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Preface

“Um ein Bild zu gebrauchen, will ich sagen, dass Enzym und Glucosid wie Schloss und
Schliissel zueinander passen miissen, um eine chemische Wirkung aufeinander ausiiben
zu kinnen” [To use a picture, I would like to say that enzyme and glucoside have to fit
like a lock and a key, in order to exert a chemical action on each other] wrote Emil
Fischer in 1894, to illustrate his concept on protein-ligand interactions. Well, our
picture of the protein-ligand interaction has developed further. Instead of a rigid fit,
the concepts of induced fit and, later, flexible fit were formulated. Indeed, we have to
understand the interaction like a handshake, where the one partner adapts to the
other, in a mutual fit. Of course, this accommodation should not waste too much
conformational energy, otherwise the affinity of the ligand would be significantly
reduced. Correspondingly experience shows that compounds where the bioactive
conformation is fixed or at least stabilized are most often high-affinity ligands. On
the other hand, ligands that cannot achieve such a conformation will have no affinity
at all. However, these geometric requirements are only part of the story. In addition,
there must be complementary properties - similia similibus. Lipophilic groups
should find their counterpart, charges or partial charges should have opposite signs,
and hydrogen bond donor and acceptor groups should find together. The better this
complementarity, the higher will be the affinity, provided that there are no steric
clashes. Now, whereas this is a correct description of the requirements of a protein-
ligand interaction, it is a very simple one.

Holger Gohlke assembled a team of leading experts in this field to describe
not only the thermodynamics of binding but also the underlying biophysical
approaches. The major part of the book is devoted to the discussion of factors that
are responsible for the intermolecular interactions. Finally some challenges in
molecular recognition are discussed. In a logical and didactic way, this volume is
organized in four sections. The three introductory chapters review statistical ther-
modynamics of binding and molecular recognition models, practical rules for the
thermodynamic optimization of drug candidates, and the puzzling concept of
enthalpy-entropy compensation, as deduced from measurements of temperature
dependence. A section on the impact of biophysical experiments focuses, in parti-
cular, on interaction kinetic data generated by surface plasmon resonance biosen-
sors as well as NMR methods for the determination of protein-ligand interactions.
The central and most comprehensive section is dedicated to aspects of modeling

XVl



Xvii

Preface

protein-ligand interactions including polarizable force fields, quantum mechanics
in structure-based ligand design, the role of water in hydrophobic association,
implicit solvation models and electrostatics in molecular recognition, conforma-
tional aspects, free energy calculations in drug lead optimization, as well as scoring
functions for protein-ligand interactions. The final section on challenges for protein-
ligand interaction modelling considers druggability prediction, protein plasticity,
and protein-protein interactions.

The series editors are grateful to Holger Gohlke for his enthusiasm to organize
this volume and to work with such a selection of excellent authors. We believe that
this book adds a fascinating new facet to our book series on “Methods and Principles
in Medicinal Chemistry”. Last, but not least we thank the publisher Wiley-VCH, in
particular Frank Weinreich and Heike Néthe, for their valuable contributions to this
project and the entire series.

February 2012
Diisseldorf Raimund Mannhold
Weisenheim am Sand Hugo Kubinyi

Zirich Gerd Folkers



A Personal Foreword

Ever since I started my scientific work I have been fascinated by the questions what
makes two molecules bind to each other and how can one make use of this
knowledge to modulate biological processes: After all, “corpora non agunt nisi
fixata”, as Paul Ehrlich put it almost 100 years ago. Ehrlich’s statement that “bodies
do not act if they are not bound” is strikingly exemplified by about 130,000 binary
interactions in the human protein-protein “interactome” [1]. Along the same lines
and more oriented towards the topic of this book, the famous wall chart
“Biochemical Pathways” introduced by Gerhard Michal [2] is a vivid picture in
the eyes of a life science scientist, with its comprehensive view on metabolic
pathways and cellular and molecular processes, particularly involving interactions
between proteins and endogenous small-molecules.

For a xenobiotic ligand to exert an influence on an organism, it must bind to a
biological target, too. While this statement seems unspectacular nowadays, it still has
far-reaching consequences because it provides a valuable handle to explain and
predict biological activity, both beneficial and detrimental, in terms of affinity, a well-
defined thermodynamic property, of a ligand towards a (or multiple) targets. In fact,
the fields of medicinal chemistry and drug design have made use of different
variations of this theme over time depending on which type of information about
binding was available in each case.

From an inductive point of view, already since the very early days of modern
chemistry [3] structures of ligands and, hence, their binding properties, have been
correlated to activities. Further milestones on this route were the establishment of
quantitative structure-activity relationships and the comparison of ligands based on
concepts of similarity or dissimilarity of shape and chemical properties. From a
deductive point of view, the above theme summons medicinal chemists to look at
biological activity from the perspective of processes and contributions that lead to
binding, with structural information of the binding partners being of invaluable help.
As such, the event of (reversible) binding is a consequence of association and
dissociation processes and involves enthalpic and entropic components. If and how
these separate processes and components can be modulated by modification of a
ligand’s structure for the sake of overall optimized binding properties is a “hot topic”
at present in drug research. Furthermore, the deductive point of view allows one to
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XX | A Personal Foreword

apply a divide-and-conquer strategy when it comes to understanding and predicting
binding from a theoretical perspective. As a first approximation, binding can be
attributed to direct interactions between the binding partners mediated by an
aqueous environment, to which contributions due to changes in the conformation
and configuration of the binding partners add. While this approximation is valuable
in that it allows optimizing the description of each of these terms separately, it also
provokes the question to what extent does it hold or, phrased differently, when do
cooperativity or compensation effects prevail over additivity?

The majority of topics for this book were selected following this deductive point of
view, with an emphasis on rigorous approaches because I believe that these will be
more successful in the long term than ad hoc ones. The selection also focused on
topics that, at that time, had most quickened interests, had seen considerable
progress, or had still been major stumbling blocks in the description and prediction
of binding. Unsurprisingly, while much has been achieved in all of the covered areas
as undoubtedly laid out in each of the chapters, not in all cases have methods or
approaches lived up to one’s expectations so far. I am grateful to the authors for
pointing this out clearly — such insights will drive further developments that aim at
improving our understanding of protein-ligand interactions. Finally, I also tried to
balance topics related to biophysical experiments against theoretical and computa-
tional approaches, because I have learnt from my own work how well both sides can
complement and enhance each other, and what joy this gives.

Last but not least, I express my gratitude to all contributors for providing insightful
accounts on the topic of protein-ligand interactions, to the series editors Raimund
Mannhold, Hugo Kubinyi, and Gerd Folkers for giving me the opportunity to address
this topic, to my current working group for providing fruitful comments about the
chapters, and to Frank Weinreich and Heike No6the from the publisher Wiley-VCH
for their continuous support, great help, and even greater patience.

Diisseldorf, Germany Holger Gohlke
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Statistical Thermodynamics of Binding and Molecular
Recognition Models

Kim A. Sharp

1.1
Introductory Remarks

Equilibrium binding or association of two molecules to form a bimolecular complex,
A+B& AB, is a thermodynamic event. This chapter will cover some of the
fundamental thermodynamics and statistical mechanics aspects of this event. The
aim is to introduce general principles and broad theoretical approaches to the
calculation of binding constants, while later chapters will provide examples. Only
the noncovalent, bimolecular association under ambient pressure conditions will be
considered. However, extension to higher order association involves no additional
principles, and extension to high pressure by inclusion of the appropriate pressure—
volume work term is straightforward. In terms of the binding reaction above, the
association and dissociation constants are defined as K= [AB]/[A][B] and Kp =[A][B]/
[AB] respectively, where [] indicates concentration. Either K or Kp is the primary
experimental observable measured in binding reactions. Kp, is sometimes obtained
indirectly by inhibition of binding of a differentligand as a K;. From a thermodynamic
perspective, the information content from K, Kp, and K; is the same.

1.2
The Binding Constant and Free Energy

To connect the experimental observable K to thermodynamics, one often finds in the
literature the relationship
AGbind = —kTIn K, (1.1)

where k is the Boltzmann constant, T'is the absolute temperature, and AGyp;pq is the
“absolute” or “standard” binding free energy. Several comments are given to avoid
misuse of this expression. First, one cannot properly take the logarithm of a quantity
with units such as K, so Eq. (1.1) is implicitly

A Gbind = —kTIn

, 1.2
Vref ( )
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where V,ris the reference volume in units consistent with the units of concentration
in K, thatis, 11/mol or about 1660 A>/molecule for molarity units. The choice of Vi¢is
often referred to as the “standard state” problem. Equivalently, one says that AGp;,q is
the free energy change when reactants A and B and the product AB are all at the
reference concentration. Second, although the units of concentration used in K are
almost always moles/liter, this is entirely a convention, so the actual numerical value
for AGping obtained from Eq. (1.2) is arbitrary. Put another way, any method for
calculating the free energy of binding must explicitly account for a particular choice of
Vief before it can meaningfully be compared with experimental values of AGping
obtained using Eq. (1.2). Furthermore, ligand efficiency-type measures, such as
AGping/nwhere nis the number of heavy atoms in aligand or the molecular weight of
a ligand [1], can change radically with (arbitrary) choice of concentration units. Of
course, differences in AGy;ng can be sensibly compared provided the same reference
state concentration is used. Finally, in Eq. (1.2), the free energy actually depends on
the ratio of activities of reactants and products, not on concentrations. For neutral
ligands and molecules of low charge density at less than micromolar concentrations,
the activity and concentration are nearly equal and little error is introduced. However,
this is not true for high charge density molecules such as nucleic acids and many of
the ligands and proteins that bind to nucleic acids. Here, the activity coefficient can be
substantially different from unity even at infinitely low concentration. Indeed, much
of the salt dependence of ligand—-DNA binding can be treated as an activity coefficient
effect [2-4]. The issue of standard state concentrations, the formal relationship
between the binding constant and the free energy, and the effect of activity
coefficients are all treatable by a consistent statistical mechanical treatment of
binding, as described in Section 1.3.

1.3
A Statistical Mechanical Treatment of Binding

Derivation of a general expression for the binding constant follows closely the
approach of Luo and Sharp [5], although somewhat different treatments
using chemical potentials, which provide the same final result, are given else-
where [6-8]. It is a statistical mechanical principle that any equilibrium observable
can be obtained as an ensemble, or Boltzmann weighted average, of the appropriate
quantity. Here, the binding constant K=[AB]/[A][B] is the required observable.
Consider a single molecule each of A and B in some volume V (Figure 1.1) and for
convenience define a coordinate system centered on B (the target) in a fixed
orientation. Over time, the ligand (A) will explore different positions and orientations
(poses) relative to B, where r and Q represent the three position and three orientation
coordinates of A with respect to B. Now A and B interact with each other with an
energy that depends not only on their relative position (r, Q) butin general also on the
conformations of A, B, and the surrounding solvent. If n,, n, ns are the number of
atoms in A, B, and solvent, then the energy is a function of 3n,+ 3n, + 3n;— 6
coordinates. In principle, one could keep all these degrees of freedom explicit. From a
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Solvent

Figure 1.1 Schematic illustration of two molecules A and B interacting through solvent with a
potential of mean force w as a function of their relative position r and orientation Q.

practical standpoint, this would be a complicated and expensive function to evaluate.
However, one may integrate over the solvent coordinates and the (3n,—6)+
(3m, — 6) internal coordinates so that the interaction between A and B for a given
(r, Q) is described by an interaction potential of mean force (pmf) w(r, Q). If one
defines the pmf between A and B at infinite separation in their equilibrium
conformations to be 0, then w(r, Q) is the thermodynamic work of bringing A and
B from far apart to some mutual pose (r, 2), accounting for both solvent effects and
internal degrees of freedom of A and B. A will sample each pose (r, Q) with a
probability given by the Boltzmann factor of the pmf:

p(r, Q) x e’ﬁ‘“(”m, (1.3)

where f = 1/kT. Indeed, one may consider the pmfto be defined by this equation. The
binding constant will then be given by the fraction of time A is in the bound state, fap,
relative to that in the free state, fz:

k=B ___Jo/V__ oy (1.4)

AIB] - (F/V)(/V) V==
where in the dilute limit fr — 1. It is convenient to introduce a function H(r, Q) that
takes a value of 1 for poses where A is bound and a value of 0 when it is free. Then, the
fraction of the time A is bound is given by the ensemble average of H:

£ = JdrdgH(r, Qe e Jdr dQeFe2). (1.5)

The integrals are taken over all orientations and over the entire volume of the
solution, so the denominator gives 87°V. Substituting into Eq. (1.4), the final
expression for the association constant is
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K= ijdrdQH(r Q)e o), (1.6)
82 ’
One may then convert this to an “absolute” binding free energy using Eq. (1.2):

AGyna = kT (872 Vier) — KT In Jdr dQH(r, Q)e P, (1.7)

¢ Equation 1.6 is a general and exact expression for the association constant. The
integral depends explicitly on just six variables describing the pose of A with
respect to B. The other degrees of freedom are included implicitly, but exactly
through the thermodynamic quantity w(r, Q), the potential of mean force.

o The different treatment of coordinates for translation/orientation versus the
others is a formal one: Any subset of coordinates may in principle be kept explicit,
with the appropriate pmf being used for the rest. For example, one may keep the
internal coordinates of A and B explicit, making the solvent coordinates implicit.
The choice here is designed to highlight the translation/rotation contribution to
binding that has been widely discussed, with some disagreement, in the litera-
ture [5, 6, 9-13]. It also reflects the practical fact that in many docking and
screening applications, a particular pose is generated explicitly, that is, (r, Q) is
specified, and then the pose is “scored” in some way. The pmf also provides a
natural way to introduce approximations necessary for any practical calculation of
K in biological systems, for example, in the treatment of solvent.

¢ The integral has the correct units of volume, with the length scale for the
translation coordinates being determined by the units of concentration used in
K. The first term in Eq. (1.7) is the contribution of the rotation/translation (R/T)
entropy in the unbound state, which depends on the reference concentration. The
integral term in Eq. (1.6) is the Boltzmann phase volume of the bound state.

e Through H(r, Q), there is explicit consideration of what constitutes the bound
complex, in terms of the relative position and orientation of A with respect to B.
For example, if B has more than one binding site for A, this would be taken into
account in the specification of where H=1.

o FEither Cartesian coordinates or the bond length, bond angle, and dihedral angle
coordinates may be used. The trend now is toward the latter, as they lend
themselves more naturally to the analysis of different internal motions of the
molecules and their contribution to binding.

The meaning of Eq. (1.6) is illustrated by two simple examples.

1.3.1
Binding in a Square Well Potential

Let the pmf be approximated by a simple, three-dimensional square well potential of
depth ¢ and width b in each of the x, y, z directions and the bound complex be the
region in the well only. From Eq. (1.6), the association constant is
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K =be* (1.8)
and Eq. (1.2) yields
AGping = —& + kT In(Vier /D). (1.9)

The first term, the well depth, makes a direct, linear contribution to the binding
free energy. The second term is positive and comes from the restriction of the ligand
to the square well. It is the translation entropy penalty for binding, and it depends on
the ratio of the volumes available to the ligand in the free state at say 1 M (the entire
volume V) versus that in the bound state. In this simple example, there is no
rotational entropy penalty because in the bound state the ligand can rotate freely in
87 of orientation phase volume, just as in the free state. However, restriction in
rotation in the bound state will add another positive term to AGy;,g, the rotation
entropy penalty, with a similar form: kTIn(87%/ V), where Vg < 87 is the orien-
tation phase volume in the bound state. We can see even from this simple example
that for any meaningful degree of binding, the translational and rotational phase
volumes available to a ligand in the bound state must be less than V. and 812,
respectively, so there is always a R/T entropy penalty to be overcome for binding to
occur. The question is how much is it in specific cases. A related point is that even
though the depth of the well may be known, for example, from some calculation (in
the parlance of the field, from a single point energy determination), this cannot be
directly compared with AGy;,q because the second term is not included. The
numerical value of the binding free energy depends on the reference concentration,
which is nowhere in the single point calculation. One way or another, the residual R/T
entropy of A in the bound state must be accounted for.

13.2
Binding in a Harmonic Potential

If one is starting from a known complex structure derived from, for example, X-ray,
NMR, or molecular mechanics minimization, one is presumably close to the
minimum energy (pmf) configuration. The pmf in this region may be close to
harmonic or at least expandable in a Taylor expansion, which to second order is
harmonic. It is, therefore, instructive to consider binding in a harmonic potential,
although this is a simplified model of the real situation. Let the potential well be a
three-dimensional harmonic potential of the form
"2

o(r) = e((E) - 1)(7’ <b), w(r)=0(r>b), (1.10)

where ¢ is the depth of the well at the minimum, r is the radial distance from the
minimum, and b defines the width so that for r > b, o =0 (Figure 1.2). Again, the
bound complexis defined to be the region in the well only. Substituting Eq. (1.10) into
Eq. (1.6) and integrating, the association constant for this truncated harmonic
potential is
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Figure1.2 Contributions to the binding-phase  Contributions were calculated for a truncated
integral. Dotted line: Value of the integrand of  three-dimensional harmonic well potential, half-
Eq. (1.6) at . Solid line: Value of the resulting ~ width 2 A and depth 19.6kT (inset) that has
integral from 0 to r. Both are expressed as a Ka=10uM.

percentage of the total association constant.

X oo 71n(ﬂ )VL . 3/2
K = b (4:1;(2?;,1!) ~ bl (ﬁe) . (1.11)

The approximate equality comes from using an untruncated harmonic potential
(i-e., the potential goes to infinity as the complex is dissociated), which for this case
gives a binding free energy of

AGying = —& + kT In(Vier /b*) — 3/2kT In(it/Be). (1.12)

Comparing the square well and harmonic potential models, one sees that the
“depth” and “volume” factors, ¢ and b®, contribute in the same way to the
binding constant, the difference being a “well shape” factor. We see from the form
of the expression for the association constant that the lower the pmf, the more the
contribution to the integral by that region, so most of the contribution to binding
should come from the near minimum energy configuration. This is illustrated in
Figure 1.2, using a well half-width of 2 A and a depth of 19.6kT. These parameters
are chosen to give a moderate affinity of 10 uM — typical of the compounds studied
by virtual screening and docking calculations in early lead identification — with a
reasonable degree of motion in the binding pocket. It can be seen that almost all
the contribution to the binding constant comes significantly before reaching the
well boundary. Thus, the problem of giving the exact definition of the complex in



