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Preface to the Second Edition

The ongoing developments being made in large dimensional data analysis
continue to generate great interest in random matrix theory in both theoret-
ical investigations and applications in many disciplines. This has doubtlessly
contributed to the significant demand for this monograph, resulting in its first
printing being sold out. The authors have received many requests to publish
a second edition of the book.

Since the publication of the first edition in 2006, many new results have
been reported in the literature. However, due to limitations in space, we
cannot include all new achievements in the second edition. In accordance with
the needs of statistics and signal processing, we have added a new chapter on
the limiting behavior of eigenvectors of large dimensional sample covariance
matrices. To illustrate the application of RMT to wireless communications
and statistical finance, we have added a chapter on these areas. Certain new
developments are commented on throughout the book. Some typos and errors
found in the first edition have been corrected.

The authors would like to express their appreciation to Ms. Lü Hong for her
help in the preparation of the second edition. They would also like to thank
Professors Ying-Chang Liang, Zhaoben Fang, Baoxue Zhang, and Shurong
Zheng, and Mr. Jiang Hu, for their valuable comments and suggestions. They
also thank the copy editor, Mr. Hal Heinglein, for his careful reading, cor-
rections, and helpful suggestions. The first author would like to acknowledge
the support from grants NSFC 10871036, NUS R-155-000-079-112, and R-
155-000-096-720.

Changchun, China, and Singapore Zhidong Bai
Cary, North Carolina, USA Jack W. Silverstein

March 2009
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Preface to the First Edition

This monograph is an introductory book on the theory of random matri-
ces (RMT). The theory dates back to the early development of quantum
mechanics in the 1940s and 1950s. In an attempt to explain the complex or-
ganizational structure of heavy nuclei, E. Wigner, Professor of Mathematical
Physics at Princeton University, argued that one should not compute energy
levels from Schrödinger’s equation. Instead, one should imagine the complex
nuclei system as a black box described by n × n Hamiltonian matrices with
elements drawn from a probability distribution with only mild constraints
dictated by symmetry considerations. Under these assumptions and a mild
condition imposed on the probability measure in the space of matrices, one
finds the joint probability density of the n eigenvalues. Based on this con-
sideration, Wigner established the well-known semicircular law. Since then,
RMT has been developed into a big research area in mathematical physics
and probability. Its rapid development can be seen from the following statis-
tics from the Mathscinet database under keyword Random Matrix on 10 June
2005 (Table 0.1).

Table 0.1 Publication numbers on RMT in 10 year periods since 1955

1955–1964 1965–1974 1975–1984 1985–1994 1995–2004

23 138 249 635 1205

Modern developments in computer science and computing facilities moti-
vate ever widening applications of RMT to many areas.

In statistics, classical limit theorems have been found to be seriously in-
adequate in aiding in the analysis of very high dimensional data.

In the biological sciences, a DNA sequence can be as long as several billion
strands. In financial research, the number of different stocks can be as large
as tens of thousands.

In wireless communications, the number of users can be several million.

ix



x Preface to the First Edition

All of these areas are challenging classical statistics. Based on these needs,
the number of researchers on RMT is gradually increasing. The purpose of
this monograph is to introduce the basic results and methodologies developed
in RMT. We assume readers of this book are graduate students and beginning
researchers who are interested in RMT. Thus, we are trying to provide the
most advanced results with proofs using standard methods as detailed as we
can.

After more than a half century, many different methodologies of RMT have
been developed in the literature. Due to the limitation of our knowledge and
length of the book, it is impossible to introduce all the procedures and results.
What we shall introduce in this book are those results obtained either under
moment restrictions using the moment convergence theorem or the Stieltjes
transform.

In an attempt at complementing the material presented in this book, we
have listed some recent publications on RMT that we have not introduced.

The authors would like to express their appreciation to Professors Chen
Mufa, Lin Qun, and Shi Ningzhong, and Ms. Lü Hong for their encouragement
and help in the preparation of the manuscript. They would also like to thank
Professors Zhang Baoxue, Lee Sungchul, Zheng Shurong, Zhou Wang, and
Hu Guorong for their valuable comments and suggestions.

Changchun, China Zhidong Bai
Cary, North Carolina, USA Jack W. Silverstein

June 2005



Contents

Preface to the Second Edition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Preface to the First Edition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Large Dimensional Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Random Matrix Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Spectral Analysis of Large Dimensional
Random Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Limits of Extreme Eigenvalues . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Convergence Rate of the ESD . . . . . . . . . . . . . . . . . . . . . . 6
1.2.4 Circular Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.5 CLT of Linear Spectral Statistics . . . . . . . . . . . . . . . . . . . 8
1.2.6 Limiting Distributions of Extreme Eigenvalues

and Spacings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Moment Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Stieltjes Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.3 Orthogonal Polynomial Decomposition . . . . . . . . . . . . . . 11
1.3.4 Free Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Wigner Matrices and Semicircular Law . . . . . . . . . . . . . . . . . . 15
2.1 Semicircular Law by the Moment Method . . . . . . . . . . . . . . . . . 16

2.1.1 Moments of the Semicircular Law . . . . . . . . . . . . . . . . . . 16
2.1.2 Some Lemmas in Combinatorics . . . . . . . . . . . . . . . . . . . 16
2.1.3 Semicircular Law for the iid Case . . . . . . . . . . . . . . . . . . 20

2.2 Generalizations to the Non-iid Case . . . . . . . . . . . . . . . . . . . . . . 26
2.2.1 Proof of Theorem 2.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Semicircular Law by the Stieltjes Transform . . . . . . . . . . . . . . . 31
2.3.1 Stieltjes Transform of the Semicircular Law . . . . . . . . . . 31
2.3.2 Proof of Theorem 2.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

xi



xii Contents

3 Sample Covariance Matrices and the Marčenko-Pastur Law 39
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Chapter 1

Introduction

1.1 Large Dimensional Data Analysis

The aim of this book is to investigate the spectral properties of random
matrices (RM) when their dimensions tend to infinity. All classical limiting
theorems in statistics are under the assumption that the dimension of data
is fixed. Then, it is natural to ask why the dimension needs to be considered
large and whether there are any differences between the results for a fixed
dimension and those for a large dimension.

In the past three or four decades, a significant and constant advancement
in the world has been in the rapid development and wide application of
computer science. Computing speed and storage capability have increased a
thousand folds. This has enabled one to collect, store, and analyze data sets
of very high dimension. These computational developments have had a strong
impact on every branch of science. For example, Fisher’s resampling theory
had been silent for more than three decades due to the lack of efficient random
number generators until Efron proposed his renowned bootstrap in the late
1970s; the minimum L1 norm estimation had been ignored for centuries since
it was proposed by Laplace until Huber revived it and further extended it
to robust estimation in the early 1970s. It is difficult to imagine that these
advanced areas in statistics would have received such deep development if
there had been no assistance from the present-day computer.

Although modern computer technology helps us in so many respects, it
also brings a new and urgent task to the statistician; that is, whether the
classical limit theorems (i.e., those assuming a fixed dimension) are still valid
for analyzing high dimensional data and how to remedy them if they are not.

Basically, there are two kinds of limiting results in multivariate analysis:
those for a fixed dimension (classical limit theorems) and those for a large
dimension (large dimensional limit theorems). The problem turns out to be
which kind of result is closer to reality. As argued by Huber in [157], some
statisticians might say that five samples for each parameter on average are

1Z
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2 1 Introduction

enough to use asymptotic results. Now, suppose there are p = 20 parameters
and we have a sample of size n = 100. We may consider the case as p = 20
being fixed and n tending to infinity, p = 2

√
n, or p = 0.2n. So, we have at

least three different options from which to choose for an asymptotic setup.
A natural question is then which setup is the best choice among the three.
Huber strongly suggested studying the situation of an increasing dimension
together with the sample size in linear regression analysis.

This situation occurs in many cases. In parameter estimation for a struc-
tured covariance matrix, simulation results show that parameter estimation
becomes very poor when the number of parameters is more than four. Also,
it is found in linear regression analysis that if the covariates are random (or
have measurement errors) and the number of covariates is larger than six, the
behavior of the estimates departs far away from the theoretic values unless
the sample size is very large. In signal processing, when the number of signals
is two or three and the number of sensors is more than 10, the traditional
MUSIC (MUltiple SIgnal Classification) approach provides very poor esti-
mation of the number of signals unless the sample size is larger than 1000.
Paradoxically, if we use only half of the data set—namely, we use the data set
collected by only five sensors—the signal number estimation is almost 100%
correct if the sample size is larger than 200. Why would this paradox happen?
Now, if the number of sensors (the dimension of data) is p, then one has to
estimate p2 parameters (1

2p(p+1) real parts and 1
2p(p−1) imaginary parts of

the covariance matrix). Therefore, when p increases, the number of param-
eters to be estimated increases proportional to p2 while the number (2np)
of observations increases proportional to p. This is the underlying reason for
this paradox. This suggests that one has to revise the traditional MUSIC
method if the sensor number is large.

An interesting problem was discussed by Bai and Saranadasa [27], who
theoretically proved that when testing the difference of means of two high
dimensional populations, Dempster’s [91] nonexact test is more powerful than
Hotelling’s T 2 test even when the T 2 statistic is well defined.

It is well known that statistical efficiency will be significantly reduced
when the dimension of data or number of parameters becomes large. Thus,
several techniques for dimension reduction have been developed in multivari-
ate statistical analysis. As an example, let us consider a problem in principal
component analysis. If the data dimension is 10, one may select three princi-
pal components so that more than 80% of the information is reserved in the
principal components. However, if the data dimension is 1000 and 300 princi-
pal components are selected, one would still have to face a high dimensional
problem. If one only chooses three principal components, he would have lost
90% or even more of the information carried in the original data set. Now,
let us consider another example.

Example 1.1. Let Xij be iid standard normal variables. Write
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Sn =

(
1

n

n∑

k=1

XikXjk

)p

i,j=1

,

which can be considered as a sample covariance matrix with n samples of a
p-dimensional mean-zero random vector with population matrix I. An im-
portant statistic in multivariate analysis is

Tn = log(detSn) =

p∑

j=1

log(λn,j),

where λn,j , j = 1, · · · , p, are the eigenvalues of Sn. When p is fixed, λn,j → 1

almost surely as n→ ∞ and thus Tn
a.s.−→ 0.

Further, by taking a Taylor expansion on log(1 + x), one can show that

√
n/pTn

D→ N(0, 2),

for any fixed p. This suggests the possibility that Tn is asymptotically normal,
provided that p = O(n). However, this is not the case. Let us see what hap-
pens when p/n→ y ∈ (0, 1) as n→ ∞. Using results on the limiting spectral
distribution of {Sn} (see Chapter 3), we will show that with probability 1

1

p
Tn →

∫ b(y)

a(y)

log x

2πxy

√
(b(y) − x)(x − a(y))dx =

y − 1

y
log(1−y)−1 ≡ d(y) < 0

(1.1.1)
where a(y) = (1 −√

y)2, b(y) = (1 +
√
y)2. This shows that almost surely

√
n/pTn ∼ d(y)

√
np→ −∞.

Thus, any test that assumes asymptotic normality of Tn will result in a serious
error.

These examples show that the classical limit theorems are no longer suit-
able for dealing with high dimensional data analysis. Statisticians must seek
out special limiting theorems to deal with large dimensional statistical prob-
lems. Thus, the theory of random matrices (RMT) might be one possible
method for dealing with large dimensional data analysis and hence has re-
ceived more attention among statisticians in recent years. For the same rea-
son, the importance of RMT has found applications in many research areas,
such as signal processing, network security, image processing, genetic statis-
tics, stock market analysis, and other finance or economic problems.
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1.2 Random Matrix Theory

RMT traces back to the development of quantum mechanics (QM) in the
1940s and early 1950s. In QM, the energy levels of a system are described by
eigenvalues of a Hermitian operator A on a Hilbert space, called the Hamilto-
nian. To avoid working with an infinite dimensional operator, it is common to
approximate the system by discretization, amounting to a truncation, keep-
ing only the part of the Hilbert space that is important to the problem under
consideration. Hence, the limiting behavior of large dimensional random ma-
trices has attracted special interest among those working in QM, and many
laws were discovered during that time. For a more detailed review on appli-
cations of RMT in QM and other related areas, the reader is referred to the
book Random Matrices by Mehta [212].

Since the late 1950s, research on the limiting spectral analysis of large di-
mensional random matrices has attracted considerable interest among mathe-
maticians, probabilists, and statisticians. One pioneering work is the semicir-
cular law for a Gaussian (or Wigner) matrix (see Chapter 2 for the definition),
due to Wigner [296, 295]. He proved that the expected spectral distribution
of a large dimensional Wigner matrix tends to the so-called semicircular law.
This work was generalized by Arnold [8, 7] and Grenander [136] in various
aspects. Bai and Yin [37] proved that the spectral distribution of a sam-
ple covariance matrix (suitably normalized) tends to the semicircular law
when the dimension is relatively smaller than the sample size. Following the
work of Marčenko and Pastur [201] and Pastur [230, 229], the asymptotic
theory of spectral analysis of large dimensional sample covariance matrices
was developed by many researchers, including Bai, Yin, and Krishnaiah [41],
Grenander and Silverstein [137], Jonsson [169], Wachter [291, 290], Yin [300],
and Yin and Krishnaiah [304]. Also, Yin, Bai, and Krishnaiah [301, 302],
Silverstein [260], Wachter [290], Yin [300], and Yin and Krishnaiah [304] in-
vestigated the limiting spectral distribution of the multivariate F -matrix, or
more generally of products of random matrices. In the early 1980s, major
contributions on the existence of the limiting spectral distribution (LSD)
and their explicit forms for certain classes of random matrices were made.
In recent years, research on RMT has turned toward second-order limiting
theorems, such as the central limit theorem for linear spectral statistics, the
limiting distributions of spectral spacings, and extreme eigenvalues.

1.2.1 Spectral Analysis of Large Dimensional
Random Matrices

Suppose A is anm×mmatrix with eigenvalues λj , j = 1, 2, · · · ,m. If all these
eigenvalues are real (e.g., if A is Hermitian), we can define a one-dimensional
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distribution function

FA(x) =
1

m
#{j ≤ m : λj ≤ x} (1.2.1)

called the empirical spectral distribution (ESD) of the matrix A. Here #E
denotes the cardinality of the set E. If the eigenvalues λj ’s are not all real,
we can define a two-dimensional empirical spectral distribution of the matrix
A:

FA(x, y) =
1

m
#{j ≤ m : ℜ(λj) ≤ x, ℑ(λj) ≤ y}. (1.2.2)

One of the main problems in RMT is to investigate the convergence of
the sequence of empirical spectral distributions {FAn} for a given sequence
of random matrices {An}. The limit distribution F (possibly defective; that
is, total mass is less than 1 when some eigenvalues tend to ±∞), which is
usually nonrandom, is called the limiting spectral distribution (LSD) of the
sequence {An}.

We are especially interested in sequences of random matrices with dimen-
sion (number of columns) tending to infinity, which refers to the theory of
large dimensional random matrices.

The importance of ESD is due to the fact that many important statistics
in multivariate analysis can be expressed as functionals of the ESD of some
RM. We now give a few examples.

Example 1.2. Let A be an n× n positive definite matrix. Then

det(A) =

n∏

j=1

λj = exp

(
n

∫ ∞

0

log xFA(dx)

)
.

Example 1.3. Let the covariance matrix of a population have the form Σ =
Σq + σ2I, where the dimension of Σ is p and the rank of Σq is q(< p).
Suppose S is the sample covariance matrix based on n iid samples drawn
from the population. Denote the eigenvalues of S by σ1 ≥ σ2 ≥ · · · ≥ σp.
Then the test statistic for the hypothesis H0 : rank(Σq) = q against H1 :
rank(Σq) > q is given by

T =
1

p− q

p∑

j=q+1

σ2
j −


 1

p− q

p∑

j=q+1

σj




2

=
p

p− q

∫ σq

0

x2FS(dx) −
(

p

p− q

∫ σq

0

xFS(dx)

)2

.
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1.2.2 Limits of Extreme Eigenvalues

In applications of the asymptotic theorems of spectral analysis of large di-
mensional random matrices, two important problems arise after the LSD is
found. The first is the bound on extreme eigenvalues; the second is the conver-
gence rate of the ESD with respect to sample size. For the first problem, the
literature is extensive. The first success was due to Geman [118], who proved
that the largest eigenvalue of a sample covariance matrix converges almost
surely to a limit under a growth condition on all the moments of the underly-
ing distribution. Yin, Bai, and Krishnaiah [301] proved the same result under
the existence of the fourth moment, and Bai, Silverstein, and Yin [33] proved
that the existence of the fourth moment is also necessary for the existence
of the limit. Bai and Yin [38] found the necessary and sufficient conditions
for almost sure convergence of the largest eigenvalue of a Wigner matrix.
By the symmetry between the largest and smallest eigenvalues of a Wigner
matrix, the necessary and sufficient conditions for almost sure convergence
of the smallest eigenvalue of a Wigner matrix were also found.

Compared to almost sure convergence of the largest eigenvalue of a sample
covariance matrix, a relatively harder problem is to find the limit of the
smallest eigenvalue of a large dimensional sample covariance matrix. The
first attempt was made in Yin, Bai, and Krishnaiah [302], in which it was
proved that the almost sure limit of the smallest eigenvalue of a Wishart
matrix has a positive lower bound when the ratio of the dimension to the
degrees of freedom is less than 1/2. Silverstein [262] modified the work to
allow a ratio less than 1. Silverstein [263] further proved that, with probability
1, the smallest eigenvalue of a Wishart matrix tends to the lower bound
of the LSD when the ratio of the dimension to the degrees of freedom is
less than 1. However, Silverstein’s approach strongly relies on the normality
assumption on the underlying distribution and thus cannot be extended to
the general case. The most current contribution was made in Bai and Yin
[36], in which it is proved that, under the existence of the fourth moment
of the underlying distribution, the smallest eigenvalue (when p ≤ n) or the
p − n + 1st smallest eigenvalue (when p > n) tends to a(y) = σ2(1 − √

y)2,
where y = lim(p/n) ∈ (0,∞). Compared to the case of the largest eigenvalues
of a sample covariance matrix, the existence of the fourth moment seems to
be necessary also for the problem of the smallest eigenvalue. However, this
problem has not yet been solved.

1.2.3 Convergence Rate of the ESD

The second problem, the convergence rate of the spectral distributions of
large dimensional random matrices, is of practical interest. Indeed, when the
LSD is used in estimating functionals of eigenvalues of a random matrix, it is
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important to understand the reliability of performing the substitution. This
problem had been open for decades. In finding the limits of both the LSD
and the extreme eigenvalues of symmetric random matrices, a very useful and
powerful method is the moment method, which does not give any information
about the rate of the convergence of the ESD to the LSD. The first success was
made in Bai [16, 17], in which a Berry-Esseen type inequality of the difference
of two distributions was established in terms of their Stieltjes transforms.
Applying this inequality, a convergence rate for the expected ESD of a large
Wigner matrix was proved to be O(n−1/4) and that for the sample covariance
matrix was shown to be O(n−1/4) if the ratio of the dimension to the degrees
of freedom is far from 1 and O(n−5/48) if the ratio is close to 1. Some further
developments can be found in Bai et al. [23, 24, 25], Bai et al. [26], Götze et
al. [132], and Götze and Tikhomirov [133, 134].

1.2.4 Circular Law

The most perplexing problem is the so-called circular law, which conjectures
that the spectral distribution of a nonsymmetric random matrix, after suit-
able normalization, tends to the uniform distribution over the unit disk in the
complex plane. The difficulty exists in that two of the most important tools
used for symmetric matrices do not apply for nonsymmetric matrices. Fur-
thermore, certain truncation and centralization techniques cannot be used.
The first known result was given in Mehta [212] (1967 edition) and in an un-
published paper of Silverstein (1984) that was reported in Hwang [159]. They
considered the case where the entries of the matrix are iid standard complex
normal. Their method uses the explicit expression of the joint density of the
complex eigenvalues of the random matrix that was found by Ginibre [120].
The first attempt to prove this conjecture under some general conditions was
made in Girko [123, 124]. However, his proofs contain serious mathematical
gaps and have been considered questionable in the literature. Recently, Edel-
man [98] found the conditional joint distribution of complex eigenvalues of a
random matrix whose entries are real normal N(0, 1) when the number of its
real eigenvalues is given and proved that the expected spectral distribution of
the real Gaussian matrix tends to the circular law. Under the existence of the
4 + ε moment and the existence of a density, Bai [14] proved the strong ver-
sion of the circular law. Recent work has eliminated the density requirement
and weakened the moment condition. Further details are given in Chapter
11. Some consequent achievements can be found in Pan and Zhou [227] and
Tao and Vu [273].
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1.2.5 CLT of Linear Spectral Statistics

As mentioned above, functionals of the ESD of RMs are important in multi-
variate inference. Indeed, a parameter θ of the population can sometimes be
expressed as

θ =

∫
f(x)dF (x).

To make statistical inference on θ, one may use the integral

θ̂ =

∫
f(x)dFn(x),

which we call linear spectral statistics (LSS), as an estimator of θ, where
Fn(x) is the ESD of the RM computed from the data set. Further, one may

want to know the limiting distribution of θ̂ through suitable normalization.
In Bai and Silverstein [30], the normalization was found to be n by showing
the limiting distribution of the linear functional

Xn(f) = n

∫
f(t)d(Fn(t) − F (t))

to be Gaussian under certain assumptions.
The first work in this direction was done by Jonsson [169], in which f(t) =

tr and Fn is the ESD of a normalized standard Wishart matrix. Further work
was done by Johansson [165], Bai and Silverstein [30], Bai and Yao [35], Sinai
and Soshnikov [269], Anderson and Zeitouni [2], and Chatterjee [77], among
others.

It would seem natural to pursue the properties of linear functionals by way
of proving results on the process Gn(t) = αn(Fn(t)−F (t)) when viewed as a
random element in D[0,∞), the metric space of functions with discontinuities
of the first kind, along with the Skorohod metric. Unfortunately, this is im-
possible. The work done in Bai and Silverstein [30] shows that Gn(t) cannot
converge weakly to any nontrivial process for any choice of αn. This fact ap-
pears to occur in other random matrix ensembles. When Fn is the empirical
distribution of the angles of eigenvalues of an n×n Haar matrix, Diaconis and
Evans [94] proved that all finite dimensional distributions of Gn(t) converge
in distribution to independent Gaussian variables when αn = n/

√
logn. This

shows that with αn = n/
√

logn, the process Gn cannot be tight in D[0,∞).
The result of Bai and Silverstein [30] has been applied in several areas,

especially in wireless communications, where sample covariance matrices are
used to model transmission between groups of antennas. See, for example,
Tulino and Verdu [283] and Kamath and Hughes [170].
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1.2.6 Limiting Distributions of Extreme Eigenvalues
and Spacings

The first work on the limiting distributions of extreme eigenvalues was done
by Tracy and Widom [278], who found the expression for the largest eigen-
value of a Gaussian matrix when suitably normalized. Further, Johnstone
[168] found the limiting distribution of the largest eigenvalue of the large
Wishart matrix. In El Karoui [101], the Tracy-Widom law of the largest
eigenvalue is established for the complex Wishart matrix when the popula-
tion covariance matrix differs from the identity.

When the majority of the population eigenvalues are 1 and some are larger
than 1, Johnstone proposed the spiked eigenvalues model in [168]. Then, Baik
et al. [43] and Baik and Silverstein [44] investigated the strong limit of spiked
eigenvalues. Bai and Yao [34] investigated the CLT of spiked eigenvalues. A
special case of the CLT when the underlying distribution is complex Gaussian
was considered in Baik et al. [43], and the real Gaussian case was considered
in Paul [231].

The work on spectrum spacing has a long history that dates back to Mehta
[213]. Most of the work in these two directions assumes the Gaussian (or
generalized) distributions.

1.3 Methodologies

The eigenvalues of a matrix can be regarded as continuous functions of entries
of the matrix. But these functions have no closed form when the dimension
of the matrix is larger than 4. So special methods are needed to understand
them. There are three important methods employed in this area: the mo-
ment method, Stieltjes transform, and orthogonal polynomial decomposition
of the exact density of eigenvalues. Of course, the third method needs the as-
sumption of the existence and special forms of the densities of the underlying
distributions in the RM.

1.3.1 Moment Method

In the following, {Fn} will denote a sequence of distribution functions, and
the k-th moment of the distribution Fn is denoted by

βn,k = βk(Fn) :=

∫
xkdFn(x). (1.3.1)
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The moment method is based on the moment convergence theorem (MCT);
see Lemmas B.1, B.2, and B.3.

Let A be an n× n Hermitian matrix, and denote its eigenvalues by λ1 ≤
· · · ≤ λn. The ESD, FA, of A is defined as in (1.2.1) with m replaced by n.
Then, the k-th moment of FA can be written as

βn,k(A) =

∫ ∞

−∞
xkFA(dx) =

1

n
tr(Ak). (1.3.2)

This expression plays a fundamental role in RMT. By MCT, the problem of
showing that the ESD of a sequence of random matrices {An} (strongly or
weakly or in another sense) tends to a limit reduces to showing that, for each
fixed k, the sequence { 1

n tr(Ak)} tends to a limit βk in the corresponding
sense and then verifying the Carleman condition (B.1.4),

∞∑

k=1

β
−1/2k
2k = ∞.

Note that in most cases the LSD has finite support, and hence the charac-
teristic function of the LSD is analytic and the necessary condition for the
MCT holds automatically. Most results in finding the LSD or proving the ex-
istence of the LSD were obtained by estimating the mean, variance, or higher
moments of 1

n tr(Ak).

1.3.2 Stieltjes Transform

The definition and simple properties of the Stieltjes transform can be found
in Appendix B, Section B.2. Here, we just illustrate how it can be used in
RMT. Let A be an n × n Hermitian matrix and Fn be its ESD. Then, the
Stieltjes transform of Fn is given by

sn(z) =

∫
1

x− z
dFn(x) =

1

n
tr(A − zI)−1.

Using the inverse matrix formula (see Theorem A.4), we get

sn(z) =
1

n

n∑

k=1

1

akk − z − α∗
k(Ak − zI)−1αk

where Ak is the (n− 1)× (n− 1) matrix obtained from A with the k-th row
and column removed and αk is the k-th column vector of A with the k-th
element removed.

If the denominator akk−z−α∗
k(Ak−zI)−1αk can be proven to be equal to

g(z, sn(z))+ o(1) for some function g, then the LSD F exists and its Stieltjes
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transform of F is the solution to the equation

s = 1/g(z, s).

Its applications will be discussed in more detail later.

1.3.3 Orthogonal Polynomial Decomposition

Assume that the matrix A has a density pn(A) = H(λ1, · · · , λn). It is known
that the joint density function of the eigenvalues will be of the form

pn(λ1, · · · , λn) = cJ(λ1, · · · , λn)H(λ1, · · · , λn),

where J comes from the integral of the Jacobian of the transform from the
matrix space to its eigenvalue-eigenvector space. Generally, it is assumed that
H has the form H(λ1, · · · , λn) =

∏n
k=1 g(λk) and J has the form

∏
i<j(λi −

λj)
β
∏n

k=1 hn(λk). For example, β = 1 and hn = 1 for a real Gaussian matrix,
β = 2, hn = 1 for a complex Gaussian matrix, β = 4, hn = 1 for a quaternion
Gaussian matrix, and β = 1 and hn(x) = xn−p for a real Wishart matrix
with n ≥ p.

Examples considered in the literature are the following

(1) Real Gaussian matrix (symmetric; i.e., A′ = A):

pn(A) = c exp

(
− 1

4σ2
tr(A2)

)
.

In this case, the diagonal entries of A are iid real N(0, 2σ2) and entries
above diagonal are iid real N(0, σ2).

(2) Complex Gaussian matrix (Hermitian; i.e., A∗ = A):

pn(A) = c exp

(
− 1

2σ2
tr(A2)

)
.

In this case, the diagonal entries of A are iid real N(0, σ2) and entries
above diagonal are iid complex N(0, σ2) (whose real and imaginary parts
are iid N(0, σ2/2)).

(3) Real Wishart matrix of order p× n:

pn(A) = c exp

(
− 1

2σ2
tr(A′A)

)
.

In this case, the entries of A are iid real N(0, σ2).
(4) Complex Wishart matrix of order p× n:
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pn(A) = c exp

(
− 1

σ2
tr(A∗A)

)
.

In this case, the entries of A are iid complex N(0, σ2).

For generalized densities, there are the following.

(1) Symmetric matrix:
pn(A) = c exp(−trV (A)).

(2) Hermitian matrix:
pn(A) = c exp(−trV (A)).

In the two cases above, V is assumed to be a polynomial of even degree
with a positive leading coefficient.

(3) Real covariance matrix of dimension p and degrees of freedom n:

pn(A) = c exp(−trV (A′A)).

(4) Complex covariance matrix of dimension p and degrees of freedom n:

pn(A) = c exp(−trV (A∗A)).

In the two cases above, V is assumed to be a polynomial with a positive
leading coefficient.

Note that the factor
∏

i<j(λi−λj) is the determinant of the Vandermonde
matrix generated by λ1, · · · , λn. Therefore, we may rewrite the density of the
eigenvalues of the matrices as

pn(λ1, · · · , λn)

= c

n∏

k=1

hn(λk)g(λk)det




1 1 · · · 1
λ1 λ2 · · · λn
...

... · · ·
...

λn−1
1 λn−1

2 · · · λn−1
n




β

= c

n∏

k=1

hn(λk)g(λk)det




1 1 · · · 1
m1(λ1) m1(λ2) · · · m1(λn)

...
... · · ·

...
mn−1(λ1) mn−1(λ2) · · · mn−1(λn)




β

,

where mk is any polynomial of degree k and having leading coefficient 1. For
ease of finding the marginal densities of several eigenvalues, one may choose
the m functions as orthogonal polynomials with respective [g(x)hn(x)]2/β .
Then, through mathematical analysis, one can draw various conclusions from
the expression above.

Note that the moment method and Stieltjes transform method can be
done under moment assumptions. This book will primarily concentrate on
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results without assuming density conditions. Readers who are interested in
the method of orthogonal polynomials are referred to Deift [88].

1.3.4 Free Probability

Free probability is a mathematical theory that studies noncommutative ran-
dom variables. The “freeness” property is the analogue of the classical notion
of independence, and it is connected with free products. This theory was
initiated by Dan Voiculescu around 1986 in order to attack the free group
factors isomorphism problem, an important unsolved problem in the theory
of operator algebras. Typically the random variables lies in a unital alge-
bra A such as a C∗ algebra or a von Neumann algebra. The algebra comes
equipped with a noncommutative expectation, a linear functional ϕ : A→ C
such that ϕ(1) = 1. Unital subalgebras A1, · · · , An are then said to be free if
the expectation of the product a1 · · · an is zero whenever each aj has zero ex-
pectation, lies in an Ak, and no adjacent aj ’s come from the same subalgebra
Ak. Random variables are free if they generate free unital subalgebras.

An interesting aspect and active research direction of free probability lies in
its applications to RMT. The functional ϕ stands for the normalized expected
trace of a random matrix. For any n× n Hermitian random matrix An and
a given integer k, ϕ(Ak

n) = 1
n tr(EAk

n). If limn ϕ(Ak
n) = αk, for all k, then

instead of referring to the collection of numbers αk, it is better to use some
random variable A (if it exists) to characterize the αk’s as moments of A. By
setting ϕ(Ak) = αk, one may say that An → A in distribution. A general
definition is given as follows.

Definition 1.4. Consider n×n random matricesA
(1)
n , · · · , A(m)

n and variables
A1, · · · , Am. We say that

(A(1)
n , · · · , A(m)

n ) → (A1, · · · , Am) in distribution

if
lim

n→∞
ϕ(A(i1)

n · · ·A(ik)
n ) = ϕ(Ai1 · · ·Aik

)

for all choices of k, 1 ≤ i1, · · · , ik ≤ m.

When m = 1, the definition of convergence in distribution is to say that
if the normalized expected trace of Ak

n tends to the k-th moment of A, then
we define An tending to A. For example, let An be the normalized Wigner
matrix (see Chapter 2). Then A is the semicircular law. Now, suppose we
have two independent sequences of normalized Wigner matrices, {An} and
{Bn}. How do we characterize their limits? If individually, then An → sa

and Bn → sb, and both sa and sb are semicircular laws. The problem is how
to consider the joint limit of the sequences of pairs (An,Bn). Or equivalently,
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what is the relationship of sa and sb? According to free probability, we have
the following definition.

Definition 1.5. The matrices A1, · · · ,Am are called free if

ϕ([p1(Ai1 ) · · · pk(Aik
)]) = 0

whenever

• p1, · · · , pk are polynomials in one variable,
• i1 6= i2 6= i3 6= · · · 6= ik (only neighboring elements are required to be

distinct),
• ϕ(pj(Aij )) = 0 for all j = 1, · · · , k.

Note that the definition of freeness can be considered as a way of organizing
the information about all joint moments of free variables in a systematic and
conceptual way. Indeed, the definition above allows one to calculate mixed
moments of free variables in terms of moments of the single variables. For
example, if a, b are free, then the definition of freeness requires that ϕ[(a −
ϕ(a)1)(b − ϕ(b)1)] = 0, which implies that ϕ(ab) = ϕ(a)ϕ(b). In the same
way, ϕ[(a − ϕ(a)1)(b − ϕ(b)1)(a − ϕ(a)1)(b − ϕ(b)1)] = 0 leads finally to
ϕ(abab) = ϕ(aa)ϕ(b)ϕ(b) + ϕ(a)ϕ(a)ϕ(bb) − ϕ(a)ϕ(b)ϕ(a)ϕ(b). Analogously,
all mixed moments can (at least in principle) be calculated by reducing them
to alternating products of centered variables as in the definition of freeness.
Thus the statements sa, sb are free, and each of them being semicircular
determines all joint moments in sa and sb. This shows that sa and sb are not
ordinary random variables but take values on some noncommutative algebra.

To apply the theory of free probability to RMT, we need to extend the
definition of free to asymptotic freeness; that is, replacing the state functional
ϕ by φ, where

φ(A) = lim
n→∞

1

n
trE(An).

Since normalized traces of powers of a Hermitian matrix are the moments
of the ESD of the matrix, free probability reveals important information
on their LSD. It is shown that freeness of random matrices corresponds to
independence and to distributions being invariant under orthogonal trans-
formations. Formulas have been derived that express the LSD of sums and
products of free random matrices in terms of their individual LSDs.

For an excellent introduction to free probability, see Biane [52] and Nica
and Speicher [221].



Chapter 2

Wigner Matrices and Semicircular Law

A Wigner matrix is a symmetric (or Hermitian in the complex case) ran-
dom matrix. Wigner matrices play an important role in nuclear physics and
mathematical physics. The reader is referred to Mehta [212] for applications
of Wigner matrices to these areas. Here we mention that they also have a
strong statistical meaning. Consider the limit of a normalized Wishart matrix.
Suppose that x1, · · · ,xn are iid samples drawn from a p-dimensional multi-
variate normal population N(µ, Ip). Then, the sample covariance matrix is
defined as

Sn =
1

n− 1

n∑

i=1

(xi − x)(xi − x)′,

where x = 1
n

∑n
i=1 xi. When n tends to infinity, Sn → Ip and

√
n (Sn − Ip) →√

pWp. It can be seen that the entries above the main diagonal of
√
pWp

are iid N(0, 1) and the entries on the diagonal are iid N(0, 2). This matrix is
called the (standard) Gaussian matrix or Wigner matrix.

A generalized definition of Wigner matrix only requires the matrix to
be a Hermitian random matrix whose entries on or above the diagonal are
independent. The study of spectral analysis of the large dimensional Wigner
matrix dates back to Wigner’s [295] famous semicircular law. He proved
that the expected ESD of an n×n standard Gaussian matrix, normalized by
1/

√
n, tends to the semicircular law F whose density is given by

F ′(x) =

{
1
2π

√
4 − x2, if |x| ≤ 2,

0, otherwise.
(2.0.1)

This work has been extended in various aspects. Grenander [136] proved
that ‖FWn − F‖ → 0 in probability. Further, this result was improved as in
the sense of “almost sure” by Arnold [8, 7]. Later on, this result was further
generalized, and it will be introduced in the following sections.

Z.  . Bai and J.W. Silverstein, Spectral Analysis of Large Dimensional Random Matrices,
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2.1 Semicircular Law by the Moment Method

In order to apply the moment method (see Appendix B, Section B.1) to
prove the convergence of the ESD of Wigner matrices to the semicircular
distribution, we calculate the moments of the semicircular distribution and
show that they satisfy the Carleman condition. In the remainder of this sec-
tion, we will show the convergence of the ESD of the Wigner matrix by the
moment method.

2.1.1 Moments of the Semicircular Law

Let βk denote the k-th moment of the semicircular law. We have the following
lemma.

Lemma 2.1. For k = 0, 1, 2, · · · , we have

β2k =
1

k + 1

(
2k

k

)
,

β2k+1 = 0.

Proof. Since the semicircular distribution is symmetric about 0, thus we have
β2k+1 = 0. Also, we have

β2k =
1

2π

∫ 2

−2

x2k
√

4 − x2dx

=
1

π

∫ 2

0

x2k
√

4 − x2dx

=
22k+1

π

∫ 1

0

yk−1/2(1 − y)1/2dy (by setting x = 2
√
y)

=
22k+1

π

Γ (k + 1/2)Γ (3/2)

Γ (k + 2)
=

1

k + 1

(
2k

k

)
.

2.1.2 Some Lemmas in Combinatorics

In order to calculate the limits of moments of the ESD of a Wigner matrix,
we need some information from combinatorics. This is because the mean and
variance of each empirical moment will be expressed as a sum of expectations
of products of matrix entries, and we need to be able to systematically count
the number of significant terms. To this end, we introduce some concepts
from graph theory and establish some lemmas.
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vertices, and F is a function, F : E 7→ V ×V . If F (e) = (v1, v2), the vertices
v1, v2 are called the ends of the edge e, v1 is the initial of e, and v2 is the
terminal of e. If v1 = v2, edge e is a loop. If two edges have the same set of

Let i = (i1, · · · , ik) be a vector valued on {1, · · · , n}k. With the vector i,
we define a Γ -graph as follows. Draw a horizontal line and plot the numbers
i1, · · · , ik on it. Consider the distinct numbers as vertices, and draw k edges
ej from ij to ij+1, j = 1, · · · , k, where ik+1 = i1 by convention. Denote
the number of distinct ij’s by t. Such a graph is called a Γ (k, t)-graph. An
example of Γ (6, 4) is shown in Fig. 2.1.

5
i1=i7 i2=i6 i3=i4 i

Fig. 2.1 A Γ -graph

By definition, a Γ (k, t)-graph starts from vertex i1, and the k edges con-
secutively connect one after another and finally return to vertex i1. That is,
a Γ (k, t)-graph forms a cycle.

Two Γ (k, t)-graphs are said to be isomorphic if one can be converted to
the other by a permutation of (1, · · · , n). By this definition, all Γ -graphs are
classified into isomorphism classes.

We shall call the Γ (k, t)-graph canonical if it has the following properties:

1. Its vertex set is V = {1, · · · , t}.
2. Its edge set is E = {e1, · · · , ek}.
3. There is a function g from {1, 2, · · · , k} onto {1, 2, · · · , t} satisfying g(1) = 1

and g(i) ≤ max{g(1), · · · , g(i− 1)} + 1 for 1 < i ≤ k.
4. F (ei) = (g(i), g(i+1)), for i = 1, · · · , k, with convention g(k+1) = g(1) =

1.

It is easy to see that each isomorphism class contains one and only one
canonical Γ -graph that is associated with a function g, and a general graph
in this class can be defined by F (ej) = (ig(j), ig(j+1)). Therefore, we have the
following lemma.

Lemma 2.2. Each isomorphism class contains n(n−1) · · · (n− t+1) Γ (k, t)
graphs.

A graph is a triple (E, V, F ), where E is the set of edges, V is the set of

ends, they are said to be coincident.


