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FOREWORD

This IMA Volume in Mathematics and its Applications

MATHEMATICS OF DNA STRUCTURE, FUNCTION,
AND INTERACTIONS

contains papers presented at a highly successful one-week workshop held
on September 16-21, 2007 on the same title. The event was an integral
part of the 2007-2008 IMA Thematic Year on “Mathematics of Molecular
and Cellular Biology.” We are grateful to all the participants for making
this workshop a very productive and stimulating event.

We owe special thanks to Craig John Benham (Davis Genome Center,
University of California, Davis), Stephen Harvey (Department of Chem-
istry and Biochemistry, Georgia Institute of Technology), Wilma K. Ol-
son (Department of Chemistry and Chemical Biology, Rutgers University),
De Witt L. Sumners (Department of Mathematics, Florida State Univer-
sity), and David Swigon (Department of Mathematics University of Pitts-
burgh) for their superb role as workshop organizers and editors of these
proceedings.

We take this opportunity to thank the National Science Foundation
for its support of the IMA.

Series Editors
Fadil Santosa, Director of the IMA
Markus Keel, Deputy Director of the IMA



PREFACE

Propelled by the success of the sequencing of the human and many
related genomes, molecular and cellular biology has delivered significant
scientific breakthroughs. Mathematics (broadly defined) continues to play
a major role in this effort, helping to discover the secrets of life by working
collaboratively with bench biologists, chemists and physicists. The criti-
cal need, which has already begun, is the development of a quantitative
body of theory for biology. This development of theory is expected to have
the same impact on biology as it did on the sciences of physics, chemistry
and engineering in the 20th century. People with strong backgrounds in
both biology and the mathematical sciences are creating this quantitative
body of theory. Because of its outstanding record of interdisciplinary re-
search and training, the IMA was an ideal venue for the 2007-2008 IMA
thematic year on Mathematics of Molecular and Cellular Biology. This vol-
ume is dedicated to the memory of Nicholas Cozzarelli, a dynamic leader
who fostered research and training at the interface between mathematics
and molecular biology. Nick was the founding director of the Program
in Mathematics and Molecular Biology (PMMB), a national research and
training consortium in existence from 1987-2007. Two of the editors of
this volume (Olson and Sumners) were members of PMMB, and one of
the editors (Swigon) was a PMMB Fellow. Seven of the thirty-one au-
thors of papers in this volume were PMMB Fellows, an indication of the
influence of Nick Cozzarelli on research at the mathematics/molecular bi-
ology interface. The kickoff event for the IMA thematic year was the IMA
tutorial on Mathematics of Nucleic Acids, and the following 6-day IMA
workshop Mathematics of DNA Structure, Function and Interactions, held
during September 15-21, 2007 in Minneapolis. The workshop consisted of
32 talks and 17 posters, and enjoyed participation by 120 interdisciplinary
scientists, a mix of mathematicians, biologists, chemists, physicists and en-
gineers. This volume consists of a remembrance of Nick Cozzarelli by two
past members of his Berkeley molecular biology laboratory, and 15 papers
contributed by speakers at the tutorial and workshop. It contains of some
of the state-of-the-art in mathematical approaches to DNA as of September
2007. A short description of the articles in the volume follows. For a more
complete idea of the content of each article, please see the introductions to
each article.

1. Nick Cozzarelli: A personal remembrance by Stephen D. Levene
and Lynn Zechiedrich. Steve and Lynn were postdocs in the Cozzarelli
lab during the period 1989-1997. This remembrance is very perceptive in
the description of Cozzarelli as a blast-ahead interdisciplinary scientist, and
recounts a hilarious incident at the lab in which Nick accepts an unexpected
NIH merit award over the phone.

vii
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2. Mathematical methods in DNA topology: Applications to chro-
mosome organization and site-specific recombination, by Javier Arsuaga,
Yuanan Diao, and Mariel Vazquez. This paper explores some of the uses
of knot theory and 3-dimensional manifold topology to model chromosome
organization and the binding and mechanism of site-specific DNA recom-
bination enzymes. The paper reviews both theoretical and computational
topological methods.

3. Conformational statistics of DNA and diffusion equations on the
Euclidean group by Gregory S. Chirikjian. Using wormlike chain models
for DNA, this paper studies the problem of determining the probability
density of end-to-end chain position and orientation. Solutions are obtained
by solving the Fokker-Planck equation that describes a diffusion process on
the Euclidean motion group.

4. Perspectives on DNA looping, by Laura Finzi. This paper presents
a survey of the field of DNA looping, with emphasis on three repressor
systems lac, gal and phage lambda. The paper concentrates on the insight
gained on transcriptionally-relevant DNA looping mechanisms by single-
molecule approaches.

5. Differences between positively and negatively supercoiled DNA that
topoisomerases may distinguish, by Jonathan M. Fogg, Daniel J. Catanese,
Jr. Graham Randall, Michelle C. Swick, and Lynn Zechiedrich. This article
presents a new biological perspective on DNA supercoiling, including a
review of the functional importance and practical issues encountered in
laboratory work. It provides hints of the features of DNA structure and
energetics that topoisomerases may utilize in controlling the supercoiled
state of DNA.

6. Calibration of tethered particle motion experiments, by Lin Han,
Bertrand Lui, Seth Blumberg, John F. Beausang, Philip C. Nelson, and
Rob Phillips. The Tethered Particle Motion (TPM) method has been used
to observe and characterize a variety of protein-DNA interactions including
DNA looping and transcription. This paper describes a detailed calibration
of TPM magnitude as a function of DNA length and particle size, exploring
how experimental parameters such as acquisition time and exposure time
affect the apparent motion of the tethered particle

7. Difference topology: Analysis of high-order DNA-protein assem-
blies, by Makkuni Jayaram and Rasika Harshey. This paper studies Differ-
ence topology, a method for deciphering the DNA topology within DNA-
protein complexes that are not readily amenable to standard structural
analyses. The logic is to trap the crossings formed by distinct DNA seg-
ments by tying them into knots or links by site-specific DNA inversion
and deletion, respectively, carried out by a recombinase. The number of
such crossings can then be counted by analytical methods such as gel elec-
trophoresis or electron microscopy.

8. Useful intrusions of DNA topology into experiments on protein-
DNA geometry, by Jason D. Kahn, James R. Jenssen, and Vasavi Vittal.
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This paper studies the use of small DNA minicircles to characterize protein-
induced DNA bending and twisting. In every case studied, topological
characterization of minicircle synthesis or properties has led to unexpected
geometric or mechanistic conclusions.

9. Topological analysis of DNA-protein complexes, by Soojeong Kim
and Isabel K. Darcy. Tangles have been used to model protein-bound
DNA. The protein is represented by a 3D ball and the protein-bound DNA
is represented by the strings embedded in the 3D ball. This paper reviews
tangle analysis of protein-DNA complexes involving three or four segments
of DNA.

10. Closing the loop on protein-DNA interactions: Interplay between
shape and flexibility in nucleoprotein assemblies having implications for
biological regulation, by Stephen D. Levene and Yongli Zhang. The for-
mation of DNA loops by proteins bound at distant sites along a single
molecule is an essential mechanistic aspect of many biological processes
including gene regulation, DNA replication, and recombination. This pa-
per describes a rigorous theory for DNA loop formation that connects the
global mechanical and geometric properties of both DNA and protein, with
applications to the problem of loop-mediated gene repression in vivo by lac
repressor.

11. Four-way helical junctions in DNA molecules, by David M.J. Lil-
ley. Four-way (Holliday) junctions are branch points in DNA where four
helices are interconnected by the mutual exchange of strands. This paper
presents a short review focusing on recent developments in understanding
the structure and dynamics of DNA four-way junctions.

12. Micromechanics of single supercoiled DNA molecules, by John F.
Marko. This paper reviews the theory of the mechanical response of single
DNA molecules under stretching and twisting stresses. Using established
results for the semiflexible polymer including the effect of torsional stress,
and for the free energy of plectonemic supercoils, a theory of coexisting
plectonemic and extended DNA is constructed and shown to produce phe-
nomena observed experimentally.

13. Flexibility of nucleosomes on topologically constrained DNA, by
Andrei Sivolob, Christophe Lavelle and Ariel Prunell. This paper reviews
results on nucleosome conformational flexibility, its molecular mechanism
and its functional relevance. The initial approach combined both empirical
measurement and theoretical simulation of the topological properties of
single particles reconstituted on DNA minicircles.

14. The mathematics of DNA structure, mechanics, and dynamics, by
David Swigon. A brief review is given of the main concepts, ideas, and
results in the fields of DNA topology, elasticity, mechanics and statistical
mechanics. Discussion includes the notions of the linking number, writhe,
and twist of closed DNA, elastic rod models, sequence-dependent base-pair
level models, statistical models such as helical worm-like chain and freely
jointed chain, and dynamical simulation procedures.
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15. Paradox regained: A topological coupling of nucleosomal DNA
wrapping and chromatin fibre coiling, by Andrew Travers. The folding
and unfolding of the chromatin fibre is a fundamental control point for
the regulation of eukaryotic transcription. This paper presents a novel
solution to the so-called linking number paradox problem and shows that
this solution implies that the chromatin fibre acts a tunable coil.

16. Statistical-mechanical analysis of enzymatic topological transfor-
mations in DNA molecule, by Alexander Vologodskii. This paper reviews
computational approaches to the analysis of action of two classes of DNA
enzymes: topoisomerase and recombinase. Comparing the simulated distri-
bution with corresponding experimental data serves as a model test. The
major principles and assumptions of the approach, which is based on the
simulation of an equilibrium set of DNA conformations, are discussed.

On behalf of the editors, I would like to thank the authors of papers
for contributing to this volume, and for their cooperation in the editorial
process. Special thanks go to Patricia V. Brick and Dzung N. Nguyen for
their excellent assistance in preparing papers for the volume publisher.

Craig John Benham

Department of Mathematics

University of California, Davis
http://genomics.ucdavis.edu/benham /benham.php

Stephen Harvey

Department of Chemistry and Biochemistry
Georgia Institute of Technology
http://www.chemistry.gatech.edu/faculty /Harvey/

Wilma K. Olson

Department of Chemistry and Chemical Biology

Rutgers University

http://rutchem.rutgers.edu/content_dynamic/faculty /wilma_k_olson.shtml

De Witt L. Sumners
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Florida State University
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David Swigon

Department of Mathematics
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NICK COZZARELLI: A PERSONAL REMEMBRANCE

STEPHEN D. LEVENE* AND LYNN ZECHIEDRICH'

In the weeks following Nick Cozzarelli’s untimely passing two years
ago, much was written about his fundamental contributions to molecular
biology [1-6]. It is not our intent here to recapitulate an account of his
groundbreaking scientific contributions or his outstanding service to the
scientific community, which were covered well previously. Instead, we offer

*Departments of Molecular & Cell Biology and Physics, University of Texas at Dallas,
Richardson, TX 75080.

fDepartments of Molecular Virology & Microbiology and Biochemistry & Molecular
Biology, Baylor College of Medicine, Houston, TX 77030.

1
C.J. Benham et al. (eds.), Mathematics of DNA Structure, Function and Interactions,

The IMA Volumes in Mathematics and its Applications 150,
DOI 10.1007/978-1-4419-0670-0_1, © Springer Science+Business Media, LLC 2009



2 STEPHEN D. LEVENE AND LYNN ZECHIEDRICH

a personal portrayal of Nick as seen through the eyes of those who worked in
his laboratory. As postdocs in the Cozzarelli laboratory spanning the years
between 1989 and 1997 (S.D.L. 1989-92; L.Z. 1990-97), we were privileged
to witness firsthand a period when the scope of Nick’s interests and the
range of techniques he would apply to problems underwent a dramatic
expansion.

Nick called himself a biochemist, but one of the many things that
made him unique was his ability to readily grasp and apply mathematical
and physical concepts to problems involving DNA. Unlike many classically
trained biochemists of his generation, Nick was as much at home discussing
science with mathematicians and physicists as with colleagues who came
from backgrounds similar to his. This was a major attraction of Nick’s
program for students and postdocs, who came from as diverse a collection
of disciplines as one could imagine in a biochemistry laboratory. It is
with this perspective that we dedicate this volume to the memory of Nick
Cozzarelli.

Steve recalls that when he first arrived in Berkeley Nick’s laboratory
space was located in Stanley Hall, also known historically as the “virus
lab.” The building was a vestige of the 1950s, but has since been replaced
by a state-of-the-art bioengineering and biophysics building of the same
name. The Cozzarelli laboratory at that time was spacious, but remark-
able for its lack of any recent renovation. It became clear shortly after one’s
arrival that the low-tech/high-tech dichotomy reflected in the ambience of
the laboratory space mirrored Nick’s approach to scientific problems. He
was fearless in making use of new technology, sometimes long before the
underlying principles became understood (such as the analysis of DNA
topology by gel electrophoresis) or before equipment was readily available
(such as postdoctoral colleague Junghuei Chen’s improvised “PCR” set up,
which consisted of a series of beakers over Bunsen burners, a timer and a
pair of hands. At 2-minute intervals Junghuei would alternately plunge mi-
crocentrifuge tubes into hot- and cold-water baths — it worked beautifully).
At the same time, Nick recognized the power of computer simulation and
modeling before many other biochemists did and made extensive use of
computation to verify or predict experimental outcomes.

Casual acquaintances would characterize Nick as an extrovert; he was
wonderful to meet and had something interesting to say on almost any topic
to everyone. When Lynn interviewed with him, he took her to lunch at the
Berkeley Art Museum on campus. A famous abstract painter was giving
a lecture on his art, which was installed then at the museum. When the
artist finished his lecture, he asked for any questions and Nick was the first
to raise his hand and they ended up having a long, animated conversation
about the value of art in scientific publications. Indeed, Nick considered
the art of illustration extremely important, which often led to the exchange
of multiple figure drafts in the course of preparing manuscripts. This is just
one example of many things that Nick passed along to his trainees.
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To those who knew him well, “extrovert” was only part of the compli-
cated equation that was Nick. “Intense” was another part. In conversation,
Nick listened intently and always identified and grasped the most impor-
tant points. With near-brutal execution, he would expose any weakness
in the argument or the data, usually during laboratory meetings. There
are many stories of how, over the years, his students and postdocs would
respond to his direct approach. Tears were one response. A quick exit and
slam of the door were another. But for the most part, his trainees prepared
better and thought harder about their results; learning in the process how
to identify weaknesses in an approach. The intensity of Nick’s criticism
was never personal, even if sometimes it could feel that way. The focus was
always on asking the best questions and answering them conclusively.

Nick approached everything he did in exactly the same way — as a quest
for perfection. He recognized and appreciated excellence in all realms-
sports, food, music, art. He was a bibliophile. Nick said once that the
day he had to stop reading literature for science would be the day he quit
science. That explained how he kept up on a wide range of topics and
could discuss any of them intelligently and passionately. Omne of Nick’s
most cherished possessions was his and Linda’s Japanese garden, which
was stocked with many rare plant specimens. His extraordinary attention
to detail was apparent in this beautiful garden, and this trait, too, infused
his approach to science.

He was acutely aware of his own faults and limitations; without hesita-
tion, he sought feedback from those around him and could accept criticism
as well as he could deliver it. Because of his directness, these interactions
seemed natural. Lynn recalls an incident when Nick emerged from his of-
fice and blurted out, “Lynn, am I a sexist pig?” After a long pause, his
color changed to pale. He hung his head, “Oh no, it’s true.” Her response:
“You don’t mean to be, but there are some things that you do and say that
could be perceived as sexist by some people.” After a long pause and with
a dejected expression, Nick replied: “Please tell me.” It takes a very strong
person to look directly at his potential weaknesses. He listened carefully
and thoughtfully to her comments, thanked her for her honesty, and com-
mitted himself to change. He truly had not realized how some of what he
did or said might look or sound. The ability to adapt, and accept criticism
without judgment or rancor was an important ingredient of Nick’s success
and accounts in large measure for the stunningly successful collaborations
that he was involved in throughout his career.

With his directness and intensity Nick could be labeled, perhaps ap-
propriately, as mercurial. However, Nick would always express his feelings
and then move on. He was the exact opposite of the passive-aggressive
stereotype, who maintains a pleasant facade, but is privately critical. If he
was unhappy about something he would confront you (sometimes raising
his voice), but this was usually followed up with praise behind your back.
He was remarkably supportive when it counted.
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Nick always appreciated and showed his appreciation to the members
of his laboratory for the work that they did. He was generous in crediting
others for ideas and data. This was a brilliant training move, one that
empowered trainees and helped them to take ownership of their projects,
thereby instilling confidence. However, it also speaks to the fact that Nick
was never one to get caught up in the scramble for credit, who came first
or did what. He put results and scientific goals above all else. Not that
if you crossed the line he wouldn’t let you know it. He once reviewed a
manuscript submitted for publication and the colleague “forgot” to cite one
of the ideas that Nick was most proud of: the “poison” hypothesis for the
mechanism of quinolone gyrase inhibitors. He immediately picked up the
phone and asked the scientist, “What the hell do you think you’re doing
ignoring our manuscript?” Of course, when the paper was published, Nick
and Ken Kreuzer’s work was properly credited.

When Nick was talking on the phone or working on a manuscript or
grant in the office with his door closed, he was grumpy if you interrupted
him. So, everyone in the laboratory was loathe to take a phone call on the
laboratory extension for Nick because that meant you would be the one to
have to interrupt him. One day Lynn picked up. “I need to speak with Dr.
Nicholas Cozzarelli please.” She said, “This is not his office phone number.
Please call him there.” The man responded, “I've been trying to call that
number for hours; I need to speak with him- is he there?” Sighing, she
said, “Yes, but he must be on the phone or busy if he is not answering his
phone (trying hard to communicate that interrupting him was not a good
idea).” The man was insistent so she grudgingly knocked on Nick’s door.
“TELL HIM TO CALL ME ON THIS LINE!” was Nick’s response. “Nick, I
told him that, but he is very insistent that you come to the phone.” The
door whipped open and she could see the frustration roil in his eyes as he
stomped to the laboratory phone in his house slippers.

There was no missing Nick’s half of the ensuing conversation:

“HELLO?” he shouted into the mouthpiece.

“YES, T KNOW ABOUT THAT PROGRAM AND IT
STINKS. I THINK IT IS A TERRIBLE IDEA AND I HAVE
TOLD EVERYONE I COULD...”

“What?” “Oh, thank you very much... yes, I gratefully
accept.”

He hung up the phone and turned to Lynn and then-postdoc Roland
Kanaar. “I just won one of those NIH merit awards.” They took him out
for a beer to celebrate a great honor - 10 years of NIH support without
having to write a competing renewal.

There are many qualities involved in good mentorship, one of which
is to know when to coach and when to let go. Nick had extraordinary
intuition in this regard; a gift for knowing how to deliver encouragement at
the right moment and in the right way, but giving students and postdocs
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the freedom to follow their own paths. He was sensitive to individual
styles and recognized that science is an endeavor where “one size” does
not fit all. The importance of having confidence in one’s own abilities and
the conviction of one’s ideas were stressed; ever the optimist, Nick always
looked at the positive first while maintaining a healthy level of skepticism.

One thing that his trainees and close friends would probably all agree
on is that Nick was humble and considered himself lucky. “Me? Really” was
his response to being told he had been elected into the National Academy of
Sciences. Luck was something he always talked about in scientific contexts
and we always had the sense of Nick’s appreciation for all he was able
to accomplish in a career that seems much too short. But it’s our view
that Nick created his own luck through passion, dedication, integrity, and
a candid view of the world that sadly seems to belong to a different era.
We miss the values that Nick espoused just as we miss him as a friend,
colleague and mentor.
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MATHEMATICAL METHODS IN DNA TOPOLOGY:
APPLICATIONS TO CHROMOSOME ORGANIZATION
AND SITE-SPECIFIC RECOMBINATION

JAVIER ARSUAGA*, YUANAN DIAO', AND MARIEL VAZQUEZ}

Abstract. In recent years, knot theory and low-dimensional topology have been
effectively used to study the topology and geometry of DNA under different spatial
constraints, and to solve the topological mechanisms of enzymes such as site-specific
recombinases and topoisomerases. Through continuous collaboration and close inter-
action with experimental biologists, many problems approached and the solutions pro-
posed remain relevant to the biological community, while being mathematically and
computationally interesting. In this paper, we illustrate the use of mathematical and
computational methods in a variety of DNA topology problems. This is by no means
an exhaustive description of techniques and applications, but is rather intended to in-
troduce the reader to the exciting applications of topology to the study of DNA. Many
more examples will be found throughout this book.

Key words. DNA knots, bacteriophage P4, DNA packing, random knots, site-
specific recombination, Xer, tangles.

AMS(MOS) subject classifications. Primary 57M25, secondary 92B99.

Motivation. DNA presents high levels of condensation in all organ-
isms. Volume reduction, defined as the ratio between the volume occupied
by a given genome and the volume occupied by a random walk of the
same length as the genome, ranges from 102 in Escherichia coli to 10* in
humans[50].

These large condensation values lead to questions such as how the
DNA is packed inside the eukaryotic cell nucleus, the prokaryotic cell, as
well as inside other organisms such as DNA viruses. The complexity of the
packing problem is magnified when one considers that the DNA molecule
needs to be readily available to multiple biological processes essential to the
proper functioning of the organism, such as DNA replication, transcription,
recombination and repair. The cell has evolved tools to remove unwanted
DNA entanglement and solve other topological problems, such as DNA un-
(or over-)winding, knotting or linking, and formation of multimers, that
may interfere with its functions. DNA topology, the study of geometrical

*Department of Mathematics, San Francisco State University, San Francisco, CA
94132, USA (jarsuaga@sfsu.edu). This research was supported in part by the Institute
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(supercoiling) and topological (knotting) properties of circular DNA, pro-
vides the necessary experimental and computational techniques to describe
and quantify these problems and their solutions.

The paper is divided into two parts. In each part we present an impor-
tant problem in DNA topology, and the mathematical and computational
tools used to address it.

In Part I we discuss the formation of knots in bacteriophages and its
implications for phage packing geometry. Bacteriophages are viruses that
propagate in bacteria. Most dsDNA bacteriophages pack their genome
in a similar way inside the capsid, a proteinic enclosure with icosahedral
symmetry. In the 1980s Liu and colleagues found that DNA extracted
from bacteriophages P4 and P2 capsids was mostly knotted [63, 64]. The
origin of these knots and whether they contained any information about the
organization of the DNA inside the capsid remained unexplored. Here we
will describe our current knowledge on how these DNA knots are formed,
in particular we will focus on different mathematical models that have
been proposed to explain their formation. We will also emphasize how this
problem has been amenable to interdisciplinary studies and has generated
new mathematics [2, 7, 66].

Part II deals with the resolution of topological obstructions arising
during replication of the E. coli chromosome. The bacterial chromosome,
a 4.6Mbp double-stranded DNA circle, is condensed 103 times inside the
nucleoid. The two DNA strands are wrapped around each other an average
of 420,000 times in the supercoiled bacterial chromosome and therefore the
DNA double-helix must be unwound in order to be copied. Interwinding of
newly replicated sister chromosomes in a partially replicated chromosome
forms precatenanes, which become catenanes (links) upon completion of
replication. Without careful management by cellular machinery, replica-
tion of the bacterial chromosome would lead to two sister molecules highly
linked together. The cell must solve the topological problem of separating
the two linked sister chromosomes to ensure proper segregation at cell di-
vision. Unlinking of replication catenanes is mainly achieved by the type
IT topoisomerase Topo IV (reviewed in [41, 81]).

Furthermore, stalled or broken replication forks are repaired by homol-
ogous recombination. Occasionally crossing-over by homologous recombi-
nation generates DNA dimers, which may be knotted [84]. The dimers
are resolved by Xer recombination. The Xer system consists of enzymes
XerC and XerD, which act cooperatively and co-localize at the septum with
the protein FtsK. FtsK plays an essential role in dimer resolution, coordi-
nates chromosome segregation and cell division (reviewed in [9]). Recent
experimental evidence shows that XerCD-FtsK recombination can unlink
catenanes formed by site-specific recombination in vitro [52], as well as
catenanes formed by replication in vivo [47]. Here we will review the tan-
gle method for site-specific recombination. We will illustrate the method
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with applications to Xer recombination. The analysis will lead to several
possible topological pathways followed by the enzymes. The question is
posed as to whether the different pathways are simple planar projections
of the same 3-dimensional topological mechanism.

Part I. DNA Knotting in Bacteriophages.

In this part of the paper we present the problem of DNA knotting
in bacteriophage P4 as well as the various tools from the theory of ran-
dom knotting used to approach this problem. Bacteriophage P4 knots are
formed by random cyclization. In section 1 we introduce the problem of
random cyclization of DNA in free solution. We discuss several compu-
tational methods currently used to simulate this process, as well as the
corresponding analytical results to estimate the knotting probability of a
random polygonal curve in %3, This work is used as a framework to study
the problem of DNA knotting in bacteriophages. Section 2 deals with
cyclization of DNA in confined volumes. First, we review some of the ex-
perimental results on DNA knots found in the bacteriophage P4 system.
This is followed by the description of three computational models and how
these models have been used to address the biological problem. In section
3 we discuss the limitations of these approaches and future directions.

1. Cyclization of DNA molecules in free solution.

1.1. Experimental studies on random cyclization of DNA
molecules. Random cyclization of long linear DNA molecules with sticky
(i.e. complementary) ends produces knots with non-trivial probability.
This knotting probability was independently estimated by Rybenkov et
al. [78] and by Shaw and Wang [83]. Both groups showed that the for-
mation of these knots depends on the length of the DNA molecule and
on the ionic conditions of the solution (i.e. the effective diameter of the
DNA molecule). In [78] it was found that the knotting probability for P4
DNA molecules circularized in solution was 3% and that the trefoil was the
prevalent knot population followed by smaller amounts of the four crossing
knot and even smaller amounts of the five crossing knots. Monte-Carlo
simulations of idealized polymer chains (e.g [58, 66]) and analytical results
[34] support these experimental results as explained below.

1.2. Simulations of Gaussian and equilateral random poly-
gons without confinement. The wormlike chain is the most accurate
polymer model for simulating DNA in solution. However other models such
as the equilateral random polygon (ERP) or the Gaussian random poly-
gon are good for estimating properties of long DNA molecules in the bulk
and at the same time are more amenable to the development of rigorous
analytical results. Several algorithms have been proposed for generating
samples of equilateral random polygons. These include the crankshaft al-
gorithm [58, 68|, the hedgehog algorithm [58] and the pairwise rotation
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TABLE 1

Summary results concerning various random polygons. Results in parenthesis are
numerical results and — is the case when the numerical results vary because of the choices
of parameters. G Py, stands for a Gaussian random polygon of n edges, E P, stands for
an equilateral random polygon of n edges, CEP,, stands for an equilateral random poly-
gon of n edges within a confined space (usually a sphere with a predetermined radius),
Ry stands for a uniform random polygon of n edges and SP, for spooling random
model.

| | mean ACN | leading coeff. | knotting prob |
GP, O(nlnn) 1/27 >1l—e " =1
EP, O(nlnn) 3/16 >1l—e " =1
CEP, O(n?) —— >l—e™ —=1)
R, O(n?) (.115) >1l—e™ —=1)
SP, O(n?) —— >1l—e™ —=1)

algorithm [73]. The crankshaft algorithm is fairly popular among some
researchers. In this algorithm two vertices of the polygon are selected at
random, dividing the polygon into two subchains. One of the two sub-
chains is selected at random (with equal probabilities for each subchain),
and the selected subchain is rotated through a random angle around the
axis connecting the two end vertices of the subchain. In the hedgehog al-
gorithm an ERP is first generated and at each step two vectors are selected
at random, rotated with respect to their sum and placed back in the poly-
gon. The crankshaft algorithm generates an ergodic Markov chain in the
space of all ERPs of fixed length [68]. However the main drawback with
this algorithm is that the correlation between samples is very high and
therefore many configurations need to be generated in between any two
samples in the Markov chain. The hedgehog algorithm on the other hand
generates independent samples of polygons however it is unknown whether
it is ergodic or not. These algorithms have helped to estimate some of the
biologically relevant properties, such as the knotting probability and the
mean of the Average Crossing Number distribution (ACN), for equilateral
polygons as shown in Table 1. The leading coefficient 3/16 in the equi-
lateral random polygon case means the mean ACN of equilateral random
polygons of length n is of the form (3/16)nlnn + O(n). This number is
1/27 for the case of Gaussian random polygons.

1.3. Analytical results for knotting of polygons without con-
finement: Gaussian and equilateral random polygon models. A
Gaussian random vector X = (z,y, z) is a random point whose coordinates
x, y and z are independent standard normal random variables (with mean
= 0 and variance = 1). The pdf (probability density function) of X is the
joint pdf of x, y and z, which is

£(x) = (L) N (L)
= \/% e = \/ﬂ e .
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A Gaussian random walk of n steps (denoted by GW,,) consists of
n + 1 consecutive points Xy = (0,0,0) = O, X1, Xo, ..., X, such that
Yit1 = Xgy1 — Xk (K =0,1,...,n — 1) are independent Gaussian random
vectors. It follows that the joint pdf for all the vertices is

3n
1 1 2 2 2

F(X1, X2, Xn) = (—,/— e~ BV Y2l o Ya )
2w

1 3n
- ( ) e~ 3UX P+ Xo= X0 [P+ | X = X1 %)

Ver

A Gaussian random polygon GP, is a conditioned GW,, of n steps
such that the last vertex X, coincides with the starting point Xy = O.
Thus, if we let g, (X,,) be the pdf of X,, for a GW,,,

then the joint pdf of X7, Xs, ..., X;,—1 of a GP, is

h(Xl,XQ, ,Xn) = f(Xl, Xg, ,Xn)/gn(O)

The one advantage of the Gaussian random polygons (over other ran-
dom polygon models) is that the joint probability density function of its
vertices is of an explicitly nice form. This enabled the derivation of the
following result concerning the knotting probability of a GP,, [34].

THEOREM 1.1. [34] Let K be any knot type, then there exists a positive
constant € such that GP,, contains K as a connected sum component with
a probability at least 1 — exp(—n®) provided that n is large enough.

One can obtain a similar result for equilateral random polygons.

Suppose Y7, Yo, ... , Y, are n independent random vectors uniformly
distributed on S2. An equilateral random walk of n steps, denoted by
EW,, is defined as the sequence of points in the three dimensional space
R Xo=0, Xp=Y1+Ys+---+ Y, k=1,2,...,n. Each X}, is called
a vertex of the EW,, and the line segment joining X3 and Xy is called
an edge of EW,, (which is of unit length). Notice that the coordinates of
each point are not independent from each other due to the fact that the
distance between consecutive points in the polymer needs to be one. If the
last vertex X,, of EW,, is fixed, then we have a conditioned random walk
EW,|X,. In particular, EW,, becomes a polygon if X,, = O. In this case,
it is called an equilateral random polygon and is denoted by E P,. The joint
probability density function f(Xi, Xo,..., X,,) of the vertices of an EW,, is
f(X1, Xo, ., Xn) = o(U1)p(U2) - o(Un) = o(X1)p(X2 — X1) - (X —
Xn—1). Where ¢(U;) is the density function of selecting a random point
over the surface of the sphere.

Let X}, be the k-th vertex of an EW,, (n > k > 1), its density function

is defined by
k(Xk) // / (X1)p(X2 — Xq) -

O(Xp — Xp_1)dX1dXs - dXp_y (1.1)
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and it has the closed form fi,(Xy) = 5= [, @sinrz (%)k dx [74]. In the
case of EP,, the density function of the vertex X can be approximated
by a Gaussian distribution, as given in the following lemma [30, 33, 34].

LEMMA 1.1. Let Xy be the k-th vertex of an EP, and let hy, be its
density function, then

3
3 31 X |? 1 1
hi(Xg) = < 27T02k> exp (— 202, +0 e + k) (1.2)

2 _ k(n—k)
where o7, = —.

In other words the density of the k step of an E'P,, can be approximated
by a Gaussian distribution with mean 0 and a standard deviation that
depends on The vertex number k and on the distance from the vertex to
the origin (or first vertex in the polygon).

This lemma provided the key link to apply the methods used in [34] for
the Gaussian random polygons to the equilateral random polygons, which
leads to the following theorem.

THEOREM 1.2. [30] Let KC be any knot type, then there exists a positive
constant € such that EP,, contains KC as a connected sum component with
a probability at least 1 — exp(—n°®), provided that n is large enough.

Numerical studies on E P, suggest a scaling law of 1 —exp(—n/a) with
a =244+ 5 (see [66] and references therein).

The above two theorems imply that a long GP,, or EP,, contains many
connected sum components (with a high probability), which makes it highly
unlikely for the polygon to be achiral. This is stated in the following
corollary. However, this only provides reason for the long GP,, and EP,
to favor chiral knots than achiral ones. For relatively short polygons, this
is not clear.

COROLLARY 1.1. [30, 34] There exists some constant 6 > 0 such that
the probability that a« GP, or an EP, is a chiral knot is at least 1 — n—lg

The determination of the knot type of a circular molecule can tell us
its topological (minimum) crossing number, i.e., the minimum number of
crossings one will see no matter how this molecule is artificially stretched,
twisted, or bent. However, the average crossing number (ACN), defined
as the average of crossing numbers over all orthogonal projections of the
molecule, is a more natural geometric measure of the molecule entangle-
ment as it refers to the actual number of crossings that can be perceived
while observing a non-perturbed trajectory of a given molecule [55]. Fur-
thermore, it is believed that DNA knots migrate in gel eletrophoresis ac-
cordingly with their ACN [99].

The following theorems are presented in [31, 32] and establish the
O(nlnn) behavior of the mean ACN for the Gaussian and equilateral ran-
dom polygons as illustrated in Table 1.
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THEOREM 1.3. Let x5, be the ACN of an equilateral random walk of
n steps; then

3
E(xn) = Enlnn + O(n).
On the other hand, if X', is the ACN of a Gaussian random polygon of n
steps, then

1
E(x)) = %nlnn + O(n).

2. Cyclization of DNA molecules in confined volumes: DNA
knotting in bacteriophage P4 capsids.

2.1. Experimental studies on DNA knots in bacteriophages.
In dsDNA bacteriophages the volume of the bacteriophage genome is re-
duced 100 times inside the capsid [53]. This volume reduction imposes
severe physical constraints on the DNA molecule. For instance the DNA
molecule is under (at least) 50 atmospheres of pressure [42, 93] and at
a concentration of 800mg/ml [56]. Despite these conditions the dsDNA
molecule is believed to preserve its double helical structure [8] and not to
have sequence-specific associations with the protein capsid. A number of
models have been proposed to describe the organization of the viral chro-
mosome under such extreme conditions of condensation. These include
coaxial and concentric spooling models [4, 20, 35, 76, 82], coaxial models
[10], toroidal models [51, 72], and liquid-crystaline models [61].

Bacteriophage P4 is an icosahedral phage of radius 7 = 180A and a
linear dsDNA genome of 11.5 kb (I = 120 x 10%A). The genome is flanked
by two 16bp long single stranded complementary sequences of DNA called
cos sites. During phage morphogenesis a protein enclosure called capsid
is assembled first. This is followed by the packing of a single linear DNA
molecule into the capsid through the portal vertex. Infective viruses keep
at least one of their cos sites attached near the portal [21]. This attachment
prevents the two cos ends from meeting within the capsid and circulariz-
ing the chromosome. However in the experiments performed by Liu and
colleagues it was found that most of the DNA molecules phenol extracted
from bacteriophage P4 are circular and non-trivially knotted [63, 64].

Recent work [5, 6, 91, 92] reproduced and extended the results of Liu et
al. Figure 1 shows a two dimensional gel of DNA knots from bacteriophage
P4 in which different conditions are used in each dimension [91]. In this
figure the top spot corresponds to the unknotted molecule followed, along a
bell-shaped curve, by the trefoil knot, the figure eight (four-crossing) knot,
and so on. The spot ahead of the bell is the linear chain. The most remark-
able fact about this distribution is that about 95% of the DNA molecules
are knotted and only about 2% are knots between 3 and 10 crossing knots.
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Fic. 1. Two dimensional gel of knots extracted from bacteriophage P4.

Furthermore the large majority of the population consist of knots with 30
crossings or more [5]. These results are in high contrast with those obtained
by random cyclization of P4 DNA molecules in free solution (see Section 1.1
[78]) and suggested that knots extracted from bacteriophage P4 are formed
inside the phage capsid and therefore may be used as reporters for chromo-
some organization in P4. Despite the small percentage of knots with less
than 8 crossings (i.e. those that can be separated by gel electrophoresis)
two important properties of the knot distribution were revealed. First the
four crossing knot is mostly absent and second the torus knots 5; and the
7, are more probable than the twist knots 53 and 7 (contrary to what
is expected in free solution). The theoretical work described next aims at
explaining these experimental results. In this review we will focus only on
the problems of knotting probability and complexity.

2.2. Random knotting within a confined space. A simple ap-
proach to study the knotting probability and complexity of P4 knots is by
generating ensembles of random polygons inside different convex volumes.
Next we describe three models: the Confined Equilateral Random Polygon
(CEP,), the Uniform Random Polygon (URP,,) and the Random Spooling
(SP,).

The Confined Equilateral Random Polygon.

In this model we consider ERPs confined to spheres of certain radius
r and use CE P, to denote such a polygon of length n. Figure 2 shows an
example of such polygon.

Unfortunately, the extra condition that confines the polygon to a
sphere of radius r completely invalidates the approximation formula given
in Lemma 1.2 for the vertex X of CEP,. Intuitively, a CEP, would be
more likely to be knotted than an EP,. Indeed, this is confirmed by nu-
merical studies [5, 65, 66] which were pioneered by Michels and Wiegel [65].
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Fic. 2. An equilateral random polygon inside a sphere.

In their studies molecular dynamics algorithms were used to sample closed
polygons and the knotting probability was computed. Michels and Wiegel
found that the knotting probability of a polygon inside a sphere increases
with respect to that in R following a exp(N®/r3) law with o = 2.28.
In more recent work [5, 66] large ensembles of CEP, were generated by
the crankshaft algorithm. In [66] the scaling law proposed by Michels and
Wiegel was confirmed and the coefficient av = 2.15 4 0.04 improved.

In [5], the combination of experimental and theoretical results led to
propose that the effect of the confinement during the random cyclization
process of the DNA molecule is one of the key drivers in the formation of
knots in the P4 system. This argument has been extended by D. Smith’
group to explain the knotting of chains in confined volumes [75]

The Uniform Random Polygon.

Developing analytical results for CEP,, is a very difficult problem.
An alternative model was proposed in [68] as a way to study the random
behavior of circular DNA molecules packed in phage capsids that may
provide clues about showing some of these analytical results. For ¢ =
1,2,...,n, let U; = (ui1, o, u;3) be a three-dimensional random point that
is uniformly distributed in the unit cube C* (or in a unit ball) such that
Ui, Us, ..., U, are independent. Let e; (called the i-th edge) be the line
segment joining U; and U; 41, then the edges ey, ea, ..., e, define a uniform
random polygon R, in the confined space (either the cube or the sphere),
where e, is the line segment joining U,, and U;. A polygon of length n is
denoted by URP,.

While the knotting probability of an R,, has not been analytically de-
termined (even in the case of n — 00), a numerical study carried out in [3]
provided convincing data that the knotting probability of an R,, quickly
approaches 1 as n approaches infinity. Figure 4 is the plot of the percentage
of URPs with non-trivial determinant (i.e. those whose Alexander poly-
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Fic. 3. A uniform random polygon confined in the unit cube.
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Fia. 4. The lower bound of knotting probability for URPs up to 40 segments.

nomial evaluated at ¢ = —1 is non-trivial). Since the trivial knot has a
trivial determinant, the results give a lower bound of the knotting proba-
bility. Figure 4 below is the plot of the data. The fitting curve used here is
1 —exp(—0.000082n?), although this is not to be expected as a general rule
since the trivial knot probability of an R, is at least of order exp(—nlnn)
as shown in [3].

It turns out that the mean ACN behavior for an R,, is much easier to
determine, both analytically and numerically than for CEPs. Consider a
uniform random polygon R,, with n edges ej, es, ..., €, in that consecutive

order. Let a(e;, e;) be the average crossing number between e; and e;, then
the ACN of R, is
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Fic. 5. The mean ACN of uniform random polygons up to 80 vertices.

Xn = %Z Z a(ei,ej).

i=1 jAi—1,i,i+1

It follows that the expected value of the average crossing number of R,, is

Bow) =35> S Blaleies) =pin—3n

i=1 jAi—1,i,i+1

This establishes the O(n?) behavior of the mean ACN of an R, as shown
in Table 1. Numerical studies in [2] produced the following near perfect fit
using F(xn) ~ 0.115(n — 3)n.

There have not been enough numerical studies on the knot types of
the CEP,’s [5, 66] and R,’s [67] to indicate their bias against achiral
knots, even though this is generally expected for long random polygons
since achiral knots are much rarer than the achiral ones within large knots.

The Random Spooling model.

The last model we discuss is the random spooling model. This model
incorporates features from the random knotting models (described above)
into the spooling and toroidal models [4, 10, 20, 35, 51, 72, 76, 82]. In the
standard spooling model DNA fibers spool around an axis forming coaxial
spherical layers. In [59] the knot type of molecular dynamics generated
spooling conformations was studied and it was found that most of these
conformations were unknotted. These results together with the wide distri-
butions of knots that are observed in P4 suggested that current theoretical
models of DNA packing disregard the effect of random fluctuations which
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Fic. 6. The random spooling model.

in fact may play an important role in the packing of the viral chromo-
some. We recently proposed [7] that fibers follow spooling trajectories and
at the same time they intermingle, as illustrated in the figure 6. This in-
termingling between fibers of different coaxial layers increases the knotting
probability.

Some initial simulation and analytical results have been published [7].
For instance we have estimated the complexity of the average crossing
number in the direction of the spooling axis as stated in the next theorem.

THEOREM 2.1. [7] Let P? be a spooling random polygon, then the
average number of crossings in its projection to the xy-plane perpendicular
to its center awis is of the order of O(n?).

Although the knotting probability has not yet been shown to increase
to 1 as suggested by the numerical results shown in Figure 7 a relationship
between the writhe of the projection along the spooling axis and the knot
type has been proven. The following theorem is a consequence of a theorem
due to Morton[69)

THEOREM 2.2. [7] Let w(D,,) be the writhe of the projection in the di-
rection of spooling axis and o(P2) the number of times the spool goes around
its axis. If lw(Dy)| > o(P2), then P is a non-trivial knot. Furthermore,
in this case P, cannot be an achiral knot.

This theorem shows that spooling conformations with high writhe are
knotted. This agrees well with some of our results that relate DNA knotting
and writhing in bacteriophage P4 [6, 11] and suggests that high writhe may
also play an important role in the formation of knots in P4.

3. Conclusions. Here we have discussed the problem of knotting by
random cyclization in free solution and in confined volumes. In both cases
we have presented experimental, analytical and computational results. By
comparing our experimental results with those obtained in free solution we
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Fic. 7. Knotting probability as a function of the length of the chain for the random
spooling model.

concluded that knotting in bacteriophage P4 occurs before, or very soon
after, the disruption of the capsid and therefore P4 knots can be used as
reporters of DNA packing. The large amount of knotting is still a feature
that is not fully explained by current mathematical models. In this review
we have presented three random knotting models: the confined equilateral
polygon, the uniform random polygon and the spooling random polygon.
All these models present consistent results however they do not reach the
high levels of complexity found in bacteriophages. This is specially true
if more accurate representations of the DNA molecule are taken into ac-
count. Nevertheless some information about the biological system has been
extracted from these theoretical models. For instance our current simula-
tions results suggest that DNA knotting in P4 is mainly driven by the
confinement imposed by the capsid during the cyclization reaction, and
perhaps also by possible biases introduced by the arrangement of the vi-
ral chromosome [6, 11]. Importantly none of the current idealized models
proposed in the literature account for the formation of knots inside the
capsid and previous simulations results failed to do so [59] thus suggesting
that they may not reflect some important properties of the DNA packing.
The random spooling model is our first attempt to address this issue. It
remains to be seen if such models can reproduce the knot distributions
observed experimentally. New experimental results have recently obtained
for P4 deletion mutants whose genomes range between 5 and 8 kb [92].
These experiments hold a great promise for unveiling the properties that
drive knotting in phage capsids as well as some of the essential features of
the viral packing.



