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Preface

The idea of this book was to disseminate some valuable results achieved by two
European projects on monitoring and control of industrial crystallizers:

1) CRYSEN (2000–2003) on the Development of new sensors for industrial
crystallization;
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Control system for crystallization PROcesses. This second European project
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and Japanese teams.
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order to provide a new publication to the industrial crystallizer community. Then,
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from academia and industry, expert in the specific subject.

Therefore, the two editors are greatly grateful to the two Chairmen of the WPC,
who promoted the book writing, Joachim Ulrich and Beatrice Biscans and to the
following WPC members, who with their referee’s work contributed to improve
the quality of the book:
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Philippe Carvin
Roger Daudey
Brian Glennon
Laurent Laferrere
Jaime Morales
Zoltan Nagy
Matthias Raouls
Ake Rasmuson

December 2011 Angelo Chianese and Herman J. M. Kramer
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Scope of the Book

Control of Crystallization Processes in Industrial Practice

Crystallization from a solution is a separation technique, where one of more
components of the solution are separated as a solid phase. Application of a
crystallization process can be aimed at the separation of a component from a
multicomponent mixture, but in most cases it is focused on the production of
a solid product from a liquid mixture. In both types of application, the product
quality of the solid product has to meet stringent specifications, and especially
for solid products manufacturers have to meet ever-increasing demands of the
customers on particle properties such as particle size distribution, crystal shape,
degree of agglomeration, caking behavior, and purity. Since for an economic
beneficial operation a smooth separation of the produced crystals from the mother
liquor is essential, additional demands on filterability and washability need to be
obeyed. It is obvious that in order to achieve the increasing demands on product
quality, crystallization processes have to be carefully controlled.

Crystallization from a liquid solution is the most important production and
separation process in the fine chemical and food industry and one of the most
important processes in the chemical process industry as a whole. Overall it is
estimated that 70% of the products sold by the chemical process industry are
solids. Many intermediates (e.g., adipic acid for nylon production), fine chemicals,
pharmaceuticals (e.g., aspirin), biochemical, food additives, and bulk products such
as fertilizers are solids obtained through crystallization.

Both market needs and governmental policies demand continuous efforts in
research and development to improve existing technologies, with respect to eco-
nomics, operability, and sustainability.

In order to achieve an optimal production capacity and the desired crystal
properties, the process conditions during the crystallization operation should be
controlled in such a way that the product specifications can be met at conditions
of profitability and trouble-free production. The crystallization process variables
either should be controlled by the configuration of the process/equipment or must
be manipulated during operation, either to achieve a desired profile during batch
operation or to compensate for process disturbances during continuous operation.
In this respect three different levels of control can be identified. The first level
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consists of a base layer control to keep constant the basic process variables such
as the materials and enthalpy fluxes the gas–liquid level, the temperature and
the pressure in the crystallizer at their design values to ensure a trouble-free
reproducible production. The next level, the control of supersaturation, is more
complicated as it requires a precise monitoring of the solute concentration and
precise knowledge of the saturation concentration at the process conditions. The
setting of this variable entails detailed knowledge of the optimal operation window
for the driving force to achieve an optimal balance between the production capacity
and the product quality. Finally, the control of the product quality as a whole,
in most cases expressed in terms of its crystal size distribution (CSD), is the
third, most difficult and worthwhile level of control and requires both an online
monitoring of this product quality and detailed knowledge of the process. The
advantage of supersaturation control is that in principle it allows for a so-called
model-free control strategy, avoiding time-consuming development and validation
of a detailed process model as is required for controlling the product quality directly.

Industrial crystallizers are seldom operated under automatic control schemes
because of the lack of reliable sensors and process models. Robust and reliable
sensors for in situ monitoring of the relevant process variables, that is, the CSD
and the solute concentration, were not available for a long time and only recently
some in situ sensors have started to be applied at industrial level. The development
of process models is another obstacle for the application of feedback (FB) schemes
for quality control. Due to the absence of general reliable crystallization models and
problems encountered in the prediction of the effects of scale up, dedicated models
have to be developed and validated for each individual case which has proven to be
a very difficult and costly matter. This leads us to adopt open loop quality process
control schemes where the main process variable are operated at the conditions
that are supposed to lead to the desired product quality, without an automatic
closed loop control of product quality. Unfortunately, the absence of an effective
control system typically entails a poor quality control, which must be compensated
for by additional processing such as follows:

• classification of crystalline product streams and reprocessing of under and
oversized (agglomerated) products;

• exhaust air treatment for dust abatement;
• higher energy consumption in the drying process and reprocessing of the off-spec

product;
• significant decrease of productivity resulting in reduced total plant throughput

and impacting investment costs to reach the required capacity;
• production costs increase (about 5% of total production costs could be avoided

adopting an effective control in batch processes); and
• higher environmental impact due to the required increase in use of solvent and

chemicals.

Ideally industrial crystallizers are operated in such a way that the product specifi-
cations are met under conditions which permit a profitable trouble-free production
of the desired crystalline material. In industrial practice however, a large number
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of operational problems can be encountered which reduce the crystallizer perfor-
mances, such as deposition of crystalline material on the crystallizer internals,
variations in the feed composition, less effective heat transfer operations, inappro-
priate seeding procedures, and so on. These process disturbances will inevitably
lead to production losses and/or deterioration of the product quality.

In conclusion, the problem in the quality control of industrial crystallizers is far
from its solution. For this reason, much effort has to be spent on the development
of new online sensors and more advanced control approaches.

Different control approaches are applied for crystallization processes belonging to
pharmaceutical plants and commodities plants. In the first case, usually processes
are performed in batch mode, by applying cooling or antisolvent techniques,
concerning high added value products, whose quality is the first objective to be
pursued. It is well known that even minor changes in crystallization process
conditions and equipment, for example, supersaturation, temperature, impurity,
cooling rate, or reactor hydrodynamics, can result in significant variations in the
crystal and downstream powder properties, notably, polymorphic form, particle
size, shape, purity, and defect structure. The market price of the active products
may reach values of several thousands of Euros per kilogram, thus allowing the
achievement of sophisticated instrumentations to monitor and control the product
quality throughout the crystallization process.

The second area of crystallization applications concerns so-called commodities
products, processed in continuous mode in huge amount with relatively poor
specifications and having a small added value which does not allow high investment
cost per product unity.

The development and application in recent years of expansive and sophisticated
sensors are due to the increasing interest from the pharmaceutical companies in
the improvement of the crystallization processes operation and their large need for
research investigations at lab scale. Among these instruments are those based on
attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy,
in situ chord length distribution of crystals from laser backscattering by focus beam
reflectance measurement (FBRM) probe and in situ online video microscope. Most
of the available in situ sensors are robust enough to be applied in the production
environment. This opened the possibility of FB control-based crystallization design
and operation. The new opportunities are well described by the guideline document
issued in 2004 by the U.S. Food and Drug Administration (FDA), as part of
a broader initiative on current Good Manufacturing Practices (cGMP) (FDA,
2004). This document emphasized the development and use of novel technologies
based on process analytical technologies (PAT) as a tool for ‘‘twenty-first century
manufacturing’’ moreover, the development of tailored process control strategies
was recognized as the most important way to prevent or mitigate the risk of
producing poor quality products.

This new scenario provides significant potential for implementation of optimal
and adaptive control methodologies with real economic benefits associated with
better product quality (Nagy, Fujiwara, and Braatz, 2008; Woo, Tan, and Braatz,
2011).
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A quite different situation holds for the crystallization processes included in
commodities plants. In fact, in this case the productivity and the CSD are the main
issues. In order to achieve these two objectives, the use of traditional online sensors
with improvement performances, such as turbidimeters and refractometers, is
welcome. Only seldom new sophisticated and expensive instruments such as the
FBRM sensor are adopted and most of the quality product assessments in terms
of the CSD are carried out off-line by taking samples and making use of sieve
analysis, laser diffraction instruments, or an optical microscope. More attention
is devoted to the manipulation of specific variables to maintain the crystallizer
under control, even if in a nonautomatic way. In this respect the fines removal, the
agitation by an impeller, and the amount of added seed crystals are the most used
manipulating variables. However, to make use of various features to control the
product quality in modern continuous crystallizers, such as draft tube baffled (DTB)
crystallizers, simultaneous manipulation of different process inputs is needed.
The full exploitation of these crystallizers therefore requires the application of
multivariable control techniques, especially when different aspects of the product
quality have to be controlled or when the product quality needs to be preserved
at different production capacities, as has been shown in several research studies
(Trifkovic, Sheikhzadeh, and Rohani, 2009; Sheikhzadeh, Trifkovic, and Rohani,
2008; Seki, Amano, and Emoto, 2010; Valencia Peroni, Parisi, and Chianese, 2010).

Content of the Book

In this book the monitoring and control of industrial crystallizers is discussed. All
the necessary ingredients for the development and implementation of a control
strategy for batch and continuous operated crystallization processes are reported.
The emphasis will be on cooling and evaporative crystallization processes, although
the methodology can also be applied for other types of crystallization processes
such as pH shift and antisolvent crystallization or precipitation processes. The
book is written primarily for process and control engineers interested in improving
the performances of their crystallization processes and for chemical and control
engineering students interested in application of online sensors and control
schemes to crystallization processes.

The basic philosophy followed in the book is that the availability of an in situ
monitoring technique is essential for the successful implementation of a control
strategy. The implementation, calibration, and testing of such a sensor is not
straightforward and is therefore discussed in detail in this book. The control
strategy is to a large extent dependent on the choice of the sensors, but it is also
related to the crystallization system, the product specifications, and the available
equipment. The other aspect emphasized in this book is the possibility of applying
a model-based control strategy. This choice leads to flexible and cost-effective
operations of continuously and batchwise operated industrial crystallizers. One
of the key factors for such an approach is the availability of generalized rigorous
process models which are easily tunable for the specific application and which can
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describe the evolution of the product quality in industrial crystallizers in a broad
range of process conditions. This so-called master model, which in most cases
is a complex nonlinear model, can then be used, provided that the appropriate
tools are available, for optimization of the process conditions or trajectories, for
a controllability analysis and after appropriate model reductions for the dynamic
observer and the model predictive controller. This approach, which has successfully
been developed recently, will be discussed in detail in this book. However, also
more traditional single loop control strategies to improve the reproducibility and
the product quality will be discussed extensively.

The first part of the book provides the reader with an overview on the
state-of-the-art on instrumentation and methodologies for the online or in situ
monitoring of relevant process variables in process environments, aiming at the
online analysis and control of the crystallization process. After a first chapter where
a number of different techniques for the characterization of the CSD are discussed
and compared, instruments of commercial instruments, capable of determining
either online or in situ some aspects of the CSD, are described (Chapters 2–5).

Traditional and new sensors for the measurement of nucleation and solubility
points of solution are illustrated in Chapter 6. These techniques allow the deter-
mination of the metastable range width, which is the basis for the development
of any crystallization process. Many measurements techniques are present in
the literature, such as those based on dielectric constant (Hermanto et al., 2011),
calorimetric analysis (Lai et al., 2011), and conductivity (Genceli, Himawan, and
Witkamp, 2005), but those based on turbidity and ultrasound analysis are the most
common and reliable ones, and moreover provided by relatively cheap instruments.

The online measurement of the solute concentration may be provided by a
relatively cheap instrument, by an online refractometer, or by more sophisticated
and expansive ones, as those based on ATR FTIR and Raman spectroscopy.
These latter techniques, discussed in a recent paper of Kadam et al. (2010), are
now currently adopted in investigation on pharmaceutical products, whereas that
based on refractometry is advantageously applied in the sugar industry. All these
techniques are widely reported in Chapters 7–10.

The second part covers the dynamic control of batch and continuously operated
industrial crystallizers. In this part dynamic models suitable for model-based control
strategies are discussed, as well as methods for parameter estimation and validation.
Also the application of these models for the optimization of the process conditions is
described. The basic, model free, control of batch operated crystallization processes
is discussed in Chapters 11 and 12. In these Chapters particular attention is given
to the control of the supersaturation profile during the batch process, based on a
predefined recipe. The seeding technique is also examined and its optimal applica-
tion is discussed with regard to the crystallization phenomena kinetics. This tech-
nique may have a very important role to control the initial phase of a batch process
where the initial distribution of the crystals is generated or added to the crystallizer.

Advanced recipe and model based control is discussed in Chapters 13 and 14.
In both process models are used to determine an optimal profile to achieve the
desired process or product performances. In Chapter 13 the FB control is applied
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on the basis of an off line determined recipe or profile, while in Chapter 14,
closed loop implementations of the model based control strategy are illustrated
using state estimators and a real time optimization of the trajectory. This latter
approach allows an early detection and feedback of process disturbances. The
control of continuously operated crystallization processes is treated in Chapters 15
and 16. Firstly the main manipulation technique, that is, the one based on fines
removal, is presented. Then in Chapter 16, the application of a model predictive
control (MPC) for continuous crystallization processes is introduced. Both single
loop control strategies as well as multivariable predictive control strategies are
discussed. This chapter also gives a introduction into the principles, the design,
and the implementation of MPC, including the necessary state estimation, are
discussed in detail and some application examples are given.

Finally, in Chapter 17 the main types of crystallizers adopted in continuous
crystallization process involving commodities are described together with their
P&I schemes. This contribution is given by one of the leader worldwide companies
in the design and construction of industrial crystallizers. The choice of the main
instruments to be adopted for industrial units and their location inside the
crystallizer, together with a discussion on the control valve to be used, completes
information of the crystallizer’s design.

Herman J. M. Kramer
Angelo Chianese
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1
Characterization of Crystal Size Distribution
Angelo Chianese

1.1
Introduction

Crystalline population coming out from a crystallizer is characterized by its size
distribution, which can be expressed in different ways. The crystal size distribution
(‘‘CSD’’) may, in fact, be referred to the number of crystals, the volume or the
mass of crystals with reference to a specific size range, or the cumulative values of
number, volume or mass of crystals up to a fixed crystal size. The first approach
refers to a density distribution, whereas the second one to a cumulative size
distribution.

However, it is also useful to represent the CSD by means of a lumped parameter
as an average size, the coefficient of variation, or other statistical parameters which
may be adopted for the evaluation of a given commercial product.

In this section the more usual ways to represent both the whole CSD and the
lumped CSD parameters are presented.

1.2
Particle Size Distribution

The particle size distribution may be referred to the density distribution or
cumulative distribution. Each distribution may be expressed in number, volume,
or mass of crystals.

The cumulative variable, F(L), expresses number, volume, or mass of crystals
per unit slurry volume between zero size and the size L, whereas the density
distribution function, f (L), refers to number, mass, or volume of crystals per unit
slurry volume in a size range, whose average size is L.

The relationship between the cumulative size variable and the density distribution
size one is as follows:

F(L) =
∫ L

0
f (L)dL (1.1)
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