X when X is a set consisting of just one
element? Can you make this statement precise?

5. A group is a non-empty set, together with a binary operation + (on
the set), a unary operation −, and a distinguished element 0, such that
the associative law (1), the identity laws

p+ 0 = p and 0 + p = p,

and the inverse laws

p+−p = 0 and − p+ p = 0

are all valid. Show that in a group the cancellation laws hold: if

p+ q = p+ r or q + p = r + p,

then q = r. Conclude that in a group, the inverse element is unique:
if p+ q = 0, then q = −p.

6. Prove that in an arbitrary ring,

p · 0 = 0 · p = 0 and p · (−q) = (−p) · q = −(p · q)

for all elements p and q.

7. Let A be the set of all idempotent elements in a commutative ring R
with unit. Define the sum p⊕ q of two elements p and q in A by

p⊕ q = p+ q − 2pq,

where the right-hand term is computed in R (and pq means p · q). The
distinguished elements of A are the same as those of R, and multipli-
cation in A is the restriction of multiplication in R. Show that A is a
Boolean ring.

8. A Boolean group is a group in which every element has order two (in
other words, the law (10) is valid). Show that every Boolean group is
commutative (that is, the commutative law (3) is valid).
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9. A zero-divisor in a ring is a non-zero element p such that p · q = 0 for
some non-zero element q. Prove that a Boolean ring (with or without a
unit) with more than two elements has zero-divisors. (This observation
is due to Stone [66].)

10. (Harder.) Prove that every Boolean ring without a unit can be ex-
tended to a Boolean ring with a unit. To what extent is this extension
procedure unique? (This result is due to Stone [66].)

11. (Harder.) Does every finite Boolean ring have a unit? (The answer to
this question is due to Stone [66].)

12. Give an example of a Boolean ring that has no unit. Exercise 10 implies
that your example can be extended to a Boolean ring with unit; describe
the elements of that extension.

13. (Harder.) Can every non-degenerate Boolean ring with unit be obtained
by adjoining a unit to a Boolean ring without a unit?

14. (Harder.) Is every Boolean group the additive group of some Boolean
ring?



Chapter 2

Boolean Algebras

Let X be an arbitrary set and let P(X) be the class of all subsets of X
(the power set of X). Three natural set-theoretic operations on P(X) are
the binary operations of union and intersection, and the unary operation of
complementation. The union P ∪Q of two subsets P and Q is, by definition,
the set of elements that are either in P or in Q, the intersection P ∩ Q is
the set of elements that are in both P and Q, and the complement P ′ is
the set of elements (of X) that are not in P . There are also two distin-
guished subsets: the empty set ∅, which has no elements, and the universal
set X. The class P(X), together with the operations of union, intersection,
and complementation, and the distinguished subsets ∅ and X, is called the
Boolean algebra (or field) of all subsets of X, or the power set algebra on X.

The arithmetic of this algebra bears a striking resemblance to the arith-
metic of Boolean rings. Some of the most familiar and useful identities include
the laws for forming the complements of the empty and the universal sets,

(1) ∅
′ = X, X ′ = ∅,

the laws for forming an intersection with the empty set and a union with the
universal set,

(2) P ∩∅ = ∅, P ∪X = X,

the identity laws,

(3) P ∩X = P, P ∪∅ = P,

the complement laws,

(4) P ∩ P ′ = ∅, P ∪ P ′ = X,

S. Givant, P. Halmos, Introduction to Boolean Algebras, 8
Undergraduate Texts in Mathematics, DOI: 10.1007/978-0-387-68436-9 2,
c© Springer Science+Business Media, LLC 2009



2 Boolean Algebras 9

the double complement law,

(5) (P ′ ) ′ = P,

the idempotent law,

(6) P ∩ P = P, P ∪ P = P,

the De Morgan laws,

(7) (P ∩Q) ′ = P ′ ∪Q ′, (P ∪Q) ′ = P ′ ∩Q ′,

the commutative laws,

(8) P ∩Q = Q ∩ P, P ∪Q = Q ∪ P,

the associative laws,

(9) P ∩ (Q ∩R) = (P ∩Q) ∩R, P ∪ (Q ∪R) = (P ∪Q) ∪R,

and the distributive laws,

(10) P ∩ (Q ∪R) = (P ∩Q) ∪ (P ∩R),
P ∪ (Q ∩R) = (P ∪Q) ∩ (P ∪R).

Each of these identities can be verified by an easy set-theoretic argument
based on the definitions of the operations involved. Consider, for example,
the verification of the first De Morgan law. It must be shown that each
element x of X belongs to (P ∩Q) ′ just in case it belongs to P ′ ∪Q ′. The
argument goes as follows:

x ∈ (P ∩Q) ′ if and only if x �∈ P ∩Q,
if and only if x �∈ P or x �∈ Q,
if and only if x ∈ P ′ or x ∈ Q ′,
if and only if x ∈ P ′ ∪Q ′.

The first and third equivalences use the definition of complementation, the
second uses the definition of intersection, and the last uses the definition of
union.

While (1)–(10) bear a close resemblance to laws that are true in Boolean
rings, there are important differences. Negation in Boolean rings is the iden-
tity operation, whereas complementation is not. Addition in Boolean rings
is not an idempotent operation, whereas union is. The distributive law for
addition over multiplication fails in Boolean rings, whereas the distributive
law for union over intersections holds.
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Boolean rings are an abstraction of the ring 2. The corresponding ab-
straction of P(X) is called a Boolean algebra. Specifically, a Boolean algebra
is a non-empty set A, together with two binary operations ∧ and ∨ (on A),
a unary operation ′, and two distinguished elements 0 and 1, satisfying the
following axioms, the analogues of identities (1)–(10):

0 ′ = 1, 1 ′ = 0,(11)
p ∧ 0 = 0, p ∨ 1 = 1,(12)
p ∧ 1 = p, p ∨ 0 = p,(13)
p ∧ p ′ = 0, p ∨ p ′ = 1,(14)

(p ′ ) ′ = p,(15)
p ∧ p = p, p ∨ p = p,(16)

(p ∧ q) ′ = p ′ ∨ q ′, (p ∨ q) ′ = p ′ ∧ q ′,(17)
p ∧ q = q ∧ p, p ∨ q = q ∨ p,(18)

p ∧ (q ∧ r) = (p ∧ q) ∧ r, p ∨ (q ∨ r) = (p ∨ q) ∨ r,(19)
p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r), p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r).(20)

This set of axioms is wastefully large, more than strong enough for the
purpose. The problem of selecting small subsets of this set of conditions that
are strong enough to imply them all is one of dull axiomatics. For the sake
of the record: one solution of the problem, essentially due to Huntington [28],
is given by the identity laws (13), the complement laws (14), the commutative
laws (18), and the distributive laws (20). To prove that these four pairs imply
all the other conditions, and, in particular, to prove that they imply the De
Morgan laws (17) and the associative laws (19), involves some non-trivial
trickery.

There are several possible widely adopted names for the operations ∧, ∨,
and ′. We shall call them meet, join, and complement (or complementation),
respectively. The distinguished elements 0 and 1 are called zero and one.
One is also known as the unit.

Equations (1)–(10) imply that the class of all subsets of an arbitrary set X
is an example of a Boolean algebra. When the underlying set X is empty, the
resulting algebra is degenerate in the sense that it has just one element. In
this case, the operations of join, meet, and complementation are all constant,
and 0 = 1. The simplest non-degenerate Boolean algebra is the class of all
subsets of a one-element set. It has just two elements, 0 (the empty set)
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and 1 (the one-element set). The operations of join and meet are described
by the arithmetic tables

∨ 0 1
0 0 1
1 1 1

and
∧ 0 1
0 0 0
1 0 1

,

and complementation is the unary operation that maps 0 to 1, and conversely.
We shall see in a moment that this algebra and the two-element Boolean ring
are interdefinable. For that reason, the same symbol 2 is used to denote both
structures.

Here is a comment on notation, inspired by the associative laws (19). It
is an elementary consequence of those laws that if p1, . . . , pn are elements of a
Boolean algebra, then p1∨· · ·∨pn, makes sense. The point is, of course, that
since such joins are independent of how they are bracketed, it is not necessary
to indicate any bracketing at all. The element p1∨ · · · ∨ pn may alternatively
be denoted by

∨n
i=1 pi, or, in case no confusion is possible, simply by

∨
i pi.

If we make simultaneous use of both the commutative and the associative
laws, we can derive a slight but useful generalization of the preceding com-
ment. If E is a non-empty finite subset of a Boolean algebra, then the set E
has a uniquely determined join, independent of any order or bracketing that
may be used in writing it down. (In case E is a singleton, it is natural to
identify that join with the unique element in E.) We shall denote the join
of E by

∨
E.

Both the preceding comments apply to meets as well as to joins. The
corresponding symbols are, of course,

n∧

i=1

pi, or
∧

i

pi, and
∧
E.

The conventions regarding the order of performing different operations
in the absence of any brackets are the following: complements take priority
over meets and joins, while meets take priority over joins. Example: the
expression p ′∨ q∧ p should be read as (p ′ )∨ (q∧ p). It is convenient to write
successive applications of complement without any bracketing, for instance p′′

instead of (p ′ ) ′.

Exercises

1. Verify that the identities (1)–(10) are true in every Boolean algebra of
all subsets of a set.
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2. (Harder.) Show that the identities in (13), (14), (18), and (20) together
form a set of axioms for the theory of Boolean algebras. In other
words, show that they imply the identities in (11), (12), (15), (16),
(17), and (19). (This result is essentially due to Huntington [30].)

3. Prove directly that the two-element structure 2 defined in the chapter
is a Boolean algebra, by showing that axioms (13), (14), (18), and (20)
are all valid in 2.

4. In analogy with the construction, for each set X, of the Boolean ring 2X

in Chapter 1, define operations of join, meet, and complementation
on 2X , and distinguished constants zero and one, and prove that the
resulting structure is a Boolean algebra.

5. (Harder.) A member of a set of axioms is said to be independent of
the remaining axioms if it is not derivable from them. One technique
for demonstrating the independence of a given axiom is to construct a
model in which that axiom fails while the remaining axioms hold. The
given axiom cannot then be derivable from the remaining ones, since
if it were, it would have to hold in the model as well. The four pairs
of identities (13), (14), (18), and (20) constitute a set of eight axioms
for Boolean algebras.

(a) Show that the distributive law for join over meet in (20) is inde-
pendent of the remaining seven axioms.

(b) Show that the distributive law for meet over join in (20) is inde-
pendent of the remaining seven axioms.

(c) Show that each of the complement laws in (14) is independent of
the remaining seven axioms.

(These proofs of independence are due to Huntington [28].)

6. (Harder.) A set of axioms is said to be independent if no one of the
axioms can be derived from the remaining ones. Do the four pairs
of identities (13), (14), (18), and (20) constitute an independent set of
axioms for Boolean algebras?

7. (Harder.) The operation of meet and the distinguished elements zero
and one can be defined in terms of join and complement by the equa-
tions
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p ∧ q = (p ′ ∨ q ′ ) ′, 0 = (p ∨ p ′ ) ′, 1 = p ∨ p ′.
A Boolean algebra may therefore be thought of as a non-empty set
together with two operations: join and complement. Prove that the
following identities constitute a set of axioms for this conception of
Boolean algebras: the commutative and associative laws for join, and

(H) (p ′ ∨ q ′ ) ′ ∨ (p ′ ∨ q) ′ = p.

(This axiomatization, and the proof of its equivalence to the set of
axioms (13), (14), (18), and (20), is due to Huntington [30]. In fact, (H)
is often called Huntington’s axiom.)

8. (Harder) Prove that the three axioms in Exercise 7 are independent.
(The proof of independence is due to Huntington [30].)

9. (Harder.) Prove that the following identities constitute a set of axioms
for Boolean algebras:

p′′ = p, p ∨ (q ∨ q ′) ′ = p, p ∨ (q ∨ r) ′ = ((q ′ ∨ p) ′ ∨ (r ′ ∨ p) ′) ′.

(This axiomatization, and the proof of its equivalence with the axiom
set in Exercise 7, is due to Huntington [30].)

10. (Harder.) Prove that the three axioms in Exercise 9 are independent.
(The proof of independence is due to Huntington [30].)

11. (Harder.) Prove that the commutative and associative laws for join,
and the equivalence

p ∨ q ′ = r ∨ r ′ if and only if p ∨ q = p,

together constitute a set of axioms for Boolean algebras. (This ax-
iomatization, and the proof of its equivalence with the axiom set in
Exercise 7, is due to Byrne [11].)



Chapter 3

Boolean Algebras Versus
Rings

The theories of Boolean algebras and Boolean rings are very closely related;
in fact, they are just different ways of looking at the same subject. More
precisely, every Boolean algebra can be turned into a Boolean ring by defining
appropriate operations of addition and multiplication, and, conversely, every
Boolean ring can be turned into a Boolean algebra by defining appropriate
operations of join, meet, and complement. The precise way of accomplishing
this can be elucidated by comparing the Boolean algebra P(X) of all subsets
of X and the Boolean ring 2X of all 2-valued functions on X. Each subset P
of X is naturally associated with a function p from X into 2, namely the
characteristic function of P , defined for each x in X by

p(x) =

{
1 if x ∈ P,
0 if x �∈ P.

The correspondence that maps each subset to its characteristic function is a
bijection (a one-to-one, onto function) from P(X) to 2X . The inverse corre-
spondence maps each function q in 2X to its support, the set of elements x
in X for which q(x) = 1.

How should the operations of addition and multiplication, and the distin-
guished elements zero and the unit, be defined in P(X) so that it becomes a
Boolean ring? To answer this question, it is helpful to analyze more closely
the definitions of the ring operations in 2X , and to translate these definitions
(via the bijective correspondence) into the language of P(X). Suppose P
and Q are subsets of X, and let p and q be their characteristic functions.
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The sum p+ q and the product p · q are defined pointwise: for any x in X,

(p+ q)(x) = p(x) + q(x) =

{
1 if p(x) �= q(x),
0 if p(x) = q(x),

and

(p · q)(x) = p(x) · q(x) =

{
1 if p(x) = q(x) = 1,
0 otherwise,

as is clear from the arithmetic tables for the ring 2. The values p(x) and q(x)
are different just in case one of them is 1 and the other is 0, that is to say,
just in case x is in P but not in Q, or vice versa. The values p(x) and q(x)
are both 1 just in case x is in both P and Q. These observations suggest the
following definitions of ring addition and multiplication in P(X):

(1) P +Q = (P ∩Q ′ ) ∪ (P ′ ∩Q) and P ·Q = P ∩Q.
(The Boolean sum P + Q is usually called the symmetric difference of P
and Q.) A similar analysis suggests the definitions

(2) 0 = ∅ and 1 = X

for the distinguished ring elements zero and one in P(X).
With these operations and distinguished elements, the set P(X) becomes

a Boolean ring: it satisfies axioms (1.1)–(1.3), (1.5), (1.6), and (1.8)–(1.11).
In fact, the correspondence h that takes each function in 2X to its support
is what is usually called an isomorphism between the two rings: it maps 2X

one-to-one onto P(X), and it preserves the ring operations and distinguished
elements in the sense that

h(p + q) = h(p) + h(q), h(p · q) = h(p) · h(q), h(0) = 0, h(1) = 1.

The operations and distinguished elements on the left sides of the equations
are those of the ring 2X , while the ones on the right are those of the ring P(X).
These equations just express, in a slightly different form, the definitions in (1)
and (2) of the ring operations and distinguished elements for P(X). The
whole state of affairs can be summarized by saying that the Boolean rings 2X

and P(X) are isomorphic via the correspondence that takes each function
in 2X to its support. The two rings are structurally the same (which is what
really matters); they differ only in the “shape” of their elements.

It is also possible to turn the ring 2X into a Boolean algebra. To un-
derstand how the Boolean operations and distinguished elements should be
defined in 2X , it is helpful to analyze the definitions of these operations


