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Preface

The chemistry of molecular recognition began more than 50 years ago with the
discovery of crown ethers as selective host molecules for alkali metal ions by
Dr. Pedersen. In the last 30 years, the chemistry of molecular recognition has greatly
expanded. For example, Cram et al. incorporated host–guest chemistry and Lehn
created supramolecular chemistry. To date, numerous studies have been published
on supramolecular complexes.

Moreover, in biological systems, macromolecular recognition by other macromo-
lecules plays an important role in maintaining life (e.g., DNA duplication as well as
enzyme–substrate and antigen–antibody interactions). Supramolecular polymer
complexes are crucial for the construction of biological structures such as micro-
tubules, microfilaments, and cell–cell interactions.

Synthetic supramolecular polymers have great potential in the construction of
new materials with unique structures and functions, because polymers contain vast
amounts of information on theirmain-chains and side-chains. For example, in 1990,
supramolecular polymers consisting of cyclodextrins and synthetic polymers were
reported. Prof. Lehn�s textbook, Supramolecular Chemistry, which was published in
1995, mentions supramolecular polymers. Prof. Meijer and Prof. Zimmerman
reported supramolecular polymers linked by multiple hydrogen bonds. Since then
numerous other reports on supramolecular polymers have been published.

This book is geared toward current supramolecular polymer researchers as well as
other interested individuals, including young researchers and students. Each chap-
ter is written by experts who are actively engaged in supramolecular polymer
research and have published important papers in the field.

I am honored to be a part of this project, and have eagerly anticipated receiving
each chapter. They have all exceeded my expectations, and together they form a book
that will become a cornerstone in the field of supramolecular polymer research and,
I believe, will help to shape research in the future.

Finally, I would like to express my sincere appreciation to the authors and to all
who have assisted in the preparation of this book.

Osaka Akira Harada
May 2011
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1
Multiple Hydrogen-Bonded Supramolecular Polymers
Wilco P.J. Appel, Marko M.L. Nieuwenhuizen, and E.W. Meijer

1.1
Introduction

1.1.1
Historical Background

Since the introduction of the first synthetic polymer more than a hundred years ago
by Leo Hendrik Baekeland, covalent polymers have become indispensable in
everyday life. The term �polymeric� was first introduced in 1832 by J€ons Jacob
Berzelius to describe a compound with a higher molecular weight than that of the
normal compoundbutwith an identical empirical formula as a result of the repetition
of equal units [1]. In 1920, Hermann Staudinger defined polymers, which he called
macromolecules, to be multiple covalently bound monomers. For this work he was
awarded with the Nobel Prize in 1953 [2]. Today, our knowledge of organic synthesis
and polymer chemistry allows the preparation of virtually any monomer and its
associated polymer. In addition, an in-depth understanding of �living� types of
polymerization facilitates tuning of the molecular weight and molecular weight
distribution, at the same time creating the possibility to synthesize a wide variety of
copolymers [3].

The macroscopic properties of polymers are directly linked to their molecular
structure. As a result, polymer chemists devised synthetic approaches to control the
sequence architecture.More recently, the importance of introducing supramolecular
interactions between macromolecular chains has become evident, and many new
options have been introduced. Thefinal step in this development would be to develop
polymers entirely based on reversible, noncovalent interactions. Rather than linking
the monomers in the desired arrangement via a series of polymerization reactions,
themonomers are designed in such a way that they autonomously self-assemble into
the desired structure. As with covalent polymers, a variety of structures of these
so-called supramolecular polymers are possible. Block or graft copolymers, as well as
polymer networks, can be created in this way.

The first reports on supramolecular polymers date back to the time when many
scientists studied themechanismbywhich aggregates of smallmolecules gave rise to

j3
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increased viscosities. To the best of our knowledge it was LouiseHenrywho proposed
the idea of molecular polymerization by associative interactions in 1878, approxi-
mately at the same time that van der Waals proposed his famous equation of state,
which took intermolecular interactions in liquids into account, and was only 50 years
after Berzelius coined the term polymers. Stadler and coworkers were the first to
recognize that hydrogen bonds can be used to bring polymers together [4]. Lehn and
coworkers synthesized the first main-chain supramolecular polymer based on
hydrogen bonding [5]. In our group, we introduced the self-complementary
ureido-pyrimidinone (UPy) quadruple hydrogen-bonding motif that shows a high
dimerization constant and a long lifetime. In this chapter, we review the field of
supramolecular polymers based on multiple hydrogen bonds and discuss some
general approaches to the creation of supramolecular materials based on multiple
hydrogen-bonded supramolecular polymers.

1.1.2
Supramolecular Chemistry

Jean-Marie Lehn defined supramolecular chemistry as �. . . a highly interdisciplinary
field of science covering the chemical, physical, and biological features of chemical species
of higher complexity, which are held together and organized by means of intermolecular
(noncovalent) binding interactions [5].� This exciting new field introduced the
possibility of self-sorting of subunits during the self-assembly process. At the
same time large, complex structures can be created by the assembly of small
supramolecular building blocks, thereby allowing the elimination of elaborate
synthetic procedures. Complex self-assembly processes are widely recognized to
have played an important part in different elements of the origin of life. As a
result, many researchers explored different aspects of the field of supramolecular
chemistry, using noncovalent interactions to self-assemble molecules into well-
defined structures. Noncovalent interactions can vary in type and strength,
ranging from very weak dipole-dipole interactions to very strong metal-ligand or
ion-ion interactions with binding energies that can approach that of covalent
bonds [6]. The most obvious benefits of noncovalent interactions are their
reversible nature and their response to external factors such as temperature,
concentration, and the polarity of the medium. A subtle interplay between these
external factors allows precise control of the self-assembly process. Due to their
directionality and the possibility to tune the dynamics and lifetime, hydrogen
bonds are among the most interesting assembly units for supramolecular poly-
mers. Before focusing on hydrogen bonding, we shall first address the different
mechanisms for the formation of supramolecular polymers.

1.1.3
Supramolecular Polymerization Mechanisms

The mechanism of noncovalent polymerization in supramolecular chemistry is
highly dependent on the interactions that play their part in the self-assembly process.

4j 1 Multiple Hydrogen-Bonded Supramolecular Polymers



In contrast to covalent bonds, noncovalent interactions depend on temperature and
concentration, thereby affecting the degree of polymerization. The mechanisms of
supramolecular polymerizations can be divided in three major classes, these being
isodesmic, cooperative, or ring-chain equilibria (Figure 1.1) [7].

Isodesmic polymerizations occur when the strength of noncovalent interactions
betweenmonomers is unaffected by the length of the chain. Because each addition is
equivalent, no critical temperature or concentration of monomers is required for the
polymerization to occur. Instead, the length of the polymer chains rises as the
concentration of monomers in the solution is increased, or as the temperature
decreases.

The ring-chain mechanism is characterized by an equilibrium between closed
rings and linear polymer chains. In this mechanism, below a certain monomer
concentration the ends of any small polymer chain react with each other to generate
closed rings. Above this critical concentration, linear chain formation becomesmore

Figure 1.1 Schematic representation of the major supramolecular polymerization mechanisms.
Reprinted with permission from Nature Publishing Group [7].
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favored, and polymer growth is initiated. The degree of polymerization changes
abruptly once the critical conditions are reached. The critical polymerization con-
centration is largely dependent on the length and rigidity of the monomers.
Especially at low concentrations, the presence of cyclic oligomers can drastically
influence the macroscopic properties.

Cooperative polymerizations occur in the growth of ordered supramolecular
polymers in which there are additional interactions present besides the formation
of linear polymers, such as those that form helices. This involves two distinct
phases of self-assembly: a less favored nucleation phase followed by a favored
polymerization phase. In this mechanism, the noncovalent bonds between mono-
mers are weak, hindering the initial polymerization. After the formation of a
nucleus of a certain size, the association constant is increased, and further
monomer addition becomes more favored, at which point the polymer growth is
initiated. Long polymer chains will form only above a minimum concentration of
monomer and below a certain temperature, resulting in a sharp transition from a
regime dominated by free monomers and small aggregates to a regime where
almost all of the material is present as large polymers. For further details about
supramolecular polymerization mechanisms we would refer the reader to a recent
review by our group [7].

1.2
General Concepts of Hydrogen-Bonding Motifs

The existence of the hydrogen bond was first suggested by Moore and Winmill in
1912 [8], and it was defined in 1920 by Latimer and Rodebush as �a hydrogen nucleus
held between 2 octets, constituting a weak bond� [9]. In that time the concept of hydrogen
bonding was used to explain physical properties and chemical reactivities due to
intramolecular and intermolecular hydrogen bonding. Nowadays, we interpret
hydrogen bonds as highly directional electrostatic attractions between positive
dipoles or charges on hydrogen and other electronegative atoms. In the field of
supramolecular chemistry, hydrogen bonding is currently one of the most widely
applied noncovalent interactions.

1.2.1
Arrays of Multiple Hydrogen Bonds

Hydrogen bonding is especially suitable as a noncovalent interaction because of the
high directionality of the hydrogen bonds. In general, the strength of a single
hydrogen bond depends on the strength of the hydrogen bond donor (D) and
acceptor (A) involved, and can range from weak CH – p interactions to very strong
FH – F� interactions. When multiple hydrogen bonds are arrayed to create linear
hydrogen-bonding motifs, both their strength and directionality are increased.
However, the binding strength of the motif is dependent not only on the type and
number of hydrogen bonds, but also on the order of the hydrogen bonds in themotif.
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This important aspect of linear hydrogen-bonding motifs was pointed out by
Jorgensen et al.,who found a large variation in the association constants of threefold
hydrogen-bonding motifs. Although the ADA –DAD and DAA – ADD arrays exhibit
an equal amount of hydrogen bonds, the association constants of these motifs were
significantly different. This was attributed to the different order of the hydrogen
bonds [10]. Since thehydrogenbonds in themotifs are in close proximity, the distance
of a hydrogen-bonding donor or acceptor to the neighbor of its counterpart is also
relatively small, creating attractive or repulsive electrostatic secondary cross-inter-
actions (Figure 1.2). This theory was later confirmed by Zimmerman et al., who
completed the series with the AAA – DDD array and indeed found a significantly
higher dimerization constant due to the presence of solely attractive secondary
interactions [11].

These so-called secondary interactions have a significant influence on the asso-
ciation constant of the correspondingmotif, changing the association constant of the
triple hydrogen-bonding motif by at least three orders of magnitude. Based on these
results, Schneider et al. developed a method to calculate the free association energy
for linear hydrogen-bonding motifs taking into account the secondary interactions,
each contributing 2.9 kJmol�1 to the binding energy, and expanded it to quadruple
hydrogen-bonding motifs [12].
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Figure 1.2 Influence of attractive and repulsive secondary interactions on the association
constant of threefold hydrogen-bonding motifs [10, 11]. Reprinted with permission from The Royal
Society of Chemistry [13].
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1.2.2
Preorganization through Intramolecular Hydrogen Bonding

Throughout the development of supramolecular chemistry, our knowledge of
hydrogen-bonding motifs expanded rapidly. To attain high association constants,
multiple hydrogen-bondingmotifs were developed. Our group developed quadruple
hydrogen-bonding motifs based on diaminotriazines and diaminopyrimidines in
which a remarkably high dimerization constant was achieved when an amidemoiety
was replaced by a ureidomoiety (Figure 1.3) [14]. A large deviation in the values of the
experimentally determined dimerization constants of the ureido molecules was
observed when compared to the calculations as proposed by Scheider et al.However,
the experimental values for the amide molecules were in agreement with the
calculated values. The large difference between the experimental and the predicted
dimerization constants was attributed to the presence of an intramolecular hydrogen
bond between the ureido NH and the nitrogen in the ring. This intramolecular
hydrogen bond stabilizes the cis conformation of the ureido moiety and forces the
carbonyl in plane with the aromatic ring. This causes prearrangement of the DADA
hydrogen-bondingmotif and results in an increase in the association constant by two
or three orders of magnitude.

To reduce the number of repulsive secondary interactions, thereby increasing
the association constant, our group introduced the self-complementary 2-ureido-
4[1H]-pyrimidinone (UPy) quadruple hydrogen-bonding DDAA motif [15]. The
intramolecular hydrogen bond prearranges the motif, resulting in a nearly
planar DDAA motif (Figure 1.4) [16]. Due to the reduced number of repulsive
secondary interactions and the intramolecular hydrogen bond, the dimerization
constant was found to be 6� 107M�1 in chloroform, with a long lifetime of
0.1 s [17].
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Figure 1.3 Quadruple hydrogen-bondingmotifs with their corresponding dimerization constants,
revealing the effect of the intramolecular hydrogen bond on the dimerization constant [14].
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1.2.3
Tautomeric Equilibria

Although the UPy motif exhibits a high dimerization constant, the type of aggregate
that is obtained during self-assembly is highly dependent on the substituent on
the 6-position of the pyrimidinone ring, since different tautomeric forms can be
present [16]. With electron-withdrawing or -donating substituents, the tautomeric
equilibrium is shifted to the pyrimidin-4-ol tautomer,which is self-complementary as
a DADA hydrogen-bonding motif (Figure 1.5). Due to more repulsive secondary

Figure 1.4 2-Ureido-4[1H]-pyrimidinone dimer and its corresponding single-crystal structure.
Reprinted with permission from the American Chemical Society [16].
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interactions, the dimerization constant of this DADAmotif is lowered to 9� 105M�1

in chloroform [18]. The tautomeric equilibrium showed a high dependence on the
solvent, and also showed concentration dependence. This illustrates that under-
standing the tautomeric equilibria is crucial for predicting the properties of hydro-
gen-bonding motifs.

Nowadays, the synthesis of new hydrogen-bonding motifs is almost unrestrict-
ed. Current hydrogen-bonding motifs used in supramolecular chemistry are not
only purely derived from organic chemistry, but are also derived from hydrogen
bonding as found in nature, for example by using the hydrogen-bonding motifs
found in DNA base pairs [19] or using peptide mimics (Figure 1.6) [20, 21]. Since
the start of supramolecular chemistry, many different hydrogen-bonding motifs
have been reported, ranging from monovalent up to dodecavalent hydrogen
bonds [21], with dimerization constants up to 7� 109M�1 [22]. However, it has
to be noted that some of the reported hydrogen-bonding motifs require a
multistep synthetic pathway, which lowers the overall yield tremendously, thereby
making them less attractive to use.

1.3
Hydrogen-Bonded Main-Chain Supramolecular Polymers

1.3.1
The Establishment of Supramolecular Polymers

In macromolecular chemistry, the monomeric units are held together by covalent
bonds. In 1990, Jean-Marie Lehn introduced a new area within the field of polymer
chemistry by creating a polymer inwhich themonomeric units were held together by
hydrogen bonds, resulting in a liquid crystalline supramolecular polymer
(Figure 1.7) [23]. This initiated the field of supramolecular polymer chemistry,
generating materials with reversible interactions, and thereby introducing the
opportunity to produce materials with properties that otherwise would have been
impossible or difficult to obtain.

Inspired by this work, Griffin et al. developed main-chain supramolecular poly-
mers based on pyridine/benzoic acid hydrogen bonding, also obtaining liquid
crystalline supramolecular polymers [24]. Our group introduced supramolecular
polymers based on the ureido-pyrimidinone motif. Due to the high dimerization
constant present in the UPy motif, supramolecular polymers were formed with a
high degree of polymerization even in semi-dilute solution [15].

We have defined supramolecular polymers as �. . .polymeric arrays of monomeric
units that are brought together by reversible and highly directional secondary interactions,
resulting in polymeric properties in dilute and concentrated solutions, as well as in the bulk.
The monomeric units of the supramolecular polymers themselves do not possess a repetition
of chemical fragments. The directionality and strength of the supramolecular bonding are
important features of these systems, that can be regarded as polymers and behave according
to well-established theories of polymer physics. In the past the term �living polymers� has
been used for this type of polymer. However, to exclude confusion with the important field of
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