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Preface

Composite materials, usually man-made, are a three-dimensional combination of at
least two chemically distinct materials, with a distinct interface separating the
components, created to obtain properties that cannot be achieved by any of the
components acting alone. In composites, at least one of the components called
the reinforcing phase is in the form of fibers, sheets, or particles and is embedded in
the other materials called the matrix phase. The reinforcing material and the matrix
material can be metal, ceramic, or polymer. Very often commercially produced
composites make use of polymers as the matrix material. Typically, reinforcing
materials are strong with low densities, while the matrix is usually a ductile, or
tough, material. If the composite is designed and fabricated adequately, it combines
the strength of the reinforcement with the toughness of the matrix to achieve
a combination of desirable properties not available in any single conventional
material.

The present book focuses on the preparation and characterization of polymer
composites with macro- and microfillers. It examines the different types of fillers
especially as the reinforcing agents. The text reviews the interfaces in macro- and
microcomposites and their characterization. Advanced applications of macro- and
micropolymer composites are discussed in detail. This book carefully analyses the
effect of surface modification of fillers on properties and chemistry and reinforcing
mechanism of composites. It also introduces recovery, recycling, and life cycle
analysis of synthetic polymeric composites.

The book is organized into five parts. Part One contains four chapters. Chapter 1 is
an introduction to composites, classification, and characteristic features of polymer
composites, their applications in various fields, state of the art, and new challenges
and opportunities.

Chapter 2 focuses on micro- and macromechanics of polymer composites. Knowl-
edge of micro- and macromechanics is essential for understanding the behavior,
analysis, and design of polymer composite products for engineering applications.

Chapter 3 deals with interfaces in macro- and microcomposites. Interface plays a
big role in physical and mechanical behavior of polymer composites. It deals with
the various techniques and analyses of the interfacial properties of various polymer
composite materials.



XXVI

Preface

Chapter 4 describes various preparation and manufacturing techniques for poly-
mer composites starting with simplest hand lay-up (contact molding) to sophisti-
cated autoclave molding and CNC filament winding methods.

Part Two deals with fiber-reinforced polymer composites and Part Three discusses
textile composites.

Each of the seven chapters included in Part Two deals with a particular fiber as
reinforcement for polymer matrices. These fibers are carbon, glass, Kevlar, polyester,
nylon, polyolefin, and silica.

Each of the four chapters included in Part Three deals with a particular form of
textiles as reinforcement. These textiles are 2D woven fabric, 3D woven fabric,
geotextiles, and hybrid textiles.

The first five chapters included in Part Four deal with different microsized fillers
reinforcing the polymer matrix. Different microparticulate fillers include carbon
black, silica, metallic particles, magnetic particles, mica (flakes), and so on. The last
chapter of this part deals with viscoelastically prestressed polymer composites.

Finally, Part Five studies applications of macro- and microfiller-reinforced poly-
mer composites. Polymer composites find applications in all types of engineering
industry, namely, aerospace, automobile, chemical, civil, mechanical, electrical, and
so on. They also find applications in consumer durables, sports goods, biomedical,
and many more areas.

Sabu Thomas, Kuruvilla Joseph,
Sant Kumar Malhotra, Koichi Goda,
and Meyyarappallil Sadasivan Sreekala
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